Impact of pH-Responsive Cisplatin/Ribavirin-Loaded Monodispersed Magnetic Silica Nanocomposite on A549 Lung Cancer Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of SPIONs/MSSiO2 and SPIONs/Hal Nanocomposites
2.2. Preparation of S/MSSiO2/Chi/Cp/Rib (5% wt/wt)
2.3. Preparation of S/MSSiO2/Chi/Cp/Rib/ACE-2
2.4. Physicochemical Characterization
2.5. In Vitro Drug Release Study
2.6. Cell Culture and Treatment
2.7. Cell Viability (MTT)
2.8. Microscopic Examination
2.9. Statistics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- LoPiccolo, J.; Gusev, A.; Christiani, D.C.; Jänne, P.A. Lung cancer in patients who have never smoked—An emerging disease. Nat. Rev. Clin. Oncol. 2024, 21, 121–146. [Google Scholar] [CrossRef]
- Holder, J.E.; Ferguson, C.; Oliveira, E.; Lodeiro, C.; Trim, C.M.; Byrne, L.J.; Bertolo, E.; Wilson, C.M. The use of nanoparticles for targeted drug delivery in non-small cell lung cancer. Front. Oncol. 2023, 13, 1154318. [Google Scholar] [CrossRef] [PubMed]
- Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J.; et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018, 391, 1023–1075. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Sun, M.; Huang, H.; Jin, W.L. Drug repurposing for cancer therapy. Signal Transduct. Target. Ther. 2024, 9, 92. [Google Scholar] [CrossRef]
- Reus, P.; Guthmann, H.; Uhlig, N.; Agbaria, M.; Issmail, L.; Eberlein, V.; Nordling-David, M.M.; Jbara-Agbaria, D.; Ciesek, S.; Bojkova, D.; et al. Drug repurposing for the treatment of COVID-19: Targeting nafamostat to the lungs by a liposomal delivery system. J. Control. Release 2023, 364, 654–671. [Google Scholar] [CrossRef]
- Shojaei, S.; Pourmadadi, M.; Homayoonfal, M.; Behnamrad, P.; Fathi-karkan, S.; Rahdar, A.; Gerayli, S.; Pandey, S. Revolutionizing lung cancer treatment: Nanotechnology-driven advances in targeted drug delivery and novel therapeutic strategies. J. Drug Deliv. Sci. Technol. 2024, 101, 106186. [Google Scholar] [CrossRef]
- Sher, E.K.; Alebić, M.; Boras, M.M.; Boškailo, E.; Farhat, E.K.; Karahmet, A.; Pavlovic, B.; Sher, F.; Lekic, L. Nanotechnology in medicine revolutionizing drug delivery for cancer and viral infection treatments. Int. J. Pharm. 2024, 660, 124345. [Google Scholar] [CrossRef]
- Gao, J.; Karp, J.M.; Langer, R.; Joshi, N. The future of drug delivery. Chem. Mater. 2023, 35, 359–363. [Google Scholar] [CrossRef]
- Peng, X.; Fang, J.; Lou, C.; Yang, L.; Shan, S.; Wang, Z.; Chen, Y.; Li, H.; Li, X. Engineered nanoparticles for precise targeted drug delivery and enhanced therapeutic efficacy in cancer immunotherapy. Acta Pharm. Sin. B 2024, 14, 3432–3456. [Google Scholar] [CrossRef]
- Amararathna, M.; Goralski, K.; Hoskin, D.W.; Rupasinghe, H.V. Pulmonary nano-drug delivery systems for lung cancer: Current knowledge and prospects. J. Lung Health Dis. 2019, 3, 11–28. [Google Scholar] [CrossRef]
- Danaei, M.R.M.M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Duncan, G.A.; Jung, J.; Hanes, J.; Suk, J.S. The mucus barrier to inhaled gene therapy. Mol. Ther. 2016, 24, 2043–2053. [Google Scholar] [CrossRef] [PubMed]
- Khlebtsov, B.N.; Burov, A.M. Synthesis of monodisperse silica particles by controlled regrowth. Colloid J. 2023, 85, 456–468. [Google Scholar] [CrossRef]
- Almofty, S.; Ravinayagam, V.; Alghamdi, N.; Alghamdi, W.; Albazroun, Z.; Almulla, L.; Akhtar, S.; Almofleh, A.A.; Tanimu, G.; Dafalla, H.; et al. Effect of CeO2/spherical silica and halloysite nanotubes engineered for targeted drug delivery system to treat breast cancer cells. OpenNano 2023, 13, 100169. [Google Scholar] [CrossRef]
- Jermy, R.; Ravinayagam, V.; Alamoudi, W.; Almohazey, D.; Elanthikkal, S.; Dafalla, H.; Rehman, S.; Chandrasekar, G.; Baykal, A. Tuning pH sensitive chitosan and cisplatin over spinel ferrite/silica nanocomposite for anticancer activity in MCF-7 cell line. J. Drug Deliv. Sci. Technol. 2020, 57, 101711. [Google Scholar] [CrossRef]
- Shaimerdenova, M.; Karapina, O.; Mektepbayeva, D.; Alibek, K.; Akilbekova, D. The effects of antiviral treatment on breast cancer cell line. Infect. Agents Cancer 2017, 12, 1–10. [Google Scholar] [CrossRef]
- Fahim, S.A.; ElZohairy, Y.A.; Moustafa, R.I. Favipiravir, an antiviral drug, in combination with tamoxifen exerts synergistic effect in tamoxifen-resistant breast cancer cells via hTERT inhibition. Sci. Rep. 2024, 14, 1844. [Google Scholar] [CrossRef]
- O’Shea, L.K.; Abdulkhalek, S.; Allison, S.; Neufeld, R.J.; Szewczuk, M.R. Therapeutic targeting of Neu1 sialidase with oseltamivir phosphate (Tamiflu®) disables cancer cell survival in human pancreatic cancer with acquired chemoresistance. Onco Targets Ther. 2014, 7, 117–134. [Google Scholar]
- Chuang, P.H.; Tzang, B.S.; Tzang, C.C.; Chiu, C.C.; Lin, C.Y.; Hsu, T.C. Impact of oseltamivir on the risk of cancer. Front. Oncol. 2024, 14, 1329986. [Google Scholar] [CrossRef]
- Ledford, H. Viruses found in lung tumours. Nature 2008. [Google Scholar] [CrossRef]
- Hu, Y.; Ren, S.; He, Y.; Wang, L.; Chen, C.; Tang, J.; Liu, W.; Yu, F. Possible oncogenic viruses associated with lung cancer. OncoTargets Ther. 2020, 13, 10651–10666. [Google Scholar] [CrossRef] [PubMed]
- Osorio, J.C.; Candia-Escobar, F.; Corvalán, A.H.; Calaf, G.M.; Aguayo, F. High-risk human papillomavirus infection in lung cancer: Mechanisms and perspectives. Biology 2022, 11, 1691. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Bhuiyan, M.A.; Dewan, S.M.R. JN.1: The Present Public Health Concern Pertains to the Emergence of a Novel Variant of COVID-19. Environ. Health Insights 2024, 18, 11786302241228958. [Google Scholar] [CrossRef]
- Somisetty, M.; Mack, P.C.; Hsu, C.Y.; Huang, Y.; Gomez, J.E.; Rodilla, A.M.; Cagan, J.; Tavolacci, S.C.; Carreño, J.M.; Brody, R.; et al. Characteristics of Lung Cancer Patients with Asymptomatic or Undiagnosed SARS-CoV-2 Infections. Clin. Lung Cancer 2024, 25, 612–618. [Google Scholar] [CrossRef]
- Rodilla, A.M.; Valanparambil, R.M.; Mack, P.C.; Hsu, C.Y.; Cagan, J.; Tavolacci, S.C.; Carreño, J.M.; Brody, R.; Moore, A.; King, J.C.; et al. Longitudinal nucleocapsid antibody testing reveals undocumented SARS-CoV-2 infections in patients with lung cancer. Cancer Cell 2023, 41, 1838–1840. [Google Scholar] [CrossRef]
- Rolfo, C.; Meshulami, N.; Russo, A.; Krammer, F.; García-Sastre, A.; Mack, P.C.; Gomez, J.E.; Bhardwaj, N.; Benyounes, A.; Sirera, R.; et al. Lung cancer and severe acute respiratory syndrome coronavirus 2 infection: Identifying important knowledge gaps for investigation. J. Thorac. Oncol. 2022, 17, 214–227. [Google Scholar] [CrossRef]
- Jahankhani, K.; Ahangari, F.; Adcock, I.M.; Mortaz, E. Possible cancer-causing capacity of COVID-19: Is SARS-CoV-2 an oncogenic agent? Biochimie 2023, 213, 130–138. [Google Scholar] [CrossRef]
- Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020, 26, 450–452. [Google Scholar] [CrossRef]
- Shil, P.K.; Kwon, K.C.; Zhu, P.; Verma, A.; Daniell, H.; Li, Q. Oral delivery of ACE2/Ang-(1-7) bioencapsulated in plant cells protects against experimental uveitis and autoimmune uveoretinitis. Mol. Ther. J. Am. Soc. Gene Ther. 2014, 22, 2069–2082. [Google Scholar] [CrossRef]
- Nehme, A.; Zouein, F.A.; Zayeri, Z.D.; Zibara, K. An Update on the Tissue Renin Angiotensin System and Its Role in Physiology and Pathology. J. Cardiovasc. Dev. Dis. 2019, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, P.A.; Huizing, M.; Mestach, G.; Dierckxsens, S.; Tjalma, W.; Trinh, X.B.; Papadimitriou, K.; Altintas, S.; Vermorken, J.; Vulsteke, C.; et al. SARS-CoV-2 and cancer: Are they really partners in crime? Cancer Treat. Rev. 2020, 89, 102068. [Google Scholar] [CrossRef]
- Samad, A.; Jafar, T.; Rafi, J.H. Identification of angiotensin-converting enzyme 2 (ACE2) protein as the potential biomarker in SARS-CoV-2 infection-related lung cancer using computational analyses. Genomics 2020, 112, 4912–4923. [Google Scholar] [CrossRef]
- Li, W.; Zhuang, Y.; Shao, S.; Trivedi, P.; Zheng, B.; Huang, G.; He, Z.; Zhang, X. Essential contribution of the JAK/STAT pathway to carcinogenesis, lytic infection of herpesviruses and pathogenesis of COVID. Mol. Med. Rep. 2024, 29, 39. [Google Scholar] [CrossRef] [PubMed]
- Kohal, R.; Bisht, P.; Gupta, G.D.; Verma, S.K. Targeting JAK2/STAT3 for the treatment of cancer: A review on recent advancements in molecular development using structural analysis and SAR investigations. Bioorganic Chem. 2024, 143, 107095. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, T.; Kubli, S.P.; Yoshinaga, S.K.; Pfeffer, K.; Mak, T.W. An aberrant STAT pathway is central to COVID-19. Cell Death Differ. 2020, 27, 3209–3225. [Google Scholar] [CrossRef]
- Ravid, J.D.; Leiva, O.; Chitalia, V.C. Janus Kinase Signaling Pathway and Its Role in COVID-19 Inflammatory, Vascular, and Thrombotic Manifestations. Cells 2022, 11, 306. [Google Scholar] [CrossRef]
- Wang, D.; Deng, X.; Li, S.; Sana, S.R.G.L. Impact of SARS-CoV-2 infection on immune cell cuproptosis in patients with lung adenocarcinoma via glutamine regulation. Int. Immunopharmacol. 2024, 140, 112912. [Google Scholar] [CrossRef]
- Nelson, N.R.; Port, J.D.; Pandey, M.K. Use of superparamagnetic iron oxide nanoparticles (SPIONs) via multiple imaging modalities and modifications to reduce cytotoxicity: An educational review. J. Nanotheranostics 2020, 1, 105–135. [Google Scholar] [CrossRef]
- Jermy, B.R.; Ravinayagam, V.; Alamoudi, W.A.; Almohazey, D.; Dafalla, H.; Allehaibi, L.H.; Baykal, A.; Toprak, M.S.; Somanathan, T. Targeted therapeutic effect against the breast cancer cell line MCF-7 with a CuFe2O4/silica/cisplatin nanocomposite formulation. Beilstein J. Nanotechnol. 2019, 10, 2217–2228. [Google Scholar] [CrossRef]
- Liu, Q.; Guan, J.; Qin, L.; Zhang, X.; Mao, S. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov. Today 2020, 25, 150–159. [Google Scholar] [CrossRef]
- Lin, X.; Wu, J.; Liu, Y.; Lin, N.; Hu, J.; Zhang, B. Stimuli-responsive drug delivery systems for the diagnosis and therapy of lung cancer. Molecules 2022, 27, 948. [Google Scholar] [CrossRef] [PubMed]
- Zaman, M.; Butt, M.H.; Siddique, W.; Iqbal, M.O.; Nisar, N.; Mumtaz, A.; Nazeer, H.Y.; Alshammari, A.; Riaz, M.S. Fabrication of pegylated chitosan nanoparticles containing tenofovir alafenamide: Synthesis and characterization. Molecules 2022, 27, 8401. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.I.; Kwon, S.H.; Lee, G.; Motoyama, K.; Kim, M.W.; Lin, M.; Niidome, T.; Choi, J.H.; Lee, R. pH-sensitive multi-drug liposomes targeting folate receptor β for efficient treatment of non-small cell lung cancer. J. Control. Release 2021, 330, 1–14. [Google Scholar] [CrossRef]
- Maboudi, A.H.; Lotfipour, M.H.; Rasouli, M.; Azhdari, M.H.; MacLoughlin, R.; Bekeschus, S.; Doroudian, M. Micelle-based nanoparticles with stimuli-responsive properties for drug delivery. Nanotechnol. Rev. 2024, 13, 20230218. [Google Scholar] [CrossRef]
- Jayapriya, P.; Pardhi, E.; Vasave, R.; Guru, S.K.; Madan, J.; Mehra, N.K. A review on stimuli-pH responsive liposomal formulation in cancer therapy. J. Drug Deliv. Sci. Technol. 2023, 90, 105172. [Google Scholar] [CrossRef]
- Kazmi, I.; Shaikh, M.A.J.; Afzal, O.; Altamimi, A.S.A.; Almalki, W.H.; Alzarea, S.I.; Al-Abbasi, F.A.; Pandey, M.; Dureja, H.; Singh, S.K.; et al. Chitosan-based nano drug delivery system for lung cancer. J. Drug Deliv. Sci. Technol. 2023, 81, 104196. [Google Scholar] [CrossRef]
- Pindiprolu, S.K.S.; Kumar, C.S.P.; Golla, V.S.K.; Likitha, P.; Chandra, S.; Ramachandra, R.K. Pulmonary delivery of nanostructured lipid carriers for effective repurposing of salinomycin as an antiviral agent. Med. Hypotheses 2020, 143, 109858. [Google Scholar] [CrossRef]
- Zarepour, A.; Egil, A.C.; Cokol Cakmak, M.; Esmaeili Rad, M.; Cetin, Y.; Aydinlik, S.; Ozaydin Ince, G.; Zarrabi, A. Fabrication of a dual-drug-loaded smart niosome-g-chitosan polymeric platform for lung cancer treatment. Polymers 2023, 15, 298. [Google Scholar] [CrossRef]
- Paudel, K.R.; Singh, M.; De Rubis, G.; Kumbhar, P.; Mehndiratta, S.; Kokkinis, S.; El-Sherkawi, T.; Gupta, G.; Singh, S.K.; Malik, M.Z.; et al. Computational and biological approaches in repurposing ribavirin for lung cancer treatment: Unveiling antitumorigenic strategies. Life Sci. 2024, 352, 122859. [Google Scholar] [CrossRef]
- De Castro, F.; Stefàno, E.; De Luca, E.; Benedetti, M.; Fanizzi, F.P. Platinum-Nucleos (t) ide Compounds as Possible Antimetabolites for Antitumor/Antiviral Therapy: Properties and Perspectives. Pharmaceutics 2023, 15, 941. [Google Scholar] [CrossRef] [PubMed]
Sample | Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|
MSSiO2 | 170 | 0.35 | 8.3 |
SPIONs/MSSiO2 | 130 | 0.28 | 8.5 |
S/MSSiO2/Chi/Cp/Rib/ACE-2 | 76 | 0.28 | 15 |
Dose | Treatment Condition | A549 Cells | HEK293 Cells | ||
---|---|---|---|---|---|
Significant | p Value | Significant | p Value | ||
1 | S/MSSiO2/Chi (A) | No | 0.9999 | No | 0.9772 |
S/Hal/Chi (B) | No | 0.9997 | No | 0.9989 | |
Cp (C) | No | 0.9210 | No | 0.1408 | |
Rib (D) | No | 0.9722 | No | 0.5764 | |
S/MSSiO2/Chi/Cp (E) | No | 0.9976 | No | 0.6200 | |
S/Hal/Chi/Cp (F) | No | >0.9999 | No | 0.9978 | |
S/MSSiO2/Chi/Cp/Rib (G) | No | 0.9997 | No | 0.8549 | |
S/Hal/Chi/Cp/Rib (H) | No | 0.7081 | No | 0.4946 | |
2 | S/MSSiO2/Chi (A) | No | 0.9986 | No | 0.9478 |
S/Hal/Chi (B) | No | 0.9987 | No | 0.8901 | |
Cp (C) | No | 0.5239 | No | 0.4849 | |
Rib (D) | No | 0.1735 | No | 0.1620 | |
S/MSSiO2/Chi/Cp (E) | No | 0.3235 | No | 0.0724 | |
S/Hal/Chi/Cp (F) | No | 0.9112 | No | 0.1589 | |
S/MSSiO2/Chi/Cp/Rib (G) | No | 0.9166 | No | 0.2530 | |
S/Hal/Chi/Cp/Rib (H) | No | 0.7063 | No | 0.4116 | |
3 | S/MSSiO2/Chi (A) | No | 0.8436 | No | 0.7216 |
S/Hal/Chi (B) | No | 0.9835 | No | 0.8606 | |
Cp (C) | No | 0.4227 | No | 0.5954 | |
Rib (D) | No | 0.0628 | Yes | 0.0076 | |
S/MSSiO2/Chi/Cp (E) | No | 0.3279 | No | 0.0526 | |
S/Hal/Chi/Cp (F) | No | 0.9347 | No | 0.0676 | |
S/MSSiO2/Chi/Cp/Rib (G) | No | 0.9908 | Yes | 0.0128 | |
S/Hal/Chi/Cp/Rib (H) | No | 0.6995 | No | 0.3088 | |
4 | S/MSSiO2/Chi (A) | No | 0.7567 | Yes | 0.0396 |
S/Hal/Chi (B) | No | 0.7009 | No | 0.1973 | |
Cp (C) | Yes | 0.0422 | Yes | 0.0001 | |
Rib (D) | Yes | <0.0001 | Yes | <0.0001 | |
S/MSSiO2/Chi/Cp (E) | No | 0.1614 | Yes | 0.0059 | |
S/Hal/Chi/Cp (F) | No | 0.0555 | Yes | 0.0017 | |
S/MSSiO2/Chi/Cp/Rib (G) | No | 0.5827 | No | 0.0624 | |
S/Hal/Chi/Cp/Rib (H) | No | 0.6693 | No | 0.2299 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almohazey, D.; Ravinayagam, V.; Dafalla, H.; Balasamy, R.J. Impact of pH-Responsive Cisplatin/Ribavirin-Loaded Monodispersed Magnetic Silica Nanocomposite on A549 Lung Cancer Cells. Pharmaceutics 2025, 17, 631. https://doi.org/10.3390/pharmaceutics17050631
Almohazey D, Ravinayagam V, Dafalla H, Balasamy RJ. Impact of pH-Responsive Cisplatin/Ribavirin-Loaded Monodispersed Magnetic Silica Nanocomposite on A549 Lung Cancer Cells. Pharmaceutics. 2025; 17(5):631. https://doi.org/10.3390/pharmaceutics17050631
Chicago/Turabian StyleAlmohazey, Dana, Vijaya Ravinayagam, Hatim Dafalla, and Rabindran Jermy Balasamy. 2025. "Impact of pH-Responsive Cisplatin/Ribavirin-Loaded Monodispersed Magnetic Silica Nanocomposite on A549 Lung Cancer Cells" Pharmaceutics 17, no. 5: 631. https://doi.org/10.3390/pharmaceutics17050631
APA StyleAlmohazey, D., Ravinayagam, V., Dafalla, H., & Balasamy, R. J. (2025). Impact of pH-Responsive Cisplatin/Ribavirin-Loaded Monodispersed Magnetic Silica Nanocomposite on A549 Lung Cancer Cells. Pharmaceutics, 17(5), 631. https://doi.org/10.3390/pharmaceutics17050631