Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,124)

Search Parameters:
Keywords = membrane transport models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2932 KiB  
Article
Stable Dopamine-Signaling mRNA Co-Expression in the Substantia Nigra Is Deregulated in Pathological Conditions, but Not in Dopamine Transporter Knockout Rats
by Anastasia N. Vaganova, Zoia S. Fesenko, Anna B. Volnova and Raul R. Gainetdinov
Biomolecules 2025, 15(8), 1117; https://doi.org/10.3390/biom15081117 - 3 Aug 2025
Viewed by 237
Abstract
Dopamine transporter (DAT) mutations are associated with neurological and psychiatric diseases, and DAT gene knockout in rats (DAT-KO) provides an opportunity to evaluate the DAT role in pathological conditions. We analyzed DAT expression and co-expression with other genes in the substantia nigra and [...] Read more.
Dopamine transporter (DAT) mutations are associated with neurological and psychiatric diseases, and DAT gene knockout in rats (DAT-KO) provides an opportunity to evaluate the DAT role in pathological conditions. We analyzed DAT expression and co-expression with other genes in the substantia nigra and striatum in public transcriptomic data represented in the GEO repository and then estimated the identified DAT co-expression pattern in DAT-KO rats by RT-PCR. In silico analysis confirmed DAT expression in the substantia nigra and absence of DAT mRNA in the striatum. Also, DAT is co-expressed with genes involved in dopamine signaling, but these associations are disrupted in dopamine neuron-damaging conditions. To estimate this co-expression pattern when DAT expression is lost, we evaluate it in the substantia nigra of DAT-KO rats. However, in DAT-KO rats the associations between genes involved in dopamine signaling were not disturbed compared to wild-type littermates, and tyrosine hydroxylase expression upregulation in the substantia nigra of these animals may be considered as compensation for the loss of dopamine reuptake. Further studies of expression regulation in dopamine neurons of DAT-KO rats may provide valuable information for compensatory mechanisms in substantia nigra dopaminergic neurons. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

24 pages, 2863 KiB  
Article
An Integrated–Intensified Adsorptive-Membrane Reactor Process for Simultaneous Carbon Capture and Hydrogen Production: Multi-Scale Modeling and Simulation
by Seckin Karagoz
Gases 2025, 5(3), 17; https://doi.org/10.3390/gases5030017 - 2 Aug 2025
Viewed by 337
Abstract
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology, which is highly successful in mitigating carbon emissions, has increased. On the other hand, hydrogen is an important energy [...] Read more.
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology, which is highly successful in mitigating carbon emissions, has increased. On the other hand, hydrogen is an important energy carrier for storing and transporting energy, and technologies that rely on hydrogen have become increasingly promising as the world moves toward a more environmentally friendly approach. Nevertheless, the integration of CCS technologies into power production processes is a significant challenge, requiring the enhancement of the combined power generation–CCS process. In recent years, there has been a growing interest in process intensification (PI), which aims to create smaller, cleaner, and more energy efficient processes. The goal of this research is to demonstrate the process intensification potential and to model and simulate a hybrid integrated–intensified adsorptive-membrane reactor process for simultaneous carbon capture and hydrogen production. A comprehensive, multi-scale, multi-phase, dynamic, computational fluid dynamics (CFD)-based process model is constructed, which quantifies the various underlying complex physicochemical phenomena occurring at the pellet and reactor levels. Model simulations are then performed to investigate the impact of dimensionless variables on overall system performance and gain a better understanding of this cyclic reaction/separation process. The results indicate that the hybrid system shows a steady-state cyclic behavior to ensure flexible operating time. A sustainability evaluation was conducted to illustrate the sustainability improvement in the proposed process compared to the traditional design. The results indicate that the integrated–intensified adsorptive-membrane reactor technology enhances sustainability by 35% to 138% for the chosen 21 indicators. The average enhancement in sustainability is almost 57%, signifying that the sustainability evaluation reveals significant benefits of the integrated–intensified adsorptive-membrane reactor process compared to HTSR + LTSR. Full article
Show Figures

Figure 1

25 pages, 1206 KiB  
Article
Application of Protein Structure Encodings and Sequence Embeddings for Transporter Substrate Prediction
by Andreas Denger and Volkhard Helms
Molecules 2025, 30(15), 3226; https://doi.org/10.3390/molecules30153226 - 1 Aug 2025
Viewed by 282
Abstract
Membrane transporters play a crucial role in any cell. Identifying the substrates they translocate across membranes is important for many fields of research, such as metabolomics, pharmacology, and biotechnology. In this study, we leverage recent advances in deep learning, such as amino acid [...] Read more.
Membrane transporters play a crucial role in any cell. Identifying the substrates they translocate across membranes is important for many fields of research, such as metabolomics, pharmacology, and biotechnology. In this study, we leverage recent advances in deep learning, such as amino acid sequence embeddings with protein language models (pLMs), highly accurate 3D structure predictions with AlphaFold 2, and structure-encoding 3Di sequences from FoldSeek, for predicting substrates of membrane transporters. We test new deep learning features derived from both sequence and structure, and compare them to the previously best-performing protein encodings, which were made up of amino acid k-mer frequencies and evolutionary information from PSSMs. Furthermore, we compare the performance of these features either using a previously developed SVM model, or with a regularized feedforward neural network (FNN). When evaluating these models on sugar and amino acid carriers in A. thaliana, as well as on three types of ion channels in human, we found that both the DL-based features and the FNN model led to a better and more consistent classification performance compared to previous methods. Direct encodings of 3D structures with Foldseek, as well as structural embeddings with ProstT5, matched the performance of state-of-the-art amino acid sequence embeddings calculated with the ProtT5-XL model when used as input for the FNN classifier. Full article
Show Figures

Figure 1

30 pages, 9289 KiB  
Article
Structure of the Secretory Compartments in Goblet Cells in the Colon and Small Intestine
by Alexander A. Mironov, Irina S. Sesorova, Pavel S. Vavilov, Roberto Longoni, Paola Briata, Roberto Gherzi and Galina V. Beznoussenko
Cells 2025, 14(15), 1185; https://doi.org/10.3390/cells14151185 - 31 Jul 2025
Viewed by 182
Abstract
The Golgi of goblet cells represents a specialized machine for mucin glycosylation. This process occurs in a specialized form of the secretory pathway, which remains poorly examined. Here, using high-resolution three-dimensional electron microscopy (EM), EM tomography, serial block face scanning EM (SBF-SEM) and [...] Read more.
The Golgi of goblet cells represents a specialized machine for mucin glycosylation. This process occurs in a specialized form of the secretory pathway, which remains poorly examined. Here, using high-resolution three-dimensional electron microscopy (EM), EM tomography, serial block face scanning EM (SBF-SEM) and immune EM we analyzed the secretory pathway in goblet cells and revealed that COPII-coated buds on the endoplasmic reticulum (ER) are extremely rare. The ERES vesicles with dimensions typical for the COPII-dependent vesicles were not found. The Golgi is formed by a single cisterna organized in a spiral with characteristics of the cycloid surface. This ribbon has a shape of a cup with irregular perforations. The Golgi cup is filled with secretory granules (SGs) containing glycosylated mucins. Their diameter is close to 1 µm. The cup is connected with ER exit sites (ERESs) with temporal bead-like connections, which are observed mostly near the craters observed at the externally located cis surface of the cup. The craters represent conus-like cavities formed by aligned holes of gradually decreasing diameters through the first three Golgi cisternae. These craters are localized directly opposite the ERES. Clusters of the 52 nm vesicles are visible between Golgi cisternae and between SGs. The accumulation of mucin, started in the fourth cisternal layer, induces distensions of the cisternal lumen. The thickness of these distensions gradually increases in size through the next cisternal layers. The spherical distensions are observed at the edges of the Golgi cup, where they fuse with SGs and detach from the cisternae. After the fusion of SGs located just below the apical plasma membrane (APM) with APM, mucus is secreted. The content of this SG becomes less osmiophilic and the excessive surface area of the APM is formed. This membrane is eliminated through the detachment of bubbles filled with another SG and surrounded with a double membrane or by collapse of the empty SG and transformation of the double membrane lacking a visible lumen into multilayered organelles, which move to the cell basis and are secreted into the intercellular space where the processes of dendritic cells are localized. These data are evaluated from the point of view of existing models of intracellular transport. Full article
Show Figures

Graphical abstract

28 pages, 3053 KiB  
Review
X-in-the-Loop Methodology for Proton Exchange Membrane Fuel Cell Systems Design: Review of Advances and Challenges
by Hugo Lambert, David Hernàndez-Torres, Clément Retière, Laurent Garnier and Jean-Philippe Poirot-Crouvezier
Energies 2025, 18(14), 3774; https://doi.org/10.3390/en18143774 - 16 Jul 2025
Viewed by 239
Abstract
Proton Exchange Membrane Fuel Cells (PEMFCs) are seen as an alternative for heavy-duty transportation electrification. Powered by a green hydrogen source, they can provide high efficiency and low carbon emissions compared to traditional fuels. However, to be competitive, these systems require high reliability [...] Read more.
Proton Exchange Membrane Fuel Cells (PEMFCs) are seen as an alternative for heavy-duty transportation electrification. Powered by a green hydrogen source, they can provide high efficiency and low carbon emissions compared to traditional fuels. However, to be competitive, these systems require high reliability when operated in real-life conditions, as well as safe and efficient operating management. In order to achieve these goals, the X-in-the-loop (also called model-based design) methodology is well suited. It has been largely adopted for PEMFC system development and optimisation, as they are complex multi-component systems. In this paper, a systematic analysis of the scientific literature is conducted to review the methodology implementation for the design and improvement of the PEMFC systems. It exposes a precise definition of each development step in the methodology. The analysis shows that it can be employed in different ways, depending on the subsystems considered and the objectives sought. Finally, gaps in the literature and technical challenges for fuel cell systems that should be addressed are identified. Full article
Show Figures

Figure 1

23 pages, 2027 KiB  
Article
Effect of Maternal Dietary DHA and Prenatal Stress Mouse Model on Autistic-like Behaviors, Lipid Peroxidation Activity, and GABA Expression in Offspring Pups
by Taeseon Woo, Nick I. Ahmed, Michael K. Appenteng, Candice King, Runting Li, Kevin L. Fritsche, Grace Y. Sun, Jiankun Cui, Matthew J. Will, Sara V. Maurer, Hanna E. Stevens, David Q. Beversdorf and C. Michael Greenlief
Int. J. Mol. Sci. 2025, 26(14), 6730; https://doi.org/10.3390/ijms26146730 - 14 Jul 2025
Viewed by 316
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by restricted social communication and repetitive behaviors. Prenatal stress is critical in neurodevelopment and increases risk for ASD, particularly in those with greater genetic susceptibility to stress. Docosahexaenoic acid (DHA) is one of the [...] Read more.
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by restricted social communication and repetitive behaviors. Prenatal stress is critical in neurodevelopment and increases risk for ASD, particularly in those with greater genetic susceptibility to stress. Docosahexaenoic acid (DHA) is one of the most abundant ω-3 fatty acids in the membrane phospholipids of the mammalian brain, and dietary DHA plays an important role in brain development and maintenance of brain structure. In this study, we investigated whether peri-natal supplementation of DHA can alleviate autistic-like behaviors in a genetic risk/stress mouse model and how it alters lipid peroxidation activity and GABAergic system gene expression in the forebrain. Pregnant heterozygous serotonin transporter knockout (SERT-KO) and wild-type (WT) dams were placed in either non-stressed control conditions or chronic variable stress (CVS) conditions and fed either a control diet or a DHA-rich (1% by weight) diet. Offspring of each group were assessed for anxiety and autism-associated behavior at post-natal day 60 using an open field test, elevated plus maze test, repetitive behavior, and the 3-chamber social approach test. A liquid chromatography-mass spectrometry (LC-MS)-based method was used to follow changes in levels of lipid peroxidation products in the cerebral cortex. Male offspring of prenatally stressed SERT-het KO dams exhibited decreased social preference behaviors and increased repetitive grooming behaviors compared to WT control offspring. Moreover, DHA supplementation in male SERT-het mice decreased frequency of grooming behaviors albeit showing no associated effects on social behaviors. Regardless of stress conditions, supplementation of DHA to the WT mice did not result in alterations in grooming nor social interaction in the offspring. Furthermore, no apparent changes were observed in the lipid peroxidation products comparing the stressed and non-stressed brains. Gad2 was downregulated in the cortex of female offspring of prenatally stressed SERT-KO dams, and this change appeared to be rescued by DHA supplementation in offspring. Gad2 was upregulated in the striatum of male offspring of prenatally stressed SERT-KO dams, but DHA did not significantly alter the expression compared to the control diet condition. Full article
(This article belongs to the Collection Feature Papers in Bioactives and Nutraceuticals)
Show Figures

Figure 1

26 pages, 38900 KiB  
Article
A Set of Fluorescent Protein-Based Markers for Major Vesicle Coat Proteins in Yeast
by Xue-Fei Cui, Zheng-Tan Zhang, Jing Zhu, Li Cui and Zhiping Xie
Membranes 2025, 15(7), 209; https://doi.org/10.3390/membranes15070209 - 13 Jul 2025
Viewed by 429
Abstract
In eukaryotic cells, vesicle-mediated transport interconnects the endomembrane system. These vesicles are formed by coat proteins via deformation of donor membranes. Here, we constructed a set of fluorescent protein-based markers for major coat protein complexes in the yeast model system, and examined their [...] Read more.
In eukaryotic cells, vesicle-mediated transport interconnects the endomembrane system. These vesicles are formed by coat proteins via deformation of donor membranes. Here, we constructed a set of fluorescent protein-based markers for major coat protein complexes in the yeast model system, and examined their subcellular localization patterns. Our markers covered COPII, COPI, AP-1, AP-2, AP-3, and retromer complexes. Our live cell imaging demonstrates that COPII puncta were primarily associated with the endoplasmic reticulum (ER), and occasionally with early Golgi. COPI was present on both early Golgi and late Golgi/early endosomes. AP-1 puncta were present on late Golgi/early endosomes. AP-2 was present on plasma membrane (PM)-associated puncta, and around the bud neck. AP-3 puncta were present on late Golgi/early endosomes and on the surface of vacuoles. Retromer was present on the surface of vacuoles, late endosomes, and other perivacuolar puncta. Notably, more than half of AP-1 puncta and AP-3 puncta were not associated with the donor compartments where they are thought to be generated, implying that these were coated transport vesicles. This work provides a convenient tool set for the investigation of vesicular transport in yeast and live cell imaging evidence for the presence of certain coated transport vesicles. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

12 pages, 1972 KiB  
Article
Design and Biological Evaluation of hBest1-Containing Bilayer Nanostructures
by Pavel Bakardzhiev, Teodora Koleva, Kirilka Mladenova, Pavel Videv, Veselina Moskova-Doumanova, Aleksander Forys, Sławomira Pusz, Tonya Andreeva, Svetla Petrova, Stanislav Rangelov and Jordan Doumanov
Molecules 2025, 30(14), 2948; https://doi.org/10.3390/molecules30142948 - 12 Jul 2025
Viewed by 720
Abstract
Bestrophinopathies are a group of inherited retinal diseases caused by mutations in the BEST1 gene. The protein encoded by this gene, bestorphin-1 (hBest1), is a calcium-dependent transmembrane channel localized on the basolateral membrane of retinal pigment epithelial (RPE) cells. We have already demonstrated [...] Read more.
Bestrophinopathies are a group of inherited retinal diseases caused by mutations in the BEST1 gene. The protein encoded by this gene, bestorphin-1 (hBest1), is a calcium-dependent transmembrane channel localized on the basolateral membrane of retinal pigment epithelial (RPE) cells. We have already demonstrated the surface behavior and organization of recombinant hBest1 and its interactions with membrane lipids such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), sphingomyelin (SM) and cholesterol (Chol) in models of biological membranes, which affect the hBest1 structure–function relationship. The main aim of our current investigation is to integrate pure hBest1 protein into lipid bilayer nanostructures. We synthesized and characterized various hBest1-containing nanostructures based on 1,2-Dipalmitoylphosphatidylcholine (DPPC), SM, glycerol monooleate (GMO) and Chol in different ratios and determined their cytotoxicity and incorporation into cell membranes and/or cells by immunofluorescence staining. Our results show that these newly designed nanoparticles are not cytotoxic and that their incorporation into MDCK II cell membranes (used as a model system) may provide a mechanism that could be applied to RPE cells expressing mutated hBest1 in order to restore their ion transport functions, affected by mutated and malfunctioning hBest1 molecules. Full article
(This article belongs to the Special Issue Applied Chemistry in Europe)
Show Figures

Figure 1

17 pages, 913 KiB  
Review
Cell Membrane Capacitance (Cm) Measured by Bioimpedance Spectroscopy (BIS): A Narrative Review of Its Clinical Relevance and Biomarker Potential
by Steven Brantlov, Leigh C. Ward, Søren Isidor, Christian Lodberg Hvas, Charlotte Lock Rud and Lars Jødal
Sensors 2025, 25(14), 4362; https://doi.org/10.3390/s25144362 - 12 Jul 2025
Viewed by 479
Abstract
Cell membrane capacitance (Cm) is a potential biomarker that reflects the structural and functional integrity of cell membranes. It is essential for physiological processes such as signal transduction, ion transport, and cellular homeostasis. In clinical practice, Cm can be [...] Read more.
Cell membrane capacitance (Cm) is a potential biomarker that reflects the structural and functional integrity of cell membranes. It is essential for physiological processes such as signal transduction, ion transport, and cellular homeostasis. In clinical practice, Cm can be determined using bioimpedance spectroscopy (BIS), a non-invasive technique for analysing the intrinsic electrical properties of biological tissues across a range of frequencies. Cm may be relevant in various clinical fields, where high capacitance is associated with healthy and intact membranes, while low capacitance indicates cellular damage or disease. Despite its promise as a prognostic indicator, several knowledge gaps limit the broader clinical application of Cm. These include variability in measurement techniques (e.g., electrode placement, frequency selection), the lack of standardised measurement protocols, uncertainty on how Cm is related to pathology, and the relatively low amount of Cm research. By addressing these gaps, Cm may become a valuable tool for examining cellular health, early disease detection, and evaluating treatment efficacy in clinical practice. This review explores the fundamental principles of Cm measured with the BIS technique, its mathematical basis and relationship to the biophysical Cole model, and its potential clinical applications. It identifies current gaps in our knowledge and outlines future research directions to enhance the understanding and use of Cm. For example, Cm has shown promise in identifying membrane degradation in sepsis, predicting malnutrition in anorexia nervosa, and as a prognostic factor in cancer. Full article
(This article belongs to the Special Issue Biomedical Imaging, Sensing and Signal Processing)
Show Figures

Figure 1

20 pages, 1226 KiB  
Article
Transcriptomic Landscape of Paclitaxel-Induced Multidrug Resistance in 3D Cultures of Colon Cancer Cell Line DLD1
by Sandra Dragicevic, Jelena Dinic, Milena Ugrin, Marija Vidovic, Tamara Babic and Aleksandra Nikolic
Int. J. Mol. Sci. 2025, 26(14), 6580; https://doi.org/10.3390/ijms26146580 - 9 Jul 2025
Viewed by 344
Abstract
Multidrug resistance (MDR) significantly contributes to colon cancer recurrence, making it essential to understand its molecular basis for improved therapies. This study aimed to identify genes and pathways involved in resistance to standard chemotherapeutics by comparing transcriptome profiles of sensitive and paclitaxel-induced MDR [...] Read more.
Multidrug resistance (MDR) significantly contributes to colon cancer recurrence, making it essential to understand its molecular basis for improved therapies. This study aimed to identify genes and pathways involved in resistance to standard chemotherapeutics by comparing transcriptome profiles of sensitive and paclitaxel-induced MDR colonospheres. Cell viability and growth were assessed following treatment with 5-fluorouracil, oxaliplatin, irinotecan, bevacizumab, and cetuximab. Drug concentrations in culture media posttreatment were measured using high-performance liquid chromatography (HPLC). RNA sequencing (RNA-seq) of untreated sensitive and resistant colonospheres identified differentially expressed genes linked to baseline resistance. Our results confirmed cross-resistance in the resistant model, showing highest oxaliplatin tolerance may involve mechanisms beyond efflux. Transcriptome analysis highlighted upregulation of PIGR and activation of the ribosomal signaling pathway as potential resistance mediators. Notably, AKR1B10, a gene linked to chemotherapeutic detoxification, was overexpressed, whereas genes related to adhesion and membrane transport were downregulated. The overexpression of ribosomal protein genes suggests ribosome biogenesis plays a key role in acquired resistance. These findings suggest that targeting ribosome biogenesis and specific deregulated genes such as PIGR and AKR1B10 may offer promising strategies to overcome MDR in colon cancer. Full article
(This article belongs to the Special Issue Biological Hallmarks and Therapeutic Strategies in Cancer)
Show Figures

Figure 1

22 pages, 1889 KiB  
Article
Development and Characterization of Bigels for the Topical Delivery of Curcumin
by Juan Luis Peréz-Salas, Martha Rocío Moreno-Jiménez, Luis Medina-Torres, Nuria Elizabeth Rocha-Guzmán, María Josefa Bernad-Bernad, Rubén Francisco González-Laredo and José Alberto Gallegos-Infante
Sci. Pharm. 2025, 93(3), 28; https://doi.org/10.3390/scipharm93030028 - 3 Jul 2025
Viewed by 407
Abstract
The topical application of curcumin can act directly on the tissue, but there are problems related to solubility and permeation. Bigels combine hydrogels and organogels to enhance the release and transport of bioactives through the skin. The aim of this study was to [...] Read more.
The topical application of curcumin can act directly on the tissue, but there are problems related to solubility and permeation. Bigels combine hydrogels and organogels to enhance the release and transport of bioactives through the skin. The aim of this study was to develop bigels for the topical delivery of curcumin. Employing a rheology test, it was found that all bigels showed a solid-like behavior structure (G′ > G″) with stiffness increasing with higher organogel content. The principle of time–temperature superposition (TTS) was used to generate master curves. Microscopy revealed a morphological structure that depended on the organogel/hydrogel ratio. The bigels exhibited a pH compatible with that of human skin, and the curcumin content met the standards for uniform dosage. Thermal characterization showed the presence of three peaks in coconut oil bigels and two peaks in castor oil bigels. Bigels with a 45% castor oil organogel/55% hydrogel ratio exhibited a longer controlled release of curcumin, while bigels with coconut oil showed a faster release. The release data were fitted to mathematical models indicating non-Fickian release. The permeability of curcumin through Strat-M membranes was investigated, and greater permeation was observed with increasing organogel content. The developed bigels could be a promising option for the topical delivery of curcumin. Full article
Show Figures

Figure 1

20 pages, 3241 KiB  
Article
Amperometric Alcohol Vapour Detection and Mass Transport Diffusion Modelling in a Platinum-Based Sensor
by Luke Saunders, Ronan Baron and Benjamin R. Horrocks
Electrochem 2025, 6(3), 24; https://doi.org/10.3390/electrochem6030024 - 3 Jul 2025
Viewed by 439
Abstract
An important class of analytes are volatile organic carbons (VOCs), particularly aliphatic primary alcohols. Here, we report the straightforward modification of a commercially available carbon monoxide sensor to detect a range of aliphatic primary alcohols at room temperature. The mass transport mechanisms governing [...] Read more.
An important class of analytes are volatile organic carbons (VOCs), particularly aliphatic primary alcohols. Here, we report the straightforward modification of a commercially available carbon monoxide sensor to detect a range of aliphatic primary alcohols at room temperature. The mass transport mechanisms governing the performance of the sensor were investigated using diffusion in multiple layers of the sensor to model the response to an abrupt change in analyte concentration. The sensor was shown to have a large capacitance because of the nanoparticulate nature of the platinum working electrode. It was also shown that the modified sensor had performance characteristics that were mainly determined by the condensation of the analyte during diffusion through the membrane pores. The sensor was capable of a quantitative amperometric response (sensitivity of approximately 2.2 µA/ppm), with a limit of detection (LoD) of 17 ppm methanol, 2 ppm ethanol, 3 ppm heptan-1-ol, and displayed selectivity towards different VOC functional groups (the sensor gives an amperometric response to primary alcohols within 10 s, but not to esters or carboxylic acids). Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

17 pages, 5613 KiB  
Article
Hierarchical Affinity Engineering in Amine-Functionalized Silica Membranes for Enhanced CO2 Separation: A Combined Experimental and Theoretical Study
by Zhenghua Guo, Qian Li, Kaidi Guo and Liang Yu
Membranes 2025, 15(7), 201; https://doi.org/10.3390/membranes15070201 - 2 Jul 2025
Viewed by 517
Abstract
Excessive carbon dioxide (CO2) emissions represent a critical challenge in mitigating global warming, necessitating advanced separation technologies for efficient carbon capture. Silica-based membranes have attracted significant attention due to their exceptional chemical, thermal, and mechanical stability under harsh operating conditions. In [...] Read more.
Excessive carbon dioxide (CO2) emissions represent a critical challenge in mitigating global warming, necessitating advanced separation technologies for efficient carbon capture. Silica-based membranes have attracted significant attention due to their exceptional chemical, thermal, and mechanical stability under harsh operating conditions. In this study, we introduce a novel layered hybrid membrane designed based on amine-functionalized silica precursors, where a distinct affinity gradient is engineered by incorporating two types of amine-functionalized materials. The top layer was composed of high-affinity amine species to maximize CO2 sorption, while a sublayer with milder affinity facilitated smooth CO2 diffusion, thereby establishing a continuous solubility gradient across the membrane. A dual approach, combining comprehensive experimental testing and rigorous theoretical modeling, was employed to elucidate the underlying CO2 transport mechanisms. Our results reveal that the hierarchical structure significantly enhances the intrinsic driving force for CO2 permeation, leading to superior separation performance compared to conventional homogeneous facilitated transport membranes. This study not only provides critical insights into the design principles of affinity gradient membranes but also demonstrates their potential for scalable, high-performance CO2 separation in industrial applications. Full article
(This article belongs to the Section Membrane Applications for Gas Separation)
Show Figures

Figure 1

28 pages, 5527 KiB  
Article
Oral Metronomic Delivery of Atorvastatin and Docetaxel via Transporter-Targeted Nanoemulsions Enhances Antitumor Efficacy and Immune Modulation in Colon Cancer
by Laxman Subedi, Arjun Dhwoj Bamjan, Susmita Phuyal, Bikram Khadka, Mansingh Chaudhary, Ki-Taek Kim, Ki Hyun Kim, Jung-Hyun Shim, Seung-Sik Cho, Ji Eun Yu and Jin Woo Park
Pharmaceutics 2025, 17(7), 872; https://doi.org/10.3390/pharmaceutics17070872 - 2 Jul 2025
Viewed by 450
Abstract
Background/Objectives: This study aimed to enhance the oral delivery and therapeutic synergy of atorvastatin (AT) and docetaxel (DT) through a metronomic schedule using a transporter-targeted nanoemulsion (NE), with the goal of improving antitumor efficacy and immune modulation. Methods: AT and DT [...] Read more.
Background/Objectives: This study aimed to enhance the oral delivery and therapeutic synergy of atorvastatin (AT) and docetaxel (DT) through a metronomic schedule using a transporter-targeted nanoemulsion (NE), with the goal of improving antitumor efficacy and immune modulation. Methods: AT and DT were co-encapsulated in a NE system (AT/DT-NE#E) incorporating deoxycholic acid–DOTAP (D-TAP), biotin-conjugated phospholipid (Biotin-PE), and d-α-tocopherol polyethylene glycol succinate (TPGS) to exploit bile acid and multivitamin transport pathways and inhibit P-glycoprotein efflux. The optimized NE was characterized physicochemically and evaluated for permeability in artificial membranes and Caco-2/HT29-MTX-E12 monolayers. Pharmacokinetics, tumor suppression, and immune cell infiltration were assessed in vivo using rat and CT26.CL25 mouse models. Results: AT/DT-NE#E showed enhanced permeability of AT and DT by 45.7- and 43.1-fold, respectively, across intestinal cell models and improved oral bioavailability by 118% and 376% compared to free drugs. In vivo, oral metronomic AT/DT-NE#E reduced tumor volume by 65.2%, outperforming intravenous AT/DT. Combination with anti-PD1 therapy achieved a 942% increase in tumor suppression over the control, accompanied by marked increases in tumor-infiltrating CD45+, CD4+CD3+, and CD8+CD3+ T cells. Conclusions: Oral metronomic administration of AT/DT via a dual-transporter-targeted NE significantly improves drug absorption, tumor inhibition, and immune response. This strategy presents a safe and effective approach for colon cancer therapy, particularly when combined with immunotherapy. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

21 pages, 4313 KiB  
Article
Heat Shock Protein and Disaggregase Influencing the Casein Structuralisation
by Irena Roterman, Katarzyna Stapor, Dawid Dułak and Leszek Konieczny
Int. J. Mol. Sci. 2025, 26(13), 6360; https://doi.org/10.3390/ijms26136360 - 1 Jul 2025
Viewed by 305
Abstract
The contribution of the environment to protein folding seems obvious. The aqueous environment directs protein folding towards generating a centric hydrophobic core with a polar shell. The cell membrane environment—in which numerous proteins are anchored—to stabilise the arrangement, expects the exposure of hydrophobic [...] Read more.
The contribution of the environment to protein folding seems obvious. The aqueous environment directs protein folding towards generating a centric hydrophobic core with a polar shell. The cell membrane environment—in which numerous proteins are anchored—to stabilise the arrangement, expects the exposure of hydrophobic residues and the concentration of polar residues in the central part—a channel for the transport of numerous molecules. The influence of these environments seems evident due to the persistent residence of proteins in their surroundings providing an external force field for structure stabilisation. Structural forms are also obtained with the participation of supporting proteins—such as proteins from the heat shock protein group—which accompany the folding process and temporarily provide an appropriate external force field in which the protein, having obtained the correct structure for its activity, is released from interaction with the supporting protein. This paper discusses an example of the contribution of Hsp104 to casein folding and the effect of disaggregase preventing inappropriate aggregation. For this purpose, a model called the fuzzy oil drop (FOD-M) was used, which takes hydrophobic interactions into account in the assessment of protein structure status. Their distribution in the protein body highlights the contribution and influence of the external force field—originating from Hsp104 and the disaggregase in this case. Full article
Show Figures

Figure 1

Back to TopTop