Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (254)

Search Parameters:
Keywords = membrane vibration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4708 KiB  
Article
Mechanical Characteristics and Precision Analysis of Inflatable Deployable Parabolic Membrane Antenna Structures
by Yu Hu, Huichao Ji and Wujun Chen
Aerospace 2025, 12(8), 677; https://doi.org/10.3390/aerospace12080677 - 29 Jul 2025
Viewed by 148
Abstract
As accuracy of the reflector surface of a space parabolic deployable antenna is an important factor to determine its electrical characteristics (transmission gain and side lobes), mechanical characteristics of parabolic antennas under various internal pressures should be studied. The objective of this paper [...] Read more.
As accuracy of the reflector surface of a space parabolic deployable antenna is an important factor to determine its electrical characteristics (transmission gain and side lobes), mechanical characteristics of parabolic antennas under various internal pressures should be studied. The objective of this paper is to explore the force analysis of parabolic antennas by theoretical method and to estimate the effect of different air pressures on the surface precision of parabolic antennas via experiments in horizontal and vertical directions, and then a numerical analysis of the vibration characteristics of the parabolic antenna is proposed to explore the transient response of parabolic antennas. It is found that the ratio of tension reduces as depth of the parabolic membrane increases and can infinitely converge to 1/2. For precision analysis, it is concluded that precision of the parabolic membrane surface in a vertical state is higher than that in a horizontal state. Full article
Show Figures

Figure 1

17 pages, 1308 KiB  
Article
Dual-Functional AgNPs/Magnetic Coal Fly Ash Composite for Wastewater Disinfection and Azo Dye Removal
by Lei Gong, Jiaxin Li, Rui Jin, Menghao Li, Jiajie Peng and Jie Zhu
Molecules 2025, 30(15), 3155; https://doi.org/10.3390/molecules30153155 - 28 Jul 2025
Viewed by 221
Abstract
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering [...] Read more.
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering route, utilizing sodium citrate as both a reducing and stabilizing agent. The AgNPs/MCFA composite was systematically characterized through multiple analytical techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). The results confirmed the uniform dispersion of AgNPs (average size: 13.97 nm) on the MCFA matrix, where the formation of chemical bonds (Ag-O-Si) contributed to the enhanced stability of the material. Under optimized conditions (0.5 g·L−1 AgNO3, 250 °C sintering temperature, and 2 h sintering time), AgNPs/MCFA exhibited an exceptional catalytic performance, achieving 99.89% MO degradation within 15 min (pseudo-first-order rate constant ka = 0.3133 min−1) in the presence of NaBH4. The composite also demonstrated potent antibacterial efficacy against Escherichia coli (MIC = 0.5 mg·mL−1) and Staphylococcus aureus (MIC = 2 mg·mL−1), attributed to membrane disruption, intracellular content leakage, and reactive oxygen species generation. Remarkably, AgNPs/MCFA retained >90% catalytic and antibacterial efficiency after five reuse cycles, enabled by its magnetic recoverability. By repurposing industrial waste (coal fly ash) as a low-cost carrier, this work provides a sustainable strategy to mitigate nanoparticle aggregation and environmental risks while enhancing multifunctional performance in water remediation. Full article
Show Figures

Graphical abstract

17 pages, 1594 KiB  
Article
Molecular-Level Insights into Meta-Phenylenediamine and Sulfonated Zinc Phthalocyanine Interactions for Enhanced Polyamide Membranes: A DFT and TD-DFT Study
by Ameni Gargouri and Bassem Jamoussi
Polymers 2025, 17(15), 2019; https://doi.org/10.3390/polym17152019 - 24 Jul 2025
Viewed by 273
Abstract
Access to clean water is a pressing global concern and membrane technologies play a vital role in addressing this challenge. Thin-film composite membranes prepared via interfacial polymerization (IPol) using meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) exhibit excellent separation performance, but face limitations such [...] Read more.
Access to clean water is a pressing global concern and membrane technologies play a vital role in addressing this challenge. Thin-film composite membranes prepared via interfacial polymerization (IPol) using meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) exhibit excellent separation performance, but face limitations such as fouling and low hydrophilicity. This study investigated the interaction between MPD and sulfonated zinc phthalocyanine, Zn(SO2)4Pc, as a potential strategy for enhancing membrane properties. Using Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT), we analyzed the optimized geometries, electronic structures, UV–Vis absorption spectra, FT-IR vibrational spectra, and molecular electrostatic potentials of MPD, Zn(SO2)4Pc, and their complexes. The results show that MPD/Zn(SO2)4Pc exhibits reduced HOMO-LUMO energy gaps and enhanced charge delocalization, particularly in aqueous environments, indicating improved stability and reactivity. Spectroscopic features confirmed strong interactions via hydrogen bonding and π–π stacking, suggesting that Zn(SO2)4Pc can act as a co-monomer or additive during IPol to improve polyamide membrane functionality. A conformational analysis of MPD/Zn(SO2)4Pc was conducted using density functional theory (DFT) to evaluate the impact of dihedral rotation on molecular stability. The 120° conformation was identified as the most stable, due to favorable π–π interactions and intramolecular hydrogen bonding. These findings offer computational evidence for the design of high-performance membranes with enhanced antifouling, selectivity, and structural integrity for sustainable water treatment applications. Full article
(This article belongs to the Special Issue Nanocomposite Polymer Membranes for Advanced Water Treatment)
Show Figures

Figure 1

24 pages, 3701 KiB  
Article
Multifunctional REE Selective Hybrid Membranes Based on Ion-Imprinted Polymers and Modified Multiwalled Carbon Nanotubes: A Physicochemical Characterization
by Aleksandra Rybak, Aurelia Rybak, Sławomir Boncel, Anna Kolanowska, Waldemar Kaszuwara, Mariusz Nyc, Rafał Molak, Jakub Jaroszewicz and Spas D. Kolev
Int. J. Mol. Sci. 2025, 26(15), 7136; https://doi.org/10.3390/ijms26157136 - 24 Jul 2025
Viewed by 270
Abstract
A novel type of multifunctional hybrid membranes combining modified chitosan, functionalized multi-walled carbon nanotubes (MWCNTs), and rare earth element ion-imprinted polymers (REEIIPs) were designed and characterized. The synthesized materials were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM), [...] Read more.
A novel type of multifunctional hybrid membranes combining modified chitosan, functionalized multi-walled carbon nanotubes (MWCNTs), and rare earth element ion-imprinted polymers (REEIIPs) were designed and characterized. The synthesized materials were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM), X-ray diffraction (XRD), X-ray micro-tomography, and Fourier transform infrared spectroscopy (FTIR). The hybrid membranes were also studied in terms of their mechanical and rheological properties. The key element of the proper preparation of hybrid membranes using the casting method in an external magnetic field was to synthesize membrane components with appropriate magnetic properties. It was found that they showed tunable weak ferromagnetic properties, and the increase in modified nanotube addition caused the rise in the membrane’s saturation magnetization, which for Nd-selective hybrid membranes reached 0.44 emu/g. Also, the increase in thermooxidative stability was noted after introducing functionalized nanotubes into polymer matrices, which, in the case of Gd-selective membranes, were stable even up to 730 °C. The rise in the modified MWCNT addition and selection of appropriate REE ion-imprinted polymers improved mechanical (Rm and E values increase even twice) and rheological parameters (almost double growth of E′ and E″ values) of the tested membranes. Synthesized hybrid membranes showed a high rejection of matrix components and an increase in retention ratio with rising MWCNT-REEIIP addition, ultimately reaching 94.35%, 92.12%, and 90.11% for Nd, Pr, and Gd, respectively. The performed analysis confirmed homogeneous dispersion, phase compatibility, network integration, formation of a complex 3D microstructure, and improved operational stability of created hybrid membranes, which is significant for their future applications in Nd, Pr, and Gd recovery from coal fly ash extracts. Full article
Show Figures

Graphical abstract

18 pages, 2807 KiB  
Article
The Nonlinear Vibration Response of Umbrella-Shaped Membrane Structure Under Heavy Rainfall Loads
by Zhongwei Luo, Zhoulian Zheng, Rui Yang and Peng Zhang
Buildings 2025, 15(14), 2529; https://doi.org/10.3390/buildings15142529 - 18 Jul 2025
Viewed by 156
Abstract
This paper investigates the vibration characteristics of tensioned umbrella-shaped membrane structures with complex curvature under heavy rainfall. To solve the geometrical problem of the complex curvature of a membrane surface, we set the rule of segmentation and simplify the shape by dividing it [...] Read more.
This paper investigates the vibration characteristics of tensioned umbrella-shaped membrane structures with complex curvature under heavy rainfall. To solve the geometrical problem of the complex curvature of a membrane surface, we set the rule of segmentation and simplify the shape by dividing it into multi-segment conical membranes. The generatrix becomes a polyline with a constant surface curvature in each segment, simplifying calculations. The equivalent uniform load of different rainfall intensity is determined by the theory of the stochastic process. The governing equations of the isotropic damped nonlinear forced vibration of membranes are established by using the theory of large deflection by von Karman and the principle of d’Alembert. The equations of the forced vibration of the membrane are solved by using Galerkin’s method and the small-parameter perturbation method, and the displacement function, vibration frequency, and acceleration of the membrane are obtained. At last, the influence of the height–span ratio, number of segments, pretension and load on membrane displacement, vibration frequency, and acceleration of the membrane surface are analyzed. Based on the above data, the general law of deformation of the umbrella-shaped membrane under heavy rainfall is obtained. Data and methods are provided for the design and construction of the membrane structure as a reference. Moreover, we propose methods to enhance calculation accuracy and streamline the computational process. Full article
Show Figures

Figure 1

20 pages, 3037 KiB  
Article
An Automated Microfluidic Platform for In Vitro Raman Analysis of Living Cells
by Illya Klyusko, Stefania Scalise, Francesco Guzzi, Luigi Randazzini, Simona Zaccone, Elvira Immacolata Parrotta, Valeria Lucchino, Alessio Merola, Carlo Cosentino, Ulrich Krühne, Isabella Aquila, Giovanni Cuda, Enzo Di Fabrizio, Patrizio Candeloro and Gerardo Perozziello
Biosensors 2025, 15(7), 459; https://doi.org/10.3390/bios15070459 - 16 Jul 2025
Viewed by 364
Abstract
We present a miniaturized, inexpensive, and user-friendly microfluidic platform to support biological applications. The system integrates a mini-incubator providing controlled environmental conditions and housing a microfluidic device for long-term cell culture experiments. The incubator is designed to be compatible with standard inverted optical [...] Read more.
We present a miniaturized, inexpensive, and user-friendly microfluidic platform to support biological applications. The system integrates a mini-incubator providing controlled environmental conditions and housing a microfluidic device for long-term cell culture experiments. The incubator is designed to be compatible with standard inverted optical microscopes and Raman spectrometers, allowing for the non-invasive imaging and spectroscopic analysis of cell cultures in vitro. The microfluidic device, which reproduces a dynamic environment, was optimized to sustain a passive, gravity-driven flow of medium, eliminating the need for an external pumping system and reducing mechanical stress on the cells. The platform was tested using Raman analysis and adherent tumoral cells to assess proliferation prior and subsequent to hydrogen peroxide treatment for oxidative stress induction. The results demonstrated a successful adhesion of cells onto the substrate and their proliferation. Furthermore, the platform is suitable for carrying out optical monitoring of cultures and Raman analysis. In fact, it was possible to discriminate spectra deriving from control and hydrogen peroxide-treated cells in terms of DNA backbone and cellular membrane modification effects provoked by reactive oxygen species (ROS) activity. The 800–1100 cm−1 band highlights the destructive effects of ROS on the DNA backbone’s structure, as its rupture modifies its vibration; moreover, unpaired nucleotides are increased in treated sample, as shown in the 1154–1185 cm−1 band. Protein synthesis deterioration, led by DNA structure damage, is highlighted in the 1257–1341 cm−1, 1440–1450 cm−1, and 1640–1670 cm−1 bands. Furthermore, membrane damage is emphasized in changes in the 1270, 1301, and 1738 cm−1 frequencies, as phospholipid synthesis is accelerated in an attempt to compensate for the membrane damage brought about by the ROS attack. This study highlights the potential use of this platform as an alternative to conventional culturing and analysis procedures, considering that cell culturing, optical imaging, and Raman spectroscopy can be performed simultaneously on living cells with minimal cellular stress and without the need for labeling or fixation. Full article
(This article belongs to the Special Issue Microfluidic Devices for Biological Sample Analysis)
Show Figures

Figure 1

22 pages, 892 KiB  
Review
Membrane Technologies for Bioengineering Microalgae: Sustainable Applications in Biomass Production, Carbon Capture, and Industrial Wastewater Valorization
by Michele Greque Morais, Gabriel Martins Rosa, Luiza Moraes, Larissa Chivanski Lopes and Jorge Alberto Vieira Costa
Membranes 2025, 15(7), 205; https://doi.org/10.3390/membranes15070205 - 11 Jul 2025
Viewed by 537
Abstract
In accordance with growing environmental pressures and the demand for sustainable industrial practices, membrane technologies have emerged as key enablers for increasing efficiency, reducing emissions, and supporting circular processes across multiple sectors. This review focuses on the integration among microalgae-based systems, offering innovative [...] Read more.
In accordance with growing environmental pressures and the demand for sustainable industrial practices, membrane technologies have emerged as key enablers for increasing efficiency, reducing emissions, and supporting circular processes across multiple sectors. This review focuses on the integration among microalgae-based systems, offering innovative and sustainable solutions for biomass production, carbon capture, and industrial wastewater treatment. In cultivation, membrane photobioreactors (MPBRs) have demonstrated biomass productivity up to nine times greater than that of conventional systems and significant reductions in water (above 75%) and energy (approximately 0.75 kWh/m3) footprints. For carbon capture, hollow fiber membranes and hybrid configurations increase CO2 transfer rates by up to 300%, achieving utilization efficiencies above 85%. Coupling membrane systems with industrial effluents has enabled nutrient removal efficiencies of up to 97% for nitrogen and 93% for phosphorus, contributing to environmental remediation and resource recovery. This review also highlights recent innovations, such as self-forming dynamic membranes, magnetically induced vibration systems, antifouling surface modifications, and advanced control strategies that optimize process performance and energy use. These advancements position membrane-based microalgae systems as promising platforms for carbon-neutral biorefineries and sustainable industrial operations, particularly in the oil and gas, mining, and environmental technology sectors, which are aligned with global climate goals and the UN Sustainable Development Goals (SDGs). Full article
Show Figures

Figure 1

14 pages, 2508 KiB  
Article
Enhancement of Efficiency in an Ex Situ Coprecipitation Method for Superparamagnetic Bacterial Cellulose Hybrid Materials
by Thaís Cavalcante de Souza, Italo José Batista Durval, Hugo Moraes Meira, Andréa Fernanda de Santana Costa, Eduardo Padrón Hernández, Attilio Converti, Glória Maria Vinhas and Leonie Asfora Sarubbo
Membranes 2025, 15(7), 198; https://doi.org/10.3390/membranes15070198 - 1 Jul 2025
Viewed by 454
Abstract
Superparamagnetic magnetite nanoparticles (Fe3O4) have garnered considerable interest due to their unique magnetic properties and potential for integration into multifunctional biomaterials. In particular, their incorporation into bacterial cellulose (BC) matrices offers a promising route for developing sustainable and high-performance [...] Read more.
Superparamagnetic magnetite nanoparticles (Fe3O4) have garnered considerable interest due to their unique magnetic properties and potential for integration into multifunctional biomaterials. In particular, their incorporation into bacterial cellulose (BC) matrices offers a promising route for developing sustainable and high-performance magnetic composites. Numerous studies have explored BC-magnetite systems; however, innovations combining ex situ coprecipitation synthesis within BC matrices, tailored reagent molar ratios, stirring protocols, and purification processes remain limited. This study aimed to optimize the ex situ coprecipitation method for synthesizing superparamagnetic magnetite nanoparticles embedded in BC membranes, focusing on enhancing particle stability and crystallinity. BC membranes containing varying concentrations of magnetite (40%, 50%, 60%, and 70%) were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). The resulting magnetic BC membranes demonstrated homogenous dispersion of nanoparticles, improved crystallite size (6.96 nm), and enhanced magnetic saturation (Ms) (50.4 emu/g), compared to previously reported methods. The adoption and synergistic optimization of synthesis parameters—unique to this study—conferred greater control over the physicochemical and magnetic properties of the composites. These findings position the optimized BC-magnetite nanocomposites as highly promising candidates for advanced applications, including electromagnetic interference (EMI) shielding, electronic devices, gas sensors, MRI contrast agents, and targeted drug delivery systems. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

24 pages, 7263 KiB  
Article
Biocompatible and Hermetic Encapsulation of PMUTs: Effects of Parylene F-VT4 and ALD Stacks on Membrane Vibration and Acoustic Performance
by Esmaeil Afshari, Samer Houri, Rik Verplancke, Veronique Rochus, Maarten Cauwe, Pieter Gijsenbergh and Maaike Op de Beeck
Sensors 2025, 25(13), 4074; https://doi.org/10.3390/s25134074 - 30 Jun 2025
Viewed by 446
Abstract
The motivation of this work is to enable the use of piezoelectric micromachined ultrasonic transducer (PMUT)-based implants within the human body for biomedical applications, particularly for power and data transfer for implanted medical devices. To protect surrounding tissue and ensure PMUT functionality over [...] Read more.
The motivation of this work is to enable the use of piezoelectric micromachined ultrasonic transducer (PMUT)-based implants within the human body for biomedical applications, particularly for power and data transfer for implanted medical devices. To protect surrounding tissue and ensure PMUT functionality over time, biocompatible and hermetic encapsulation is essential. This study investigates the impact of Parylene F-VT4 layers of various thicknesses as well as the effect of multilayer stacks of Parylene F-VT4 combined with atomic layer-deposited nanolayers of Al2O3 and HfO2 on the mechanical and acoustic properties of PMUTs. PMUTs with various diameters (40 µm, 60 µm, and 80 µm) are fabricated and tested both as stand-alone devices and as arrays. The mechanical behavior of single stand-alone PMUT devices is characterized in air and in water using laser Doppler vibrometry (LDV), while the acoustic output of arrays is evaluated by pressure measurements in water. Experimental results reveal a non-monotonic change in resonance frequency as a function of increasing encapsulation thickness due to the competing effects of added mass and increased stiffness. The performance of PMUT arrays is clearly influenced by the encapsulation. For certain array designs, the encapsulation significantly improved the arrays’ pressure output, a change that is attributed to the change in the acoustic wavelength and inter-element coupling. These findings highlight the impact of encapsulation in modifying and potentially enhancing PMUT performance. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 4682 KiB  
Communication
Seven-Channel Polyethersulfone Hollow-Fiber Membrane Preparation with Vapor-Induced Phase Separation
by Xiaoyao Wang, Zhiyuan Hao, Rui Huang, Yajing Huang, Huiqun Zhang and Xiujuan Hao
Membranes 2025, 15(6), 175; https://doi.org/10.3390/membranes15060175 - 10 Jun 2025
Viewed by 924
Abstract
Polyethersulfone (PES) has been widely used to fabricate hollow-fiber ultrafiltration membranes due to its good oxidative, thermal, and hydrolytic stability. Typical PES hollow-fiber membranes with a single bore have limited strength and may break under uneven pressure and vibration during membrane backwashing. Multi-channel [...] Read more.
Polyethersulfone (PES) has been widely used to fabricate hollow-fiber ultrafiltration membranes due to its good oxidative, thermal, and hydrolytic stability. Typical PES hollow-fiber membranes with a single bore have limited strength and may break under uneven pressure and vibration during membrane backwashing. Multi-channel hollow-fiber membranes have stronger breaking force due to their larger cross-sectional area, but fabricating them remains challenging due to the difficulty in controlling the phase inversion process. This study uses the vapor-induced phase separation (VIPS) method to fabricate a seven-channel PES hollow-fiber membrane, and the air gap and air relative humidity can help in membrane morphology control. Moreover, carboxylic graphene quantum dots (CGQDs) are first used in ultrafiltration membranes to increase membrane porosity and hydrophilicity. We found that the membrane prepared with a 7.5% CGQD mass fraction, a 10 cm air gap, and 99% relative humidity had the highest flux and porosity; the membrane pore size distribution was concentrated at 72 nm, and the pure water flux could reach 464 L·m−2 h−1·bar−1. In the long-term filtration performance test, the membrane can reject more than about 15% TOC and 84% turbidity at 50 L·m−2 h−1 flux, confirming its stability for water purification applications. Full article
(This article belongs to the Special Issue Membrane Technologies for Water Purification)
Show Figures

Figure 1

16 pages, 2538 KiB  
Article
Impact of pH-Responsive Cisplatin/Ribavirin-Loaded Monodispersed Magnetic Silica Nanocomposite on A549 Lung Cancer Cells
by Dana Almohazey, Vijaya Ravinayagam, Hatim Dafalla and Rabindran Jermy Balasamy
Pharmaceutics 2025, 17(5), 631; https://doi.org/10.3390/pharmaceutics17050631 - 9 May 2025
Viewed by 609
Abstract
Background/Objectives: Nanocarrier particle design for treating chronic pulmonary diseases presents several challenges, including anatomical and physiological barriers. Drug-repurposing technology using monodispersed spherical silica is one of the innovative ways to deliver drugs. In the present study, the anticancer potential of combinational cisplatin/ribavirin [...] Read more.
Background/Objectives: Nanocarrier particle design for treating chronic pulmonary diseases presents several challenges, including anatomical and physiological barriers. Drug-repurposing technology using monodispersed spherical silica is one of the innovative ways to deliver drugs. In the present study, the anticancer potential of combinational cisplatin/ribavirin was explored for targeted lung cancer therapeutics. Methods: Monodispersed spherical silica (80 nm) capable of diffusing into the tracheal mucus region was chosen and doped with 10 wt% superparamagnetic iron oxide nanoparticles (SPIONs). Subsequently, it was wrapped with chitosan (Chi, 0.6 wt/vol%), functionalized with 5% wt/wt cisplatin (Cp)/ribavarin (Rib) and angiotensin-converting enzyme 2 (ACE-2) (1.0 μL/mL). Formulations are based on monodispersed spherical silica or halloysite and are termed as (S/MSSiO2/Chi/Cp/Rib) or (S/Hal/Chi/Cp/Rib), respectively. Results: X-ray diffraction (XRD) and diffuse reflectance UV-visible spectroscopy (DRS-UV-vis) analysis of S/MSSiO2/Chi/Cp/Rib confirmed the presence of SPION nanoclusters on the silica surface (45% coverage). The wrapping of chitosan on the silica was confirmed with a Fourier transformed infrared (FTIR) stretching band at 670 cm−1 and ascribed to the amide group of the polymer. The surface charge by zetasizer and saturation magnetization by vibrating sample magnetometer (VSM) were found to be −15.3 mV and 8.4 emu/g. The dialysis membrane technique was used to study the Cp and Rib release between the tumor microenvironment and normal pH ranges from 5.5 to 7.4. S/MSSiO2/Chi formulation demonstrated pH-responsive Cp and Rib at acidic pH (5.6) and normal pH (7.4). Cp and Rib showed release of ~27% and ~17% at pH 5.6, which decreases to ~14% and ~3.2% at pH 7.4, respectively. To assess the compatibility and cytotoxic effect of our nanocomposites, the cell viability assay (MTT) was conducted on cancer lung cells A549 and normal HEK293 cells. Conclusions: The study shows that the designed nanoformulations with multifunctional capabilities are able to diffuse into the lung cells bound with dual drugs and the ACE-2 receptor. Full article
(This article belongs to the Special Issue Hybrid Nanoparticles for Cancer Therapy)
Show Figures

Figure 1

17 pages, 2414 KiB  
Article
Analysis of Large Membrane Vibrations Using Fractional Calculus
by Nihar Ranjan Mallick, Snehashish Chakraverty and Rajarama Mohan Jena
Fractal Fract. 2025, 9(4), 219; https://doi.org/10.3390/fractalfract9040219 - 31 Mar 2025
Viewed by 430
Abstract
The study of vibration equations of large membranes is crucial in various scientific and engineering fields. Analyzing the vibration equations of bridges, roofs, and spacecraft structures helps in designing structures that resist excessive oscillations and potential failures. Aircraft wings, parachutes, and satellite components [...] Read more.
The study of vibration equations of large membranes is crucial in various scientific and engineering fields. Analyzing the vibration equations of bridges, roofs, and spacecraft structures helps in designing structures that resist excessive oscillations and potential failures. Aircraft wings, parachutes, and satellite components often behave like large membranes. Understanding their vibration characteristics is essential for stability, efficiency, and durability. Studying large membrane vibration involves solving partial differential equations and eigenvalue problems, contributing to advancements in numerical methods and computational physics. In this paper, the Elzaki transformation decomposition method and the Shehu transformation decomposition method, along with inverse Elzaki and inverse Shehu transformations, are used to investigate the fractional vibration equation of a large membrane. The solutions are obtained in terms of Mittag–Leffler functions. Full article
Show Figures

Figure 1

17 pages, 8499 KiB  
Article
Integrated Design and Experiment of a Micro-Vibration Isolation and Pointing Platform for Large Space Optical Payloads Based on Voice Coil Motors
by Yilin Guo, Jian Zhou, Zehao Gao, Bo Feng and Minglong Xu
Sensors 2025, 25(4), 1179; https://doi.org/10.3390/s25041179 - 14 Feb 2025
Viewed by 959
Abstract
This paper presents the design of an integrated micro-vibration isolation and pointing platform with a four-leg structure, incorporating pitch and yaw adjustment functions using voice coil motors. The primary objective is to mitigate the impact of spacecraft-generated micro-vibrations on the pointing accuracy and [...] Read more.
This paper presents the design of an integrated micro-vibration isolation and pointing platform with a four-leg structure, incorporating pitch and yaw adjustment functions using voice coil motors. The primary objective is to mitigate the impact of spacecraft-generated micro-vibrations on the pointing accuracy and imaging clarity of large space optical payloads while adhering to lightweight requirements. The research methodology encompasses three main phases. Initially, a simplified dynamic model of the integrated platform is established, and dynamic control equations are derived based on the proportional–integral–derivative (PID) control strategy. The effects of centroid deviation and control parameters on the control efficacy are analyzed. Subsequently, a principle prototype of the two-dimensional micro-vibration isolation and pointing platform is designed, detailing the development of the membrane, actuator, legs, and integrated system. Finally, a ground test verification system is implemented under gravity unloading conditions using elastic strings. The experimental results demonstrate the platform’s effective vibration isolation and pointing capabilities, achieving a 23 dB attenuation effect at the fundamental frequency. Furthermore, the PID control algorithm exhibits enhanced isolation performance at low frequencies and facilitates directional tracking of target signals. Full article
(This article belongs to the Special Issue Spacecraft Vibration Suppression and Measurement Sensor Technology)
Show Figures

Figure 1

28 pages, 3338 KiB  
Article
Development of a Basilar Membrane-Inspired Mechanical Spectrum Analyzer Using Metastructures for Enhanced Frequency Selectivity
by Shantanu H. Chavan and Vijaya V. N. Sriram Malladi
Actuators 2025, 14(2), 63; https://doi.org/10.3390/act14020063 - 29 Jan 2025
Cited by 1 | Viewed by 742
Abstract
This study introduces a mechanical spectrum analyzer (MSA) inspired by the tonotopic organization of the basilar membrane (BM), designed to achieve two critical features. First, it replicates the traveling-wave behavior of the BM, characterized by energy dissipation without reflections at the boundaries. Second, [...] Read more.
This study introduces a mechanical spectrum analyzer (MSA) inspired by the tonotopic organization of the basilar membrane (BM), designed to achieve two critical features. First, it replicates the traveling-wave behavior of the BM, characterized by energy dissipation without reflections at the boundaries. Second, it enables the physical encoding of the wave energy into distinct spectral components. Moving beyond the conventional focus on metamaterial design, this research investigates wave propagation behavior and energy dissipation within metastructures, with particular attention to how individual unit cells absorb energy. To achieve these objectives, a metastructural design methodology is employed. Experimental characterization of metastructure samples with varying numbers of unit cells is performed, with reflection and absorption coefficients used to quantify energy absorption and assess bandgap quality. Simulations of a basilar membrane-inspired structure incorporating multiple sets of dynamic vibration resonators (DVRs) demonstrate frequency selectivity akin to the natural BM. The design features four types of DVRs, resulting in stepped bandgaps and enabling the MSA to function as a frequency filter. The findings reveal that the proposed MSA effectively achieves frequency-selective wave propagation and broad bandgap performance. The quantitative analysis of energy dissipation, complemented by qualitative demonstrations of wave behavior, highlights the potential of this metastructural approach to enhance frequency selectivity and improve sound processing. These results lay the groundwork for future exploration of 2D metastructures and applications such as energy harvesting and advanced wave filtering. Full article
(This article belongs to the Special Issue Actuator Technology for Active Noise and Vibration Control)
Show Figures

Figure 1

18 pages, 7170 KiB  
Article
Study of Non-Linearities in Humpback Whale Song Units
by Yann Doh, Dorian Cazau, Giulia Lamaj, Eduardo Mercado, Joy S. Reidenberg, Jeff K. Jacobsen, Christina E. Perazio, Beverley Ecalle and Olivier Adam
J. Mar. Sci. Eng. 2025, 13(2), 215; https://doi.org/10.3390/jmse13020215 - 23 Jan 2025
Viewed by 2445
Abstract
Unique in mammals, the vocal generator of mysticete species comprises membranes covering the two arytenoid cartilages that vibrate as the airflow passes through the trachea from the lungs to the laryngeal sac. By adjusting the airflow as well as the spacing and orientation [...] Read more.
Unique in mammals, the vocal generator of mysticete species comprises membranes covering the two arytenoid cartilages that vibrate as the airflow passes through the trachea from the lungs to the laryngeal sac. By adjusting the airflow as well as the spacing and orientation of the two cartilages, mysticetes control the vibrations and vary acoustic qualities of the produced sounds, including the duration, amplitude, and frequency modulation of vocalizations. Humpback whales control sound production in this way to construct a complex vocal repertoire, including vocalizations with or without harmonics as well as pulsed sounds. Some vocalizations within humpback whale songs, called units, exhibit non-linearities such as frequency jumps and chaos. Here, we further describe non-linear features of units, including two additional non-linearities: subharmonics and biphonation. Subharmonics within units are probably due to higher air flow rates and to the acoustic modes of internal resonators. Biphonic vocalizations are likely generated either by an asymmetric opening of the arytenoid cartilages or by the passage of the air flow at two separate positions along the membranes. Our analyses revealed acoustic non-linearities in vocalizations emitted by six different singers during multiple breeding seasons and from populations in different oceans, suggesting that singing humpback whales often produce units with non-linear features. Full article
(This article belongs to the Special Issue Recent Advances in Marine Bioacoustics)
Show Figures

Figure 1

Back to TopTop