Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,115)

Search Parameters:
Keywords = metabolite accumulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4501 KiB  
Article
The Effect of SO2 Fumigation, Acid Dipping, and SO2 Combined with Acid Dipping on Metabolite Profile of ‘Heiye’ Litchi (Litchi chinensis Sonn.) Pericarp
by Feilong Yin, Zhuoran Li, Tingting Lai, Libing Long, Yunfen Liu, Dongmei Han, Zhenxian Wu, Liang Shuai and Tao Luo
Horticulturae 2025, 11(8), 923; https://doi.org/10.3390/horticulturae11080923 (registering DOI) - 5 Aug 2025
Abstract
Sulfur fumigation (SF), acid dipping (HCl treatment, HAT), and their combination (SF+HAT) are common methods for long-term preservation and color protection of litchi. However, their effects on the metabolic profile of the litchi pericarp have not been investigated. SF resulted in a yellowish-green [...] Read more.
Sulfur fumigation (SF), acid dipping (HCl treatment, HAT), and their combination (SF+HAT) are common methods for long-term preservation and color protection of litchi. However, their effects on the metabolic profile of the litchi pericarp have not been investigated. SF resulted in a yellowish-green pericarp by up-regulating lightness (L*), b*, C*, and but down-regulating total anthocyanin content (TAC) and a*, while HAT resulted in a reddish coloration by up-regulating a*, b*, and C* but down-regulating L*, h°, and TAC. SF+HAT recovered reddish color with similar L*, C* to SF but a*, b*, h°, and TAC between SF and HAT. Differential accumulated metabolites (DAMs) detected in HAT (vs. control) were more than those in SF (vs. control), but similar to those in SF+HAT (vs. control). SF specifically down-regulated the content of cyanidin-3-O-rutinoside, sinapinaldehyde, salicylic acid, and tyrosol, but up-regulated 6 flavonoids (luteolin, kaempferol-3-O-(6″-malonyl)galactoside, hesperetin-7-O-glucoside, etc.). Five pathways (biosynthesis of phenylpropanoids, flavonoid biosynthesis, biosynthesis of secondary metabolites, glutathione metabolism, and cysteine and methionine metabolism) were commonly enriched among the three treatments, which significantly up-regulated sulfur-containing metabolites (mainly glutathione, methionine, and homocystine) and down-regulated substrates for browning (mainly procyanidin B2, C1, and coniferyl alcohol). These results provide metabolic evidence for the effect of three treatments on coloration and storability of litchi. Full article
Show Figures

Figure 1

17 pages, 6632 KiB  
Article
Metabolomic and Physiological Analysis of Blueberry (Vaccinium spp.) in Response to Ericoid Mycorrhizal Fungi (Oidiodendron maius H14)
by Haifeng Zhu, Yixiao Wang, Jing Jiang, Zhiyu Yang, Lili Li and Hongyi Yang
Horticulturae 2025, 11(8), 918; https://doi.org/10.3390/horticulturae11080918 (registering DOI) - 5 Aug 2025
Abstract
Ericoid mycorrhizal fungi (EMF) enhance plant fitness and metabolic regulations in nutrient-poor soils, though the mechanisms diving these interactions require further elucidation. This study investigated the physiological and metabolic responses of blueberry seedlings following 2- and 3-weeks inoculation with Oidiodendron maius H14. The [...] Read more.
Ericoid mycorrhizal fungi (EMF) enhance plant fitness and metabolic regulations in nutrient-poor soils, though the mechanisms diving these interactions require further elucidation. This study investigated the physiological and metabolic responses of blueberry seedlings following 2- and 3-weeks inoculation with Oidiodendron maius H14. The results indicated that EMF could significantly increases plant biomass, improve the accumulation of osmoregulatory substances in leaves. Additionally, the colonization rate of EMF are 26.18% and 30.22% after 2- and 3-weeks, respectively. The Metabolomics analysis identified 758 (593 up- and 165 down-regulated) and 805 (577 up- and 228 down-regulated) differential metabolites in roots at 2- and 3-weeks inoculation with O. maius H14, respectively. KEGG pathway annotation revealed that O. maius H14 triggered various amino acid metabolism pathways, including tryptophan metabolism and arginine and proline metabolism. These findings suggested that O. maius H14 stimulated root-specific biosynthesis of growth-promoting compounds and antimicrobial compounds. Concomitant downregulation of stress-associated genes and upregulation of glutamine synthetase suggest EMF modulates host defense responses to facilitate symbiosis. Thus, our results demonstrated that O. maius H14 orchestrates a metabolic reprogramming in blueberry roots, enhancing growth and stress tolerance through coordinated changes in primary and specialized metabolism, which could inform strategies for improving symbiosis and metabolic engineering in horticultural practices. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Graphical abstract

21 pages, 10626 KiB  
Article
Comparative Metabolomic Analysis Reveals Tissue- and Species-Specific Differences in the Abundance of Dammarane-Type Ginsenosides in Three Panax Species
by Shu He, Ying Gong, Shuangfei Deng, Yaquan Dou, Junmin Wang, Hoang Van Sam, Xingliang Chen, Xiahong He and Rui Shi
Horticulturae 2025, 11(8), 916; https://doi.org/10.3390/horticulturae11080916 (registering DOI) - 5 Aug 2025
Abstract
The genus Panax contains traditional herbs that have been widely used in traditional medicine. The active constituents, collectively known as ginsenosides, are well characterized in the most representative species, P. notoginseng. However, the major bioactive chemical constituents of P. stipuleanatus together with [...] Read more.
The genus Panax contains traditional herbs that have been widely used in traditional medicine. The active constituents, collectively known as ginsenosides, are well characterized in the most representative species, P. notoginseng. However, the major bioactive chemical constituents of P. stipuleanatus together with P. vietnamensis are relatively less studied. In this study, an untargeted metabolomic analysis was performed in P. notoginseng, P. stipuleanatus, and P. vietnamensis using root and leaf organs. Further metabolomic differences in P. stipuleanatus were compared with those of the two most prevalent species. The analysis results revealed tissue-specific qualitative and quantitative metabolic differences in each species. Several differentially accumulated metabolites were enriched in the biosynthesis of secondary metabolites, including the biosynthesis of ginsenosides I. The ginsenosides Rb1, Rf, Rg1, Rh1, Rh8, and notoginsenosides E, M, and N had a higher abundance level in the roots of both P. notoginseng and P. vietnamensis. In P. stipuleanatus, the accumulation of potentially important ginsenosides is mainly found in the leaf. In particular, the dammarane-type ginsenosides Rb3, Rb1, Mx, and F2 as well as the notoginsenosides A, Fe, Fa, Fd, L, and N were identified to have a higher accumulation in the leaf. The strong positive correlation network of different ginsenosides probably enhanced secondary metabolism in each species. The comparative analysis revealed a significant differential accumulation of metabolites in the leaves of both species. The various compounds of dammarane-type ginsenoside, such as Rb1, Rg1, Rg6, Rh8, Rh10, Rh14, and majoroside F2, had a significantly higher concentration level in the leaves of P. stipuleanatus. In addition, several notoginsenoside compounds such as A, R1, Fe, Fd, and Ft1 showed a higher abundance in the leaf. These results show that the abundance level of major ginsenosides is significant in P. stipuleanatus and provides an important platform to improve the ginsenoside quality of Panax species. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

16 pages, 2301 KiB  
Article
Haustorium Formation and Specialized Metabolites Biosynthesis Using Co-Culture of Castilleja tenuiflora Benth. and Baccharis conferta Kunth
by Annel Lizeth Leyva-Peralta, José Luis Trejo-Espino, Guadalupe Salcedo-Morales, Daniel Tapia-Maruri, Virginia Medina-Pérez, Alma Rosa López-Laredo and Gabriela Trejo-Tapia
Biology 2025, 14(8), 990; https://doi.org/10.3390/biology14080990 (registering DOI) - 4 Aug 2025
Abstract
In this study, an in vitro co-culture system of Castilleja tenuiflora and its host, Baccharis conferta, was used, and the impact of their interaction on specialized metabolite content was analyzed. After 4 weeks of co-culture, haustoria formation was verified through environmental scanning [...] Read more.
In this study, an in vitro co-culture system of Castilleja tenuiflora and its host, Baccharis conferta, was used, and the impact of their interaction on specialized metabolite content was analyzed. After 4 weeks of co-culture, haustoria formation was verified through environmental scanning electron and confocal microscopy, confirming the successful establishment of the plant–plant interaction. Shoot height and biomass of the aerial part of the hemiparasite were not affected significantly by co-culture. However, root biomass increased by 53% compared to individually grown plants. Co-culture significantly reduced the host’s root length without negatively affecting its overall growth or survival. Phytochemical profile alterations were observed in both species. For C. tenuiflora, the lignans sesamin and eudesmin are proposed as differentially accumulated metabolites, while in B. conferta, the caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid, and the flavonoid acacetin were expressed differently. The development and chemical profiles of B. conferta and C. tenuiflora change when they grow in a co-culture because of the host–parasite interaction. Here, we report the feasibility of using a hemiparasite–host system to investigate more profound research questions. Future biotechnological applications of this system include elucidating the genetic regulators involved in haustorium formation, as well as optimizing environmental and physiological conditions to enhance its biosynthetic capacity for the production of specialized metabolites with therapeutic value. Full article
(This article belongs to the Section Plant Science)
Show Figures

Graphical abstract

23 pages, 5809 KiB  
Article
Multistrain Microbial Inoculant Enhances Yield and Medicinal Quality of Glycyrrhiza uralensis in Arid Saline–Alkali Soil and Modulate Root Nutrients and Microbial Diversity
by Jun Zhang, Xin Li, Peiyao Pei, Peiya Wang, Qi Guo, Hui Yang and Xian Xue
Agronomy 2025, 15(8), 1879; https://doi.org/10.3390/agronomy15081879 - 3 Aug 2025
Viewed by 51
Abstract
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and [...] Read more.
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and preventing and adjuvantly treating related diseases. However, the cultivation of G. uralensis is easily restricted by adverse soil conditions in these regions, characterized by high salinity, high alkalinity, and nutrient deficiency. This study investigated the impacts of four multistrain microbial inoculants (Pa, Pb, Pc, Pd) on the growth performance and bioactive compound accumulation of G. uralensis in moderately saline–sodic soil. The aim was to screen the most beneficial inoculant from these strains, which were isolated from the rhizosphere of plants in moderately saline–alkaline soils of the Hexi Corridor and possess native advantages with excellent adaptability to arid environments. The results showed that inoculant Pc, comprising Pseudomonas silesiensis, Arthrobacter sp. GCG3, and Rhizobium sp. DG1, exhibited superior performance: it induced a 0.86-unit reduction in lateral root number relative to the control, while promoting significant increases in single-plant dry weight (101.70%), single-plant liquiritin (177.93%), single-plant glycyrrhizic acid (106.10%), and single-plant total flavonoids (107.64%). Application of the composite microbial inoculant Pc induced no significant changes in the pH and soluble salt content of G. uralensis rhizospheric soils. However, it promoted root utilization of soil organic matter and nitrate, while significantly increasing the contents of available potassium and available phosphorus in the rhizosphere. High-throughput sequencing revealed that Pc reorganized the rhizospheric microbial communities of G. uralensis, inducing pronounced shifts in the relative abundances of rhizospheric bacteria and fungi, leading to significant enrichment of target bacterial genera (Arthrobacter, Pseudomonas, Rhizobium), concomitant suppression of pathogenic fungi, and proliferation of beneficial fungi (Mortierella, Cladosporium). Correlation analyses showed that these microbial shifts were linked to improved plant nutrition and secondary metabolite biosynthesis. This study highlights Pc as a sustainable strategy to enhance G. uralensis yield and medicinal quality in saline–alkali ecosystems by mediating microbe–plant–nutrient interactions. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

16 pages, 3158 KiB  
Article
Comparative Metabolomics Analysis of Four Pineapple (Ananas comosus L. Merr) Varieties with Different Fruit Quality
by Ping Zheng, Jiahao Wu, Denglin Li, Shiyu Xie, Xinkai Cai, Qiang Xiao, Jing Wang, Qinglong Yao, Shengzhen Chen, Ruoyu Liu, Yuqin Liang, Yangmei Zhang, Biao Deng, Yuan Qin and Xiaomei Wang
Plants 2025, 14(15), 2400; https://doi.org/10.3390/plants14152400 - 3 Aug 2025
Viewed by 99
Abstract
Understanding the metabolic characteristics of pineapple varieties is crucial for market expansion and diversity. This study performed comparative metabolomic analysis on the “Comte de Paris” (BL) and three Taiwan-introduced varieties: “Tainong No. 11” (XS), “Tainong No. 23” (MG), and “Tainong No. 13” (DM). [...] Read more.
Understanding the metabolic characteristics of pineapple varieties is crucial for market expansion and diversity. This study performed comparative metabolomic analysis on the “Comte de Paris” (BL) and three Taiwan-introduced varieties: “Tainong No. 11” (XS), “Tainong No. 23” (MG), and “Tainong No. 13” (DM). A total of 551 metabolites were identified across the four varieties, with 231 metabolites exhibiting no significant differences between all varieties. This included major sugars such as sucrose, glucose, and fructose, as well as key acids like citric, malic, and quinic acids, indicating that the in-season maturing fruits of different pineapple varieties can all achieve good sugar–acid accumulation under suitable conditions. The differentially accumulated metabolites (DAMs) that were identified among the four varieties all primarily belonged to several major subclasses, including phenolic acids, flavonoids, amino acids and derivatives, and alkaloids, but the preferentially accumulated metabolites in each variety varied greatly. Specifically, branched-chain amino acids (L-leucine, L-isoleucine, and L-valine) and many DAMs in the flavonoid, phenolic acid, lignan, and coumarin categories were most abundant in MG, which might contribute to its distinct and enriched flavor and nutritional value. XS, meanwhile, exhibited a notable accumulation of aromatic amino acids (L-phenylalanine, L-tryptophan), various phenolic acids, and many lignans and coumarins, which may be related to its unique flavor profile. In DM, the dominant accumulation of jasmonic acid might contribute to its greater adaptability to low temperatures during autumn and winter, allowing off-season fruits to maintain good quality. The main cultivar BL exhibited the highest accumulation of L-ascorbic acid and many relatively abundant flavonoids, making it a good choice for antioxidant benefits. These findings offer valuable insights for promoting different varieties and advancing metabolome-based pineapple improvement programs. Full article
Show Figures

Figure 1

26 pages, 3326 KiB  
Article
Zeolite in Vineyard: Innovative Agriculture Management Against Drought Stress
by Eleonora Cataldo, Sergio Puccioni, Aleš Eichmeier and Giovan Battista Mattii
Horticulturae 2025, 11(8), 897; https://doi.org/10.3390/horticulturae11080897 (registering DOI) - 3 Aug 2025
Viewed by 182
Abstract
Discovering, analyzing, and finding a key to understanding the physiological and biochemical responses that Vitis vinifera L. undertakes against drought stress is of fundamental importance for this profitable crop. Today’s considerable climatic fluctuations force researchers and farmers to focus on this issue with [...] Read more.
Discovering, analyzing, and finding a key to understanding the physiological and biochemical responses that Vitis vinifera L. undertakes against drought stress is of fundamental importance for this profitable crop. Today’s considerable climatic fluctuations force researchers and farmers to focus on this issue with solutions inclined to respect the ecosystem. In this academic work, we focused on describing the drought stress consequences on several parameters of secondary metabolites on Vitis vinifera leaves (quercetins, kaempferol, resveratrol, proline, and xanthophylls) and on some ecophysiological characteristics (e.g., water potential, stomatal conductance, and leaf temperature) to compare the answers that diverse agronomic management techniques (i.e., irrigation with and without zeolite, pure zeolite and no application) could instaurate in the metabolic pathway of this important crop with the aim to find convincing and thought-provoking responses to use this captivating and versatile mineral, the zeolite known as the “magic rock”. Stressed grapevines reached 56.80 mmol/m2s gs at veraison and a more negative stem Ψ (+10.63%) compared to plants with zeolite. Resveratrol, in the hottest season, fluctuated from 0.18–0.19 mg/g in zeolite treatments to 0.37 mg/g in stressed vines. Quercetins were inclined to accumulate in response to drought stress too. In fact, we recorded a peak of quercetin (3-O-glucoside + 3-O-glucuronide) of 11.20 mg/g at veraison in stressed plants. It is interesting to note how the pool of metabolites was often unchanged for plants treated with zeolite and for plants treated with water only, thus elevating this mineral to a “stress reliever”. Full article
Show Figures

Figure 1

21 pages, 3959 KiB  
Article
Unveiling Stage-Specific Flavonoid Dynamics Underlying Drought Tolerance in Sweet Potato (Ipomoea batatas L.) via Integrative Transcriptomic and Metabolomic Analyses
by Tao Yin, Chaoyu Song, Huan Li, Shaoxia Wang, Wenliang Wei, Jie Meng and Qing Liu
Plants 2025, 14(15), 2383; https://doi.org/10.3390/plants14152383 - 2 Aug 2025
Viewed by 204
Abstract
Drought stress severely limits the productivity of sweet potato (Ipomoea batatas L.), yet the stage-specific molecular mechanisms of its adaptation remain poorly understood. Therefore, we integrated transcriptomics and extensive targeted metabolomics analysis to investigate the drought responses of the sweet potato cultivar [...] Read more.
Drought stress severely limits the productivity of sweet potato (Ipomoea batatas L.), yet the stage-specific molecular mechanisms of its adaptation remain poorly understood. Therefore, we integrated transcriptomics and extensive targeted metabolomics analysis to investigate the drought responses of the sweet potato cultivar ‘Luoyu 11’ during the branching and tuber formation stage (DS1) and the storage root expansion stage (DS2) under controlled drought conditions (45 ± 5% field capacity). Transcriptome analysis identified 8292 and 13,509 differentially expressed genes in DS1 and DS2, respectively, compared with the well-watered control (75 ± 5% field capacity). KEGG enrichment analysis revealed the activation of plant hormone signaling, carbon metabolism, and flavonoid biosynthesis pathways, and more pronounced transcriptional changes were observed during the DS2 stage. Metabolomic analysis identified 415 differentially accumulated metabolites across the two growth periods, with flavonoids being the most abundant (accounting for 30.3% in DS1 and 23.7% in DS2), followed by amino acids and organic acids, which highlighted their roles in osmotic regulation and oxidative stress alleviation. Integrated omics analysis revealed stage-specific regulation of flavonoid biosynthesis under drought stress. Genes such as CYP75B1 and IF7MAT were consistently downregulated, whereas flavonol synthase and glycosyltransferases exhibited differential expression patterns, which correlated with the selective accumulation of trifolin and luteoloside. Our findings provide novel insights into the molecular basis of drought tolerance in sweet potato and offer actionable targets for breeding and precision water management in drought-prone regions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

16 pages, 1632 KiB  
Article
Meloidogyne incognita Significantly Alters the Cucumber Root Metabolome and Enriches Differential Accumulated Metabolites Regulating Nematode Chemotaxis and Infection
by Naicun Chen, Qianqian Sun, Zhiqun Chen and Xu Zhang
Horticulturae 2025, 11(8), 892; https://doi.org/10.3390/horticulturae11080892 (registering DOI) - 1 Aug 2025
Viewed by 161
Abstract
Root-knot nematode (Meloidogyne incognita) is a globally destructive plant-parasitic nematode that severely impedes the sustainable production of horticultural crops. Metabolic reprogramming in plant roots represents the host response to M. incognita infection that can also be exploited by the nematode to [...] Read more.
Root-knot nematode (Meloidogyne incognita) is a globally destructive plant-parasitic nematode that severely impedes the sustainable production of horticultural crops. Metabolic reprogramming in plant roots represents the host response to M. incognita infection that can also be exploited by the nematode to facilitate its parasitism. In this study, untargeted metabolomics was employed to analyze metabolic changes in cucumber roots following nematode inoculation, with the goal of identifying differentially accumulated metabolites that may influence M. incognita behavior. Metabolomic analysis revealed that M. incognita significantly altered the cucumber root metabolome, triggering an accumulation of lipids and organic acids and enriching biotic stress-related pathways such as alkaloid biosynthesis and linoleic acid metabolism. Among differentially accumulated metabolites, myristic acid and hexadecanal were selected for further study due to their potential roles in nematode inhibition. In vitro assays demonstrated that both metabolites suppressed egg hatching and reduced infectivity of M. incognita, while pot experiments indicated a correlation between their application and reduced root gall formation. Chemotaxis assays further revealed that both metabolites exerted repellent effects on the chemotactic migration of M. incognita J2 and suppressed the transcriptional expression of two motility-and feeding-related neuropeptides, Mi-flp-1 and Mi-flp-18. In conclusion, this study demonstrates the significant potential of differentially accumulated metabolites induced by M. incognita infection for nematode disease control, achieved by interfering with nematode chemotaxis and subsequent infection. This work also provides deeper insights into the metabolomic mechanisms underlying the cucumber-M. incognita interaction. Full article
(This article belongs to the Special Issue 10th Anniversary of Horticulturae—Recent Outcomes and Perspectives)
Show Figures

Figure 1

14 pages, 31608 KiB  
Article
Primary Metabolic Variations in Maize Plants Affected by Different Levels of Nitrogen Supply
by The Ngoc Phuong Nguyen, Rose Nimoh Serwaa and Jwakyung Sung
Metabolites 2025, 15(8), 519; https://doi.org/10.3390/metabo15080519 - 1 Aug 2025
Viewed by 165
Abstract
Background/Objectives: Nitrogen (N) is an essential macronutrient that strongly influences maize growth and metabolism. While many studies have focused on nitrogen responses during later developmental stages, early-stage physiological and metabolic responses remain less explored. This study investigated the effect of different nitrogen-deficient [...] Read more.
Background/Objectives: Nitrogen (N) is an essential macronutrient that strongly influences maize growth and metabolism. While many studies have focused on nitrogen responses during later developmental stages, early-stage physiological and metabolic responses remain less explored. This study investigated the effect of different nitrogen-deficient levels on maize seedling growth and primary metabolite profiles. Methods: Seedlings were treated with N-modified nutrient solution, which contained 0% to 120% of the standard nitrogen level (8.5 mM). Results: Nitrogen starvation (N0) significantly reduced plant height (by 11–14%), shoot fresh weight (over 30%) compared to the optimal N supply (N100). Total leaf nitrogen content under N0–N20 was less than half of that in N100, whereas moderate N deficiency resulted in moderate reductions in growth and nitrogen content. Metabolite analysis revealed that N deficiency induced the accumulation of soluble sugars and organic acids (up to threefold), while sufficient N promoted the synthesis of amino acids related to nitrogen assimilation and protein biosynthesis. Statistical analyses (PCA and ANOVA) showed that both genotypes (MB and TYC) and tissue type (upper vs. lower leaves) influenced the metabolic response to nitrogen, with MB displaying more consistent shifts and TYC exhibiting greater variability under moderate stress. Conclusions: These findings highlight the sensitivity of maize seedlings to early nitrogen deficiency, with severity influenced by nitrogen level, tissue-specific position, and genotype; thus underscore the close coordination between physiological growth and primary metabolic pathways in response to nitrogen availability. These findings expand current knowledge of nitrogen response mechanisms and offer practical insights for improving nitrogen use efficiency in maize cultivation. Full article
Show Figures

Figure 1

20 pages, 1664 KiB  
Article
Phenolic Evolution During Industrial Red Wine Fermentations with Different Sequential Air Injection Regimes
by Paula A. Peña-Martínez, Alvaro Peña-Neira and V. Felipe Laurie
Fermentation 2025, 11(8), 446; https://doi.org/10.3390/fermentation11080446 - 31 Jul 2025
Viewed by 234
Abstract
During red wine production, managing the pomace cap is key for a successful fermentation, allowing the extraction of phenolics and other metabolites and providing the necessary oxygen for yeast activity. In recent years, automatic cap management systems based on the injection of gases [...] Read more.
During red wine production, managing the pomace cap is key for a successful fermentation, allowing the extraction of phenolics and other metabolites and providing the necessary oxygen for yeast activity. In recent years, automatic cap management systems based on the injection of gases have gained popularity, despite the limited scientific information regarding the outcomes of their use. This trial aimed to evaluate the composition of wine during industrial red wine fermentations using an automatic sequential air injection system (i.e., AirMixing MITM). Fourteen lots of Cabernet Sauvignon grapes were fermented using four air injection regimes, where the intensity and daily frequency of air injections were set to either low or high. As expected, the treatment combining high-intensity and high-frequency air injection produced the largest dissolved oxygen peaks reaching up to 1.9 mg L−1 per cycle, compared to 0.1 mg L−1 in the low-intensity and low-frequency treatment. Yet, in all cases, little to no accumulation of oxygen overtime was observed. Regarding phenolics, the highest intensity and frequency of air injections led to the fastest increase in total phenolics, anthocyanins, short polymeric pigments, and tannin concentration, although compositional differences among treatments equilibrate by the end of fermentation. The main differences in phenolic compounds observed during fermentation were mediated by temperature variation among wine tanks. Based on these findings, it is advisable to keep the characterizing kinetics of phenolic extraction and expand the study to the aroma evolution of wines fermented with this technology. Full article
(This article belongs to the Special Issue Biotechnology in Winemaking)
Show Figures

Figure 1

14 pages, 2583 KiB  
Article
Transcriptome and Metabolome Analyses Reveal the Physiological Variations of a Gradient-Pale-Green Leaf Mutant in Sorghum
by Kuangzheng Qu, Dan Li, Zhenxing Zhu and Xiaochun Lu
Agronomy 2025, 15(8), 1841; https://doi.org/10.3390/agronomy15081841 - 30 Jul 2025
Viewed by 207
Abstract
Sorghum is an important cereal crop. The maintenance of leaf color significantly influences sorghum growth and development. Although the mechanisms of leaf color mutation have been well studied in many plants, those in sorghum remain largely unclear. Here, we identified a sorghum gradient-pale-green [...] Read more.
Sorghum is an important cereal crop. The maintenance of leaf color significantly influences sorghum growth and development. Although the mechanisms of leaf color mutation have been well studied in many plants, those in sorghum remain largely unclear. Here, we identified a sorghum gradient-pale-green leaf mutant (sbgpgl1) from the ethyl methanesulfonate (EMS) mutagenesis mutant library. Phenotypic, photosynthesis-related parameter, ion content, transcriptome, and metabolome analyses were performed on wild-type BTx623 and the sbgpgl1 mutant at the heading stage, revealing changes in several agronomic traits and physiological indicators. Compared with BTx623, sbgpgl1 showed less height, with a smaller length and width of leaf and panicle. The overall Chl a and Chl b contents in sbgpgl1 were lower than those in BTx623. The net photosynthetic rate, stomatal conductance, and transpiration rate were significantly reduced in sbgpgl1 compared to BTx623. The content of copper (Cu), zinc (Zn), and manganese (Mn) was considerably lower in sbgpgl1 leaves than in BTx623. A total of 4469 differentially expressed genes (DEGs) and 775 differentially accumulated metabolites (DAMs) were identified by RNA-seq and UPLC-MS/MS. The results showed that sbgpgl1 primarily influenced sorghum metabolism by regulating metabolic pathways and the biosynthesis of secondary metabolites, especially flavonoids and phenolic acids, resulting in the gradient-pale-green leaf phenotype. These findings reveal key genes and metabolites involved on a molecular basis in physiological variations of the sorghum leaf color mutant. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

14 pages, 1769 KiB  
Article
The Effect of Colors and Light Intensity on the Growth and Biochemical Compounds of the Chlorophyceae Nephroselmis sp.
by Ichrak Sekri, Wassim Guermazi, Mohamad El-khateeb, George N. Hotos and Habib Ayadi
J. Mar. Sci. Eng. 2025, 13(8), 1452; https://doi.org/10.3390/jmse13081452 - 29 Jul 2025
Viewed by 262
Abstract
Light intensity and spectral quality play crucial roles in microalgal growth and biochemical biosynthesis. This study investigates the effects of different light intensities (3000, 8000 and 15,000 lux) and colors (red, white, yellow and green) on the growth and metabolites of Nephroselmis sp. [...] Read more.
Light intensity and spectral quality play crucial roles in microalgal growth and biochemical biosynthesis. This study investigates the effects of different light intensities (3000, 8000 and 15,000 lux) and colors (red, white, yellow and green) on the growth and metabolites of Nephroselmis sp. Moderate intensity (8000 lux) of white light is sufficient to produce this microalga. The colors of light strongly affect the parameters of the growth of Nephroselmis under each light intensity (p < 0.05). The yellow and green light supported the highest growth rates for the three intensities. Blue and green light at 15,000 Lux stimulates high levels of chl-a corresponding to antenna size 2.80 and 2.46. Nephroselmis illuminated with red light synthesizes carotenoids reaching 13 µg mL−1 at 15,000 lux. This latter for each color stops the proliferation of Nephroselmis, and cells shift their metabolism towards the accumulation of protein. Nephroselmis accumulates more protein, followed by carbohydrates, lipids and polyphenols. Nephroselmis exhibited the highest protein (64% D.W) content when cultured under white light, and the green at 15,000 lux enhanced their production. Nephroselmis is rich in carbohydrates, which accounted for more than 20% D.W under all combinations of light intensities and colors. The accumulation of polyphenols and carotenoids under high-intensity red and white light may reflect an oxidative stress response, suggesting their role as protective antioxidants. The capacity of Nephroselmis sp. to thrive and synthesize valuable metabolites under variable light regimes underscores its potential as a robust candidate for the production of various molecules. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

26 pages, 1171 KiB  
Review
Current Context of Cannabis sativa Cultivation and Parameters Influencing Its Development
by Andreia Saragoça, Ana Cláudia Silva, Carla M. R. Varanda, Patrick Materatski, Alfonso Ortega, Ana Isabel Cordeiro and José Telo da Gama
Agriculture 2025, 15(15), 1635; https://doi.org/10.3390/agriculture15151635 - 29 Jul 2025
Viewed by 395
Abstract
Cannabis sativa L. is a versatile plant with significant medicinal, industrial, and recreational applications. Its therapeutic potential is attributed to cannabinoids like THC and CBD, whose production is influenced by environmental factors, such as radiation, temperature, and humidity. Radiation, for instance, is essential [...] Read more.
Cannabis sativa L. is a versatile plant with significant medicinal, industrial, and recreational applications. Its therapeutic potential is attributed to cannabinoids like THC and CBD, whose production is influenced by environmental factors, such as radiation, temperature, and humidity. Radiation, for instance, is essential for photosynthetic processes, acting as both a primary energy source and a regulator of plant growth and development. This review covers key factors affecting C. sativa cultivation, including photoperiod, light spectrum, cultivation methods, environmental controls, and plant growth regulators. It highlights how these elements influence flowering, biomass, and cannabinoid production across different growing systems, offering insights for optimizing both medicinal and industrial cannabis cultivation. Studies indicate that photoperiod sensitivity varies among cultivars, with some achieving optimal flowering and cannabinoid production under extended light periods rather than the traditional 12/12 h cycle. Light spectrum adjustments, especially red, far-red, and blue wavelengths, significantly impact photosynthesis, plant morphology, and secondary metabolite accumulation. Advances in LED technology allow precise spectral control, enhancing energy efficiency and cannabinoid profiles compared to conventional lighting. The photoperiod plays a vital role in the cultivation of C. sativa spp., directly impacting the plant’s developmental cycle, biomass production, and the concentration of cannabinoids and terpenes. The response to photoperiod varies among different cannabis cultivars, as demonstrated in studies comparing cultivars of diverse genetic origins. On the other hand, indoor or in vitro cultivation may serve as an excellent alternative for plant breeding programs in C. sativa, given the substantial inter-cultivar variability that hinders the fixation of desirable traits. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

15 pages, 4581 KiB  
Article
Co-Culture with Two Soil Fungal Strains Enhances Growth and Secondary Metabolite Biosynthesis in Cordyceps takaomontana
by Junyi Chen, Minghao Ding, Donglan He, Dengxian Zhang, Ming Wang, Yulan Xiang and Tianya Liu
J. Fungi 2025, 11(8), 559; https://doi.org/10.3390/jof11080559 - 29 Jul 2025
Viewed by 335
Abstract
Cordyceps takaomontana is a medicinal fungus with significant pharmacological value, but how soil microbes promote its growth remains unclear. We established a solid-state co-culture system involving C. takaomontana synnemata and its native soil fungi of Fusarium paeoniae and Bjerkandera minispora. Both F. [...] Read more.
Cordyceps takaomontana is a medicinal fungus with significant pharmacological value, but how soil microbes promote its growth remains unclear. We established a solid-state co-culture system involving C. takaomontana synnemata and its native soil fungi of Fusarium paeoniae and Bjerkandera minispora. Both F. paeoniae and B. minispora significantly promoted synnematal growth and enhanced antioxidant enzyme activities. Total triterpenoid content increased substantially. F. paeoniae markedly elevated levels of ergosterol peroxide, whereas B. minispora boosted accumulation of L-arabinose, ergotamine, and euphol. Metabolomics revealed that both fungi activated key metabolic pathways (including ABC transporters, mineral absorption, and protein digestion/absorption). F. paeoniae uniquely upregulated phenylalanine metabolism. This work elucidates the metabolic mechanisms underlying growth promotion of C. takaomontana mediated by F. paeoniae and B. minispora as well as deciphers potential pharmacologically active metabolites. These findings provide a foundation for strategically improving artificial cultivation and developing functional microbial inoculants. Full article
Show Figures

Figure 1

Back to TopTop