Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,118)

Search Parameters:
Keywords = membrane bilayers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4215 KiB  
Article
Influence of Membrane Composition on the Passive Membrane Penetration of Industrially Relevant NSO-Heterocycles
by Zsófia Borbála Rózsa, Tamás Horváth, Béla Viskolcz and Milán Szőri
Int. J. Mol. Sci. 2025, 26(15), 7427; https://doi.org/10.3390/ijms26157427 - 1 Aug 2025
Viewed by 103
Abstract
This study investigates how phospholipid headgroups influence passive membrane penetration and structural impact of four nitrogen-, sulfur-, and oxygen-containing heterocycles (NSO-HETs)—N-methyl-2-pyrrolidone (PIR), 1,4-dioxane (DIOX), oxane (OXA), and phenol (PHE). Using all-atom molecular dynamics simulations combined with Accelerated Weight Histogram free energy calculations, the [...] Read more.
This study investigates how phospholipid headgroups influence passive membrane penetration and structural impact of four nitrogen-, sulfur-, and oxygen-containing heterocycles (NSO-HETs)—N-methyl-2-pyrrolidone (PIR), 1,4-dioxane (DIOX), oxane (OXA), and phenol (PHE). Using all-atom molecular dynamics simulations combined with Accelerated Weight Histogram free energy calculations, the passive transport of NSO-HETs across DPPC, DPPE, DPPA, and DPPG bilayers was characterized. DPPG showed the highest membrane affinity, increasing permeability (logPmemb/bulk) by 27–64% compared to DPPE, associated with the lowest permeability and tightest lipid packing. Free energy barriers are also decreased in DPPG relative to DPPE; PIR’s central barrier dropped from 19.2 kJ/mol (DPPE) to 16.6 kJ/mol (DPPG), while DIOX’s barrier decreased from 7.2 to 5.2 kJ/mol. OXA exhibited the lowest central barriers (1.2–2.2 kJ/mol) and uniquely accumulated at higher concentrations in the bilayer center than in bulk water, with free energy ranging from −3.4 to −5.9 kJ/mol. PHE and OXA caused significant bilayer thinning (up to 11%) and reduced lipid tail order, especially in DPPE and DPPA. Concentration effects were most pronounced in DPPE, where high solute loading disrupted lipid order and altered free energy profiles. These results highlight the crucial role of headgroup identity in modulating NSO-HET membrane permeability and structural changes. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

12 pages, 2497 KiB  
Article
Atomistic-Level Structural Insight into Vespa Venom (Ves a 1) and Lipid Membrane Through the View of Molecular Dynamics Simulation
by Nawanwat Chainuwong Pattaranggoon, Withan Teajaroen, Sakda Daduang, Supot Hannongbua, Thanyada Rungrotmongkol and Varomyalin Tipmanee
Toxins 2025, 17(8), 387; https://doi.org/10.3390/toxins17080387 - 31 Jul 2025
Viewed by 143
Abstract
This study used all-atom molecular dynamics simulations to investigate the structural dynamics of Ves a 1, a phospholipase from Vespa affinis venom, and its interactions within a lipid membrane environment, both alone and in the presence of the inhibitor voxilaprevir. Simulations conducted over [...] Read more.
This study used all-atom molecular dynamics simulations to investigate the structural dynamics of Ves a 1, a phospholipase from Vespa affinis venom, and its interactions within a lipid membrane environment, both alone and in the presence of the inhibitor voxilaprevir. Simulations conducted over 1 µs for triplicate runs demonstrated system stability and convergence of structural properties. Our findings reveal that Ves a 1 engages in dynamic interactions with the lipid bilayer, involving key regions such as its lids, catalytic triad, and auxiliary site. The presence of voxilaprevir was observed to subtly alter these membrane interaction patterns and influence the enzyme’s catalytic area, reflecting the inhibitor’s impact within its physiological context. These results emphasize the crucial role of the lipid bilayer in shaping enzyme function and highlight voxilaprevir as a promising candidate for further inhibitor development, offering vital insights for rational drug design targeting membrane-associated proteins. Full article
(This article belongs to the Special Issue Venoms and Drugs)
Show Figures

Figure 1

31 pages, 7303 KiB  
Review
Membrane-Targeting Antivirals
by Maxim S. Krasilnikov, Vladislav S. Denisov, Vladimir A. Korshun, Alexey V. Ustinov and Vera A. Alferova
Int. J. Mol. Sci. 2025, 26(15), 7276; https://doi.org/10.3390/ijms26157276 - 28 Jul 2025
Viewed by 251
Abstract
The vast majority of viruses causing human and animal diseases are enveloped—their virions contain an outer lipid bilayer originating from a host cell. Small molecule antivirals targeting the lipid bilayer cover the broadest spectrum of viruses. In this context, we consider the chemical [...] Read more.
The vast majority of viruses causing human and animal diseases are enveloped—their virions contain an outer lipid bilayer originating from a host cell. Small molecule antivirals targeting the lipid bilayer cover the broadest spectrum of viruses. In this context, we consider the chemical nature and mechanisms of action of membrane-targeting antivirals. They can affect virions by (1) physically modulating membrane properties to inhibit fusion of the viral envelope with the cell membrane, (2) physically affecting envelope lipids and proteins leading to membrane damage, pore formation and lysis, (3) causing photochemical damage of unsaturated membrane lipids resulting in integrity loss and fusion arrest. Other membrane-active compounds can target host cell membranes involved in virion’s maturation, coating, and egress (endoplasmic reticulum, Golgi apparatus, and outer membrane) affecting these last stages of viral reproduction. Both virion- and host-targeting membrane-active molecules are promising concepts for broad-spectrum antivirals. A panel of approved antivirals would be a superior weapon to respond to and control emerging disease outbreaks caused by new viral strains and variants. Full article
Show Figures

Figure 1

24 pages, 3976 KiB  
Article
SGLT2 Inhibitors and Curcumin Co-loaded Liposomal Formulations as Synergistic Delivery Systems for Heart Failure Therapy
by Bianca-Ștefania Profire, Florentina Geanina Lupașcu, Alexandru Sava, Ioana-Andreea Turin-Moleavin, Dana Bejan, Cristian Stătescu, Victorița Șorodoc, Radu-Andy Sascău, Laurențiu Șorodoc, Mariana Pinteala and Lenuța Profire
Pharmaceutics 2025, 17(8), 969; https://doi.org/10.3390/pharmaceutics17080969 - 26 Jul 2025
Viewed by 444
Abstract
Background/Objectives: As novel synergistic strategy for heart failure (HF), this study explores the formulation and characterization of liposomal systems co-loaded with SGLT2 inhibitors (dapagliflozin—DAPA and empagliflozin—EMPA) and curcumin (Cur). Methods: To enhance liposomal membrane stability and achieve sustained, controlled drug release, [...] Read more.
Background/Objectives: As novel synergistic strategy for heart failure (HF), this study explores the formulation and characterization of liposomal systems co-loaded with SGLT2 inhibitors (dapagliflozin—DAPA and empagliflozin—EMPA) and curcumin (Cur). Methods: To enhance liposomal membrane stability and achieve sustained, controlled drug release, oleanolic acid (OA) was incorporated into the lipid bilayer, while the liposomal surface was coated with polyvinylpyrrolidone (PVP). Results: The resulting liposomes exhibited favorable physico-chemical properties (particle size ~170 nm, low PDI, negative zeta potential), high encapsulation efficiencies (up to 97%), and spherical morphology as confirmed by STEM. XRD and DSC analyses indicated successful API incorporation and amorphization within the lipid matrix, while PVP coating provided slight improvements in thermal stability. Trehalose proved to be an effective cryoprotectant, preserving liposome integrity after freeze-drying. In vitro release studies demonstrated sustained and delayed drug release, especially in PVP-coated and OA-containing formulations. Conclusions: All these findings highlight the promise of PVP-coated, OA-stabilized liposomal formulations co-loaded with SGLT2 inhibitors and Cur as biocompatible, multifunctional platforms for targeted HF therapy. Full article
Show Figures

Graphical abstract

24 pages, 1580 KiB  
Article
Liposome-Based Encapsulation of Extract from Wild Thyme (Thymus serpyllum L.) Tea Processing Residues for Delivery of Polyphenols
by Aleksandra A. Jovanović, Bojana Balanč, Predrag M. Petrović, Natalija Čutović, Smilja B. Marković, Verica B. Djordjević and Branko M. Bugarski
Foods 2025, 14(15), 2626; https://doi.org/10.3390/foods14152626 - 26 Jul 2025
Viewed by 328
Abstract
This study developed phospholipid-based liposomes loaded with extract from wild thyme (Thymus serpyllum L.) tea processing residues to enhance polyphenol stability and delivery. Liposomes were prepared with phospholipids alone or combined with 10–30 mol% cholesterol or β-sitosterol. The effect of different lipid [...] Read more.
This study developed phospholipid-based liposomes loaded with extract from wild thyme (Thymus serpyllum L.) tea processing residues to enhance polyphenol stability and delivery. Liposomes were prepared with phospholipids alone or combined with 10–30 mol% cholesterol or β-sitosterol. The effect of different lipid compositions on encapsulation efficiency (EE), particle size, polydispersity index (PDI), zeta potential, stability, thermal properties, diffusion coefficient, and diffusion resistance of the liposomes was investigated. Liposomes with 10 mol% sterols (either cholesterol or β-sitosterol) exhibited the highest EE of polyphenols, while increasing sterol content to 30 mol% resulted in decreased EE. Particle size and PDI increased with sterol content, while liposomes prepared without sterols showed the smallest vesicle size. Encapsulation of the extract led to smaller liposomal diameters and slight increases in PDI values. Zeta potential measurements revealed that sterol incorporation enhanced the surface charge and stability of liposomes, with β-sitosterol showing the most pronounced effect. Stability testing demonstrated minimal changes in size, PDI, and zeta potential during storage. UV irradiation and lyophilization processes did not cause significant polyphenol leakage, although lyophilization slightly increased particle size and PDI. Differential scanning calorimetry revealed that polyphenols and sterols modified the lipid membrane transitions, indicating interactions between extract components and the liposomal bilayer. FT-IR spectra confirmed successful integration of the extract into the liposomes, while UV exposure did not significantly alter the spectral features. Thiobarbituric acid reactive substances (TBARS) assay demonstrated the extract’s efficacy in mitigating lipid peroxidation under UV-induced oxidative stress. In contrast, liposomes enriched with sterols showed enhanced peroxidation. Polyphenol diffusion studies showed that encapsulation significantly delayed release, particularly in sterol-containing liposomes. Release assays in simulated gastric and intestinal fluids confirmed controlled, pH-dependent polyphenol delivery, with slightly better retention in β-sitosterol-enriched systems. These findings support the use of β-sitosterol- and cholesterol-enriched liposomes as stable carriers for polyphenolic compounds from wild thyme extract, as bioactive antioxidants, for food and nutraceutical applications. Full article
(This article belongs to the Special Issue Encapsulation and Delivery Systems in the Food Industry)
Show Figures

Figure 1

22 pages, 1725 KiB  
Article
Capacity Optimization for Coordinated Operation of Hybrid Electrolytic Cells Based on Wavelet Packet
by Yi Yang, Bowen Zhou, Yang Xu, Juan Zhang, Bo Yang, Guiping Zhou and Shunjiang Wang
Sustainability 2025, 17(14), 6412; https://doi.org/10.3390/su17146412 - 13 Jul 2025
Viewed by 330
Abstract
Hydrogen production through electrolysis of water can achieve efficient, stable and diversified utilization of renewable energy. To this end, a hybrid electrolyzer system for hydrogen production based on bi-layer optimization is constructed. Firstly, the wind and photovoltaic power is decomposed into high-frequency and [...] Read more.
Hydrogen production through electrolysis of water can achieve efficient, stable and diversified utilization of renewable energy. To this end, a hybrid electrolyzer system for hydrogen production based on bi-layer optimization is constructed. Firstly, the wind and photovoltaic power is decomposed into high-frequency and low-frequency components by an adaptive wavelet packet. The low-frequency power is allocated to the alkaline electrolyzers (AWE) to ensure its stability, and the high-frequency power is allocated to the proton exchange membrane electrolyzers (PEM) with a faster response characteristic, thereby improving the energy utilization rate. This paper proposes a bi-layer optimization model, in which the upper-layer objective is to minimize the cost of mixed hydrogen production, and the lower-layer optimization objective is to maximize the utilization rate of renewable energy. The differential evolution algorithm optimizes the upper-layer objective, with results sent to the lower layer. Then, the YALMIP toolbox is used to solve the lower-layer objective. Through case analysis, the optimal proportion of AWE and PEM hydrogen electrolyzers obtained by this optimization method is 89.5 and 10.5, respectively. Compared with a single type of electrolyzer, the method proposed in this paper effectively improves the energy utilization efficiency and reduces the cost of hydrogen production. Full article
(This article belongs to the Topic Clean Energy Technologies and Assessment, 2nd Edition)
Show Figures

Figure 1

12 pages, 1972 KiB  
Article
Design and Biological Evaluation of hBest1-Containing Bilayer Nanostructures
by Pavel Bakardzhiev, Teodora Koleva, Kirilka Mladenova, Pavel Videv, Veselina Moskova-Doumanova, Aleksander Forys, Sławomira Pusz, Tonya Andreeva, Svetla Petrova, Stanislav Rangelov and Jordan Doumanov
Molecules 2025, 30(14), 2948; https://doi.org/10.3390/molecules30142948 - 12 Jul 2025
Viewed by 694
Abstract
Bestrophinopathies are a group of inherited retinal diseases caused by mutations in the BEST1 gene. The protein encoded by this gene, bestorphin-1 (hBest1), is a calcium-dependent transmembrane channel localized on the basolateral membrane of retinal pigment epithelial (RPE) cells. We have already demonstrated [...] Read more.
Bestrophinopathies are a group of inherited retinal diseases caused by mutations in the BEST1 gene. The protein encoded by this gene, bestorphin-1 (hBest1), is a calcium-dependent transmembrane channel localized on the basolateral membrane of retinal pigment epithelial (RPE) cells. We have already demonstrated the surface behavior and organization of recombinant hBest1 and its interactions with membrane lipids such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), sphingomyelin (SM) and cholesterol (Chol) in models of biological membranes, which affect the hBest1 structure–function relationship. The main aim of our current investigation is to integrate pure hBest1 protein into lipid bilayer nanostructures. We synthesized and characterized various hBest1-containing nanostructures based on 1,2-Dipalmitoylphosphatidylcholine (DPPC), SM, glycerol monooleate (GMO) and Chol in different ratios and determined their cytotoxicity and incorporation into cell membranes and/or cells by immunofluorescence staining. Our results show that these newly designed nanoparticles are not cytotoxic and that their incorporation into MDCK II cell membranes (used as a model system) may provide a mechanism that could be applied to RPE cells expressing mutated hBest1 in order to restore their ion transport functions, affected by mutated and malfunctioning hBest1 molecules. Full article
(This article belongs to the Special Issue Applied Chemistry in Europe)
Show Figures

Figure 1

19 pages, 3486 KiB  
Article
3-O Sulfated Heparan Sulfate (G2) Peptide Ligand Impairs the Infectivity of Chlamydia muridarum
by Weronika Hanusiak, Purva Khodke, Jocelyn Mayen, Kennedy Van, Ira Sigar, Balbina J. Plotkin, Amber Kaminski, James Elste, Bajarang Vasant Kumbhar and Vaibhav Tiwari
Biomolecules 2025, 15(7), 999; https://doi.org/10.3390/biom15070999 - 12 Jul 2025
Viewed by 505
Abstract
Background: Heparan sulfate (HS) is widely implicated as a receptor for Chlamydia cell attachment and infectivity. However, the enzymatic modification of HS modified by the 3-O sulfotransferase-3 (3-OST-3) enzyme in chlamydial cell entry remains unknown. Methodology: To rule out the possibility that host [...] Read more.
Background: Heparan sulfate (HS) is widely implicated as a receptor for Chlamydia cell attachment and infectivity. However, the enzymatic modification of HS modified by the 3-O sulfotransferase-3 (3-OST-3) enzyme in chlamydial cell entry remains unknown. Methodology: To rule out the possibility that host cell 3-O sulfated heparan sulfate (3-OS HS) plays a significant role in C. muridarum entry, a Chinese hamster ovary (CHO-K1) cell model lacking endogenous 3-OST-3 was used. In addition, we further tested the efficacy of the phage-display-derived cationic peptides recognizing heparan sulfate (G1 peptide) and the moieties of 3-O sulfated heparan sulfate (G2 peptide) against C. muridarum entry using human cervical adenocarcinoma (HeLa 229) and human vaginal epithelial (VK2/E6E7) cell lines. Furthermore, molecular dynamics simulations were conducted to investigate the interactions of the Chlamydia lipid bilayer membrane with the G1 and G2 peptides, focusing on their binding modes and affinities. Results: The converse effect of 3-OST-3 expression in the CHO-K1 cells had no enhancing effect on C. muridarum entry. The G2 peptide significantly (>80%) affected the cell infectivity of the elementary bodies (EBs) at all the tested concentrations, as evident from the reduced fluorescent staining in the number of inclusion bodies. The observed neutralization effect of G2 peptide on C. muridarum entry suggests the possibility of sulfated-like domains being present on the EBs. In addition, data generated from our in silico computational structural modeling indicated that the G2 peptide ligand had significant affinity towards the C. muridarum lipid bilayer. Conclusions: Taken together, our findings show that the pretreatment of C. muridarum with 3-O sulfated heparan sulfate recognizing G2 peptide significantly prevents the entry of EBs into host cells. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

19 pages, 1620 KiB  
Article
Cellular Entry, Cytotoxicity, and Antifungal Activity of Newly Synthesized Dendrimers
by Aneliya Kostadinova, Ema Gaydarska, Tanya Topouzova-Hristova, Dayana Benkova, Galya Staneva, Ekaterina Krumova, Rusina Hazarosova, Miroslav Marinov, Asya Tsanova, Albena Jordanova and Ivo Grabchev
Appl. Sci. 2025, 15(14), 7764; https://doi.org/10.3390/app15147764 - 10 Jul 2025
Viewed by 352
Abstract
Dendrimers, 4-dimethylamino-1,8-naphthalimide (DAB) and its halogenated analog 3-bromo-4-dimethylamino-1,8-naphthalimide (DAB-Br), were evaluated on eukaryotic cells, human HFF-1 fibroblast cells, and five fungal species. Although both dendrimers have demonstrated antibacterial and antiviral potential, thus far, their effects on eukaryotic cells, particularly human and fungal cells, [...] Read more.
Dendrimers, 4-dimethylamino-1,8-naphthalimide (DAB) and its halogenated analog 3-bromo-4-dimethylamino-1,8-naphthalimide (DAB-Br), were evaluated on eukaryotic cells, human HFF-1 fibroblast cells, and five fungal species. Although both dendrimers have demonstrated antibacterial and antiviral potential, thus far, their effects on eukaryotic cells, particularly human and fungal cells, have not been investigated. For this purpose, their cytotoxicity, mechanisms of cellular entry, and antifungal activity were studied. Dynamic light scattering measurements revealed that both dendrimers exhibited positive surface charges (+28 to +35 mV), good colloidal stability, and nanoscale dimensions (117–234 nm), facilitating interactions with target cells. The MTT assay showed that DAB was more cytotoxic toward HFF-1 cells (IC50 = 27 µg/mL) compared to DAB-Br (IC50 = 68 µg/mL). In contrast, the resazurin-based antifungal assay demonstrated that DAB-Br had superior antifungal activity, achieving a lower minimum inhibitory concentration (0.148 µg/µL), compared to DAB (0.295 µg/µL). A trypan blue exclusion test revealed that both dendrimers entered cells through membrane permeabilization, either temporarily or permanently, depending on the concentration and exposure time. At concentrations above 30 µg/mL, irreversible permeabilization was observed within two hours of treatment, accompanied by a decrease in membrane lipid order, indicating altered membrane integrity and permeability. Conversely, at lower concentrations (7.5–15 µg/mL), dendrimers induced only temporary membrane permeabilization, with membranes remaining intact, suggesting a reversible interaction with the lipid bilayer. Conducting thorough and systematic research to fully explore their biological activities could provide valuable insight for future applications. Full article
(This article belongs to the Section Nanotechnology and Applied Nanosciences)
Show Figures

Figure 1

15 pages, 887 KiB  
Article
Mapping Ammonium Flux Across Bacterial Porins: A Novel Electrophysiological Assay with Antimicrobial Relevance
by Ishan Ghai
Appl. Sci. 2025, 15(14), 7677; https://doi.org/10.3390/app15147677 - 9 Jul 2025
Viewed by 226
Abstract
This study presents a quantitative electrophysiological method to directly measure the passive transport of ammonium ions through bacterial outer membrane porins. Using a zero-current reversal potential assay in planar lipid bilayers under defined bi-ionic gradients, this study evaluates the permeability of ammonium salts [...] Read more.
This study presents a quantitative electrophysiological method to directly measure the passive transport of ammonium ions through bacterial outer membrane porins. Using a zero-current reversal potential assay in planar lipid bilayers under defined bi-ionic gradients, this study evaluates the permeability of ammonium salts through two general diffusion porins: Omp-Pst2 from Providencia stuartii and OmpF from Escherichia coli. Under matched ionic conditions, Omp-Pst2 exhibited significantly higher ammonium flux—approximately 6000 ions per second per monomer at a 1 µM gradient—compared to ~4000 ions per second for OmpF. Importantly, the identity of the accompanying anion (chloride vs. sulfate) modulated both the ion selectivity and flux rate, highlighting the influence of counterion interactions on porin-mediated transport. These findings underscore how structural differences between porins—such as pore geometry and charge distribution—govern ion permeability. The method applied here provides a robust framework for quantifying nutrient flux at the single-channel level and offers novel insights into how Gram-negative bacteria may adapt their membrane transport mechanisms under nitrogen-limited conditions. This work not only enhances our understanding of outer membrane permeability to small ions like ammonium, but also has implications for antimicrobial strategy development and biotechnological applications in nitrogen assimilation. Full article
(This article belongs to the Special Issue Innovative Digital Health Technologies and Their Applications)
Show Figures

Figure 1

21 pages, 26512 KiB  
Article
Insights into Membrane Damage by α-Helical and β-Sheet Peptides
by Warin Rangubpit, Hannah E. Distaffen, Bradley L. Nilsson and Cristiano L. Dias
Biomolecules 2025, 15(7), 973; https://doi.org/10.3390/biom15070973 - 7 Jul 2025
Viewed by 502
Abstract
Peptide-induced disruption of lipid membranes is central to both amyloid diseases and the activity of antimicrobial peptides. Here, we combine all-atom molecular dynamics simulations with biophysical experiments to investigate how four amphipathic peptides interact with lipid bilayers. All peptides adsorb on the membrane [...] Read more.
Peptide-induced disruption of lipid membranes is central to both amyloid diseases and the activity of antimicrobial peptides. Here, we combine all-atom molecular dynamics simulations with biophysical experiments to investigate how four amphipathic peptides interact with lipid bilayers. All peptides adsorb on the membrane surface. Peptide M01 [Ac-(FKFE)2-NH2] self-assembles into β-sheet nanofibrils that span both leaflets of the membrane, creating water-permeable channels. The other three peptides adopt α-helical structures at the water–lipid interface. Peptide M02 [Ac-FFKKFFEE-NH2], a sequence isomer of M01, does not form β-sheet aggregates and is too short to span the bilayer, resulting in no observable water permeation across the membrane. Peptides M03 and M04 are α-helical isomers long enough to span the bilayer, with a polar face that allows the penetration of water deep inside the membrane. For the M03 peptide [Ac-(FFKKFFEE)2-NH2], insertion into the bilayer starts with the nonpolar N-terminal amino acids penetrating the hydrophobic core of the bilayer, while electrostatic interactions hold negative residues at the C-terminus on the membrane surface. The M04 peptide, [Ac-FFKKFFEEFKKFFEEF-NH2], is made by relocating a single nonpolar residue from the central region of M03 to the C-terminus. This nonpolar residue becomes unfavorably exposed to the solvent upon insertion of the N-terminal region of the peptide into the membrane. Consequently, higher concentrations of M04 peptides are required to induce water permeation compared to M03. Overall, our comparative analysis reveals how subtle rearrangements of polar and nonpolar residues modulate peptide-induced water permeation. This provides mechanistic insights relevant to amyloid pathology and antimicrobial peptide design. Full article
(This article belongs to the Special Issue New Insights into Protein Aggregation in Condensed and Amyloid States)
Show Figures

Figure 1

22 pages, 4242 KiB  
Review
Extracellular Vesicle Metabolomics Holds Promise for Adult Axon Regeneration
by Maria D. Cabrera Gonzalez, Jackson Watson, Laura Leal, Isabella Moceri, Camille Plummer, Biraj Mahato, Abdelrahman Y. Fouda and Sanjoy K. Bhattacharya
Metabolites 2025, 15(7), 454; https://doi.org/10.3390/metabo15070454 - 4 Jul 2025
Viewed by 768
Abstract
Extracellular vesicles (EVs) are bilayer lipid membrane particles that are released by every cell type. These secretions are further classified as exosomes, ectosomes, and microvesicles. They contain biomolecules (RNAs, proteins, metabolites, and lipids) with the ability to modulate various biological processes and have [...] Read more.
Extracellular vesicles (EVs) are bilayer lipid membrane particles that are released by every cell type. These secretions are further classified as exosomes, ectosomes, and microvesicles. They contain biomolecules (RNAs, proteins, metabolites, and lipids) with the ability to modulate various biological processes and have been shown to play a role in intercellular communication and cellular rejuvenation. Various studies suggest exosomes and/or microvesicles as a potential platform for drug delivery. EVs may deliver lipids and nucleotides directly to an injury site in an axon, promoting growth cone stabilization and membrane expansion as well as repair, thus positively modulating adult axon regeneration. In this review, we will provide a perspective on the metabolite composition of EVs in adult axonal regeneration relevant to the central nervous system (CNS), specifically that pertaining to the optic nerve. We will present an overview of the methods for isolation, enrichment, omics data analysis and quantification of extracellular vesicles with the goal of providing direction for future studies relevant to axon regeneration. We will also include current resources for multi-omics data integration relevant to extracellular vesicles from diverse cell types. Full article
Show Figures

Graphical abstract

31 pages, 1265 KiB  
Review
Plant-Derived Exosomes: Carriers and Cargo of Natural Bioactive Compounds: Emerging Functions and Applications in Human Health
by Sorur Yazdanpanah, Silvia Romano, Anna Valentino, Umberto Galderisi, Gianfranco Peluso and Anna Calarco
Nanomaterials 2025, 15(13), 1005; https://doi.org/10.3390/nano15131005 - 30 Jun 2025
Viewed by 997
Abstract
Extracellular vesicles (EVs) have gained increasing attention in recent years as a valuable focus of scientific investigation, owing to their potential therapeutic properties and wide-ranging uses in medicine. EVs are a heterogeneous population of membrane-enclosed vesicles with lipid bilayers, released by cells from [...] Read more.
Extracellular vesicles (EVs) have gained increasing attention in recent years as a valuable focus of scientific investigation, owing to their potential therapeutic properties and wide-ranging uses in medicine. EVs are a heterogeneous population of membrane-enclosed vesicles with lipid bilayers, released by cells from both animal and plant origins. These widespread vesicles play a crucial role in cell-to-cell communication and serve as carriers for a variety of biomolecules such as proteins, lipids, and nucleic acids. The most common method of classifying EVs is based on their biogenesis pathway, distinguishing exosomes, microvesicles, and apoptotic bodies as the major types. In recent years, there has been a growing interest in PDEs, as they offer a practical and eco-friendly alternative to exosomes sourced from mammals. Mounting data from both laboratory-based and animal model experiments indicate that PDEs have natural therapeutic properties that modulate biological activities within cells, demonstrating properties such as anti-inflammatory, antioxidant, and anticancer effects that may aid in treating diseases and enhancing human well-being. Moreover, PDEs hold promise as reliable and biologically compatible carriers for drug delivery. Although studies conducted before clinical trials have yielded encouraging results, numerous unresolved issues and gaps in understanding remain, which must be resolved to facilitate the effective advancement of PDEs toward medical use in human patients. A key concern is the absence of unified procedures for processing materials and for obtaining PDEs from different botanical sources. This article provides a comprehensive summary of existing findings on PDEs, critically examining the hurdles they face, and highlighting their substantial promise as a novel class of therapeutic tools for a range of illnesses. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

31 pages, 1459 KiB  
Review
Insights on Natural Membrane Characterization for the Rational Design of Biomimetic Drug Delivery Systems
by Daniela Donghia, Sara Baldassari, Giuliana Drava, Giorgia Ailuno and Gabriele Caviglioli
Pharmaceutics 2025, 17(7), 841; https://doi.org/10.3390/pharmaceutics17070841 - 27 Jun 2025
Viewed by 499
Abstract
Cell membranes are vital for living organisms and serve as a dynamic barrier between the internal and external environments. They are composed of a complex lipid bilayer embedded with proteins, allowing them to perform multiple functions like maintaining the cell structure, regulating which [...] Read more.
Cell membranes are vital for living organisms and serve as a dynamic barrier between the internal and external environments. They are composed of a complex lipid bilayer embedded with proteins, allowing them to perform multiple functions like maintaining the cell structure, regulating which substances enter or leave the cell, and intercellular communication. Cellular functions are inherently linked to their membrane properties, and the heterogeneous nature of cell membranes makes the study of their physico-chemical properties extremely challenging. This review is intended to provide a comprehensive overview of the composition and physical features of the cell membrane, by focusing on the lipid and protein composition, and on the physical properties (like membrane stiffness or fluidity), highlighting how these characteristics influence cell functions. An insight into the similarities and differences from the membranes of extracellular vesicles (naturally secreted by almost all cell types) is also provided. The understanding of the physico-chemical properties of cell membranes might find application in different therapeutic fields, like disease diagnosis and development of novel drug delivery systems. Therefore, an overview of the literature works describing the rational design of biomimetic drug delivery systems is presented, focusing on the choice of lipid components, frequently inspired by the study of the composition of naturally secreted exosomes, and on the physical characterization of the systems. In the future, in-depth study of biologic vesicles might lead to the development of promising formulation for drug delivery, possibly enhancing the therapeutic outcomes of many pathologies, like cancer. Full article
(This article belongs to the Special Issue Membrane Transport and Drug Permeation)
Show Figures

Graphical abstract

25 pages, 3592 KiB  
Article
Flavonoid Glycosides and Phenolic Acids from Inula Oculus-Christi Modulate Membrane Organization and Provide Antioxidant Protection
by Ralitsa Veleva, Tanya Topouzova-Hristova, Aneliya Kostadinova, Dayana Benkova, Antoaneta Trendafilova, Viktoria Ivanova, Veselina Moskova-Doumanova, Kirilka Mladenova, Jordan Doumanov, Vesela Yordanova and Galya Staneva
Molecules 2025, 30(13), 2740; https://doi.org/10.3390/molecules30132740 - 25 Jun 2025
Viewed by 440
Abstract
Oxidative stress induces lipid peroxidation within the membrane bilayer, thereby compromising membrane integrity. Polyphenols (PPs), renowned for their antioxidant properties, have been shown to mitigate oxidative damage. Here, we investigated the structural and antioxidant effects of PPs—specifically flavonoid glycosides (FGs) and phenolic acids [...] Read more.
Oxidative stress induces lipid peroxidation within the membrane bilayer, thereby compromising membrane integrity. Polyphenols (PPs), renowned for their antioxidant properties, have been shown to mitigate oxidative damage. Here, we investigated the structural and antioxidant effects of PPs—specifically flavonoid glycosides (FGs) and phenolic acids (PAs)—extracted from Inula oculus-christi using steady-state fluorescence spectroscopy in both model and cell membranes. Membrane lipid order was evaluated using DPH and Laurdan spectroscopy, while DPH-TEMPO fluorescence quenching was employed to quantify raft-like domain formation in model systems. The antioxidant capacity of the PP extracts was assessed via fluorescence quenching of cis-parinaric acid. Both FGs and PAs conferred approximately 2-fold antioxidant protection, with FGs showing a 1.13-fold greater effect than PAs. In addition, both PP classes promoted lipid raft formation, particularly in cholesterol-rich membranes. PPs increased order in the liquid-disordered (Ld) phase while inducing disorder in the liquid-ordered (Lo) phase, depending on the lipid-to-PP ratio. Notably, FGs enhanced membrane fluidity more strongly in A549 than in MDCKII cells, as reflected by a ~5.7-fold decrease in Laurdan GP in A549 (from 0.04 to −0.17) versus a ~1.4-fold decrease in MDCKII at 200 μg/mL. These findings highlight the dual structural and antioxidative roles of FGs and PAs in preserving membrane integrity under oxidative stress. Full article
Show Figures

Figure 1

Back to TopTop