Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (303)

Search Parameters:
Keywords = melatonin receptors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1861 KiB  
Review
Protective Effect of Melatonin Against Bisphenol A Toxicity
by Seong Soo Joo and Yeong-Min Yoo
Int. J. Mol. Sci. 2025, 26(15), 7526; https://doi.org/10.3390/ijms26157526 - 4 Aug 2025
Viewed by 189
Abstract
Bisphenol A (BPA), a prevalent endocrine-disrupting chemical, is widely found in various consumer products and poses significant health risks, particularly through hormone receptor interactions, oxidative stress, and mitochondrial dysfunction. BPA exposure is associated with reproductive, metabolic, and neurodevelopmental disorders. Melatonin, a neurohormone with [...] Read more.
Bisphenol A (BPA), a prevalent endocrine-disrupting chemical, is widely found in various consumer products and poses significant health risks, particularly through hormone receptor interactions, oxidative stress, and mitochondrial dysfunction. BPA exposure is associated with reproductive, metabolic, and neurodevelopmental disorders. Melatonin, a neurohormone with strong antioxidant and anti-inflammatory properties, has emerged as a potential therapeutic agent to counteract the toxic effects of BPA. This review consolidates recent findings from in vitro and animal/preclinical studies, highlighting melatonin’s protective mechanisms against BPA-induced toxicity. These include its capacity to reduce oxidative stress, restore mitochondrial function, modulate inflammatory responses, and protect against DNA damage. In animal models, melatonin also mitigates reproductive toxicity, enhances fertility parameters, and reduces histopathological damage. Melatonin’s ability to regulate endoplasmic reticulum (ER) stress and cell death pathways underscores its multifaceted protective role. Despite promising preclinical results, human clinical trials are needed to validate these findings and establish optimal dosages, treatment durations, and safety profiles. This review discusses the wide range of potential uses of melatonin for treating BPA toxicity and suggests directions for future research. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

18 pages, 5008 KiB  
Article
Enhanced Modulation of CaMKII in Mouse Hippocampus by an Antidepressant-like Dose of Melatonin/Ketamine Combination
by Armida Miranda-Riestra, Rosa Estrada-Reyes, Luis A. Constantino-Jonapa, Jesús Argueta, Julián Oikawa-Sala, Miguel A. Reséndiz-Gachús, Daniel Albarrán-Gaona and Gloria Benítez-King
Cells 2025, 14(15), 1187; https://doi.org/10.3390/cells14151187 - 1 Aug 2025
Viewed by 307
Abstract
Forty per cent of major depression patients are resistant to antidepressant medication. Thus, it is necessary to search for alternative treatments. Melatonin (N-acetyl-5-hydroxytryptamine) enhances neurogenesis and neuronal survival in the adult mouse hippocampal dentate gyrus. Additionally, melatonin stimulates the activity of [...] Read more.
Forty per cent of major depression patients are resistant to antidepressant medication. Thus, it is necessary to search for alternative treatments. Melatonin (N-acetyl-5-hydroxytryptamine) enhances neurogenesis and neuronal survival in the adult mouse hippocampal dentate gyrus. Additionally, melatonin stimulates the activity of Ca2+/Calmodulin-dependent Kinase II (CaMKII), promoting dendrite formation and neurogenic processes in human olfactory neuronal precursors and rat organotypic cultures. Similarly, ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, modulates CaMKII activity. Importantly, co-treatment of low doses of ketamine (10−7 M) in combination with melatonin (10−7 M) produces additive effects on neurogenic responses in olfactory neuronal precursors. Importantly, enhanced neurogenic responses are produced by conventional antidepressants like ISSRs. The goal of this study was to investigate whether hippocampal CaMKII participates in the signaling pathway elicited by combining doses of melatonin with ketamine acutely administered to mice, 30 min before being subjected to the forced swimming test. The results showed that melatonin, in conjunction with ketamine, significantly enhances CaMKII activation and changes its subcellular distribution in the dentate gyrus of the hippocampus. Remarkably, melatonin causes nuclear translocation of the active form of CaMKII. Luzindole, a non-selective MT1 and MT2 receptor antagonist, abolished these effects, suggesting that CaMKII is downstream of the melatonin receptor pathway that causes the antidepressant-like effects. These findings provide molecular insights into the combined effects of melatonin and ketamine on neuronal plasticity-related signaling pathways and pave the way for combating depression using combination therapy. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

21 pages, 3038 KiB  
Article
Exploring the Interplay Between Gut Microbiota and the Melatonergic Pathway in Hormone Receptor-Positive Breast Cancer
by Aurora Laborda-Illanes, Soukaina Boutriq, Lucía Aranega-Martín, Daniel Castellano-Castillo, Lidia Sánchez-Alcoholado, Isaac Plaza-Andrades, Jesús Peralta-Linero, Emilio Alba, José Carlos Fernández-García, Alicia González-González and María Isabel Queipo-Ortuño
Int. J. Mol. Sci. 2025, 26(14), 6801; https://doi.org/10.3390/ijms26146801 - 16 Jul 2025
Viewed by 467
Abstract
Emerging evidence suggests a bidirectional relationship between gut microbiota, melatonin synthesis, and breast cancer (BC) development in hormone receptor-positive patients (HR+HER2+ and HR+HER2-). This study investigated alterations in gut microbiota composition, the serum serotonin–N-acetylserotonin (NAS)–melatonin axis, fecal short-chain fatty acids (SCFAs) and beta-glucuronidase [...] Read more.
Emerging evidence suggests a bidirectional relationship between gut microbiota, melatonin synthesis, and breast cancer (BC) development in hormone receptor-positive patients (HR+HER2+ and HR+HER2-). This study investigated alterations in gut microbiota composition, the serum serotonin–N-acetylserotonin (NAS)–melatonin axis, fecal short-chain fatty acids (SCFAs) and beta-glucuronidase (βGD) activity, and serum zonulin in HR+ BC patients compared to healthy controls. Blood and fecal samples were analyzed using mass spectrometry for serotonin, NAS, melatonin, and SCFAs; ELISA for AANAT, ASMT, 14-3-3 protein, and zonulin; fluorometric assay for βGD activity; and 16S rRNA sequencing for gut microbiota composition. HR+ BC patients exhibited gut dysbiosis with reduced Bifidobacterium longum and increased Bacteroides eggerthii, alongside elevated fecal βGD activity, SCFA levels (e.g., isovaleric acid), and serum zonulin, indicating increased intestinal permeability. Serum serotonin and N-acetylserotonin (NAS) levels were elevated, while melatonin levels were reduced, with a higher NAS/melatonin ratio in BC patients. AANAT levels were increased, and ASMT levels were decreased, suggesting disrupted melatonin synthesis. Bifidobacterium longum positively correlated with melatonin and negatively with βGD activity, while Bacteroides eggerthii showed a positive correlation with βGD activity. These findings suggested that gut microbiota alterations, disrupted melatonin synthesis, microbial metabolism, and intestinal permeability may contribute to BC pathophysiology. The NAS/melatonin ratio could represent a potential biomarker, necessitating further mechanistic studies to confirm causality and explore therapeutic interventions. Full article
(This article belongs to the Special Issue Interplay Between the Human Microbiome and Diseases)
Show Figures

Graphical abstract

29 pages, 1685 KiB  
Review
Translating Basic Science to Clinical Applications: A Narrative Review of Repurposed Pharmacological Agents in Preclinical Models of Diabetic Neuropathy
by Corina Andrei, Oana Cristina Șeremet, Ciprian Pușcașu and Anca Zanfirescu
Biomedicines 2025, 13(7), 1709; https://doi.org/10.3390/biomedicines13071709 - 13 Jul 2025
Viewed by 506
Abstract
Diabetic neuropathy (DN) remains a major clinical burden, characterized by progressive sensory dysfunction, pain, and impaired quality of life. Despite the available symptomatic treatments, there is a pressing need for disease-modifying therapies. In recent years, preclinical research has highlighted the potential of repurposed [...] Read more.
Diabetic neuropathy (DN) remains a major clinical burden, characterized by progressive sensory dysfunction, pain, and impaired quality of life. Despite the available symptomatic treatments, there is a pressing need for disease-modifying therapies. In recent years, preclinical research has highlighted the potential of repurposed pharmacological agents, originally developed for other indications, to target key mechanisms of DN. This narrative review examines the main pathophysiological pathways involved in DN, including metabolic imbalance, oxidative stress, neuroinflammation, ion channel dysfunction, and mitochondrial impairment. A wide array of repurposed drugs—including antidiabetics (metformin, empagliflozin, gliclazide, semaglutide, and pioglitazone), antihypertensives (amlodipine, telmisartan, aliskiren, and rilmenidine), lipid-lowering agents (atorvastatin and alirocumab), anticonvulsants (topiramate and retigabine), antioxidant and neuroprotective agents (melatonin), and muscarinic receptor antagonists (pirenzepine, oxybutynin, and atropine)—have shown promising results in rodent models, reducing neuropathic pain behaviors and modulating underlying disease mechanisms. By bridging basic mechanistic insights with pharmacological interventions, this review aims to support translational progress toward mechanism-based therapies for DN. Full article
(This article belongs to the Special Issue Novel Biomarker and Treatments for Diabetic Neuropathy)
Show Figures

Figure 1

36 pages, 23106 KiB  
Article
Phylogenetic and Structural Insights into Melatonin Receptors in Plants: Case Study in Capsicum chinense Jacq
by Adrian Toledo-Castiñeira, Mario E. Valdés-Tresanco, Georgina Estrada-Tapia, Miriam Monforte-González, Manuel Martínez-Estévez and Ileana Echevarría-Machado
Plants 2025, 14(13), 1952; https://doi.org/10.3390/plants14131952 - 26 Jun 2025
Viewed by 616
Abstract
Recently, it has been proposed that plant melatonin receptors belong to the superfamily of G protein-coupled receptors (GPCRs). However, a detailed description of the phylogeny, protein structure, and binding properties of melatonin, which is still lacking, can help determine the signaling and function [...] Read more.
Recently, it has been proposed that plant melatonin receptors belong to the superfamily of G protein-coupled receptors (GPCRs). However, a detailed description of the phylogeny, protein structure, and binding properties of melatonin, which is still lacking, can help determine the signaling and function of this compound. Melatonin receptor homologs (PMTRs) were identified in 90 Viridiplantae sensu lato proteomes using profile Hidden Markov Models (HMM), which yielded 174 receptors across 87 species. Phylogenetic analysis revealed an expansion of PMTR sequences in angiosperms, which were grouped into three clades. Docking studies uncovered a conserved internal melatonin-binding site in PMTRs, which was analogous to the site in human MT1 receptors. Binding affinity simulations indicated this internal site exhibits stronger melatonin binding compared to a previously reported superficial pocket. Ligand–receptor interaction analysis and alanine scanning highlighted a major role of hydrophobic interactions, with hydrogen bonds contributing predominantly at the internal site, while non-interacting charged residues stabilize the binding pocket. Tunnel and ligand transport simulations suggested melatonin moves favorably through the internal cavity to access the binding site. Also, we presented for the first time details of these pockets in a non-model species, Capsicum chinense. Taken together, the structural analyses presented here illustrate opportunities and theoretical evidence for performing structure–function studies via mutations in specific residues within the proposed new melatonin-binding site in PMTRs, shedding light on their role in plant melatonin signaling. Full article
Show Figures

Figure 1

18 pages, 5239 KiB  
Article
Monochromatic Light Impacts the Growth Performance, Intestinal Morphology, Barrier Function, Antioxidant Status, and Microflora of Yangzhou Geese
by Gang Luo, Yiyi Cheng, Yingqing Xu, Jie Liu, Wen Yang, Jiying Liu, Binbin Guo and Huanxi Zhu
Animals 2025, 15(12), 1815; https://doi.org/10.3390/ani15121815 - 19 Jun 2025
Viewed by 299
Abstract
This study investigates the effect of monochromatic light on the body weight (BW), melatonin concentration and its receptors expression levels, intestinal health, and gut microorganisms of Yangzhou geese. Green light (GL) significantly increased BW, melatonin and its receptor expression levels, villus height (VH) [...] Read more.
This study investigates the effect of monochromatic light on the body weight (BW), melatonin concentration and its receptors expression levels, intestinal health, and gut microorganisms of Yangzhou geese. Green light (GL) significantly increased BW, melatonin and its receptor expression levels, villus height (VH) and villus height/crypt depth (VH/CD) ratio, superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (T-AOC) activities, as well as the abundance of Synergistota and Prevotellaceae_UCG-001, compared with white light (WL). Blue light (BL) significantly increased the mRNA expression of melatonin membrane receptor 1a (Mel1a) and nuclear receptor 1α (RORα), VH and VH/CD ratio, CAT activity, cecal microbes diversity, and decreased malondialdehyde (MDA) levels. Red light (RL) significantly decreased average daily feed intake, reduced the abundances of Synergistota and Prevotellaceae_UCG-001, and increased Mel1a and RORα mRNA expression levels, MDA content, and cecum microbial diversity. Moreover, melatonin levels were significantly higher in the GL and BL groups compared to RL. Furthermore, the mRNA expression levels of Claudin-10, Occludin, and occludens-1 (ZO-1) were significantly upregulated under GL or BL exposures compared to the WL group, whereas RL only enhanced the expression levels of ZO-1. Spearman’s correlation analysis revealed that the relative abundance of Prevotellaceae_UCG-001 exhibited positive correlations with BW, melatonin and its receptors expression, gut health, and antioxidant capacity. Overall, these findings suggested that GL exposure enhanced melatonin synthesis and its receptors expression, modulated intestinal homeostasis and microbial ecology, and ultimately increased goose BW. Full article
(This article belongs to the Section Poultry)
Show Figures

Graphical abstract

29 pages, 1463 KiB  
Systematic Review
Pharmacological and Non-Pharmacological Interventions to Improve Sleep in People with Cognitive Impairment: A Systematic Review and Meta-Analysis
by Patrick Crowley, Mark R. O’Donovan, Peter Leahy, Evelyn Flanagan and Rónán O’Caoimh
Int. J. Environ. Res. Public Health 2025, 22(6), 956; https://doi.org/10.3390/ijerph22060956 - 18 Jun 2025
Viewed by 1556
Abstract
Sleep disturbance is common among people with cognitive impairment and, when present, is an important target for intervention because it potentially leads to negative outcomes and cognitive decline. Given this association, sleep represents a potential public health target, although evidence for efficacy is [...] Read more.
Sleep disturbance is common among people with cognitive impairment and, when present, is an important target for intervention because it potentially leads to negative outcomes and cognitive decline. Given this association, sleep represents a potential public health target, although evidence for efficacy is lacking. For this study, a systematic review and meta-analysis was undertaken of controlled clinical trials of pharmacological and non-pharmacological interventions to improve sleep in mild cognitive impairment and dementia. A total of 144 trials involving 13,471 participants (median 50 per trial) were included. To measure sleep, 68 trials used subjective measures exclusively, and 41 used only objective measures, while 35 used a combination. In all, 287 discrete sleep outcome measures were reported. Bright light therapy was the most frequently examined non-pharmacological intervention, but results were equivocal. Other non-pharmacological interventions (such as physical activity, cognitive behavioural therapy for insomnia, music, and continuous positive airway pressure) showed promise but require further evidence. Results for melatonin, the most frequently examined pharmacological intervention, were inconclusive, but lower doses may be more effective. Other pharmacological interventions (such as trazadone and orexin-receptor antagonists) demonstrated effectiveness in a small number of trials but require further evidence. Overall, there is insufficient evidence upon which to base clinical decisions regarding the treatment of sleep disturbance in this population. Existing research is marked by wide heterogeneity, which limits opportunities for data synthesis. A core outcome set is urgently required to ensure that future research provides more coherent and reliable evidence to improve outcomes for people with cognitive impairment and sleep disturbance. Full article
(This article belongs to the Special Issue Sleep Disorders and Cognitive Impairment)
Show Figures

Figure 1

15 pages, 1139 KiB  
Article
Outcome of Sleep Rehabilitation in Autistic Children with Sleep Disorders Is Linked to Melatonin Receptor Genes SNPs
by Elisabetta Bolognesi, Alessandra Carta, Franca Rosa Guerini, Stefano Sotgiu, Cristina Agliardi, Chiara Dettori, Milena Zanzottera and Mario Clerici
Int. J. Mol. Sci. 2025, 26(11), 5198; https://doi.org/10.3390/ijms26115198 - 28 May 2025
Viewed by 551
Abstract
A significant proportion of children with Autism spectrum disorder (ASD) experience sleep issues, such as insomnia and other disorders, as assessed by the Sleep Disturbance Scale for Children. Our study investigated the link between six single nucleotide polymorphisms (SNPs) in the melatonin receptor [...] Read more.
A significant proportion of children with Autism spectrum disorder (ASD) experience sleep issues, such as insomnia and other disorders, as assessed by the Sleep Disturbance Scale for Children. Our study investigated the link between six single nucleotide polymorphisms (SNPs) in the melatonin receptor genes MT1 and MT2 and ASD susceptibility, clinical severity and associated sleep problems. A total of 139 ASD children, 82 siblings, and 53 unrelated healthy controls, all of Sardinian ancestry, were studied; among them, 38 children with co-occurring sleep issues were assessed for the outcomes of a rehabilitative program, including behavioral therapy and sleep hygiene. The MT2 rs10830963 G allele is more prevalent in ASD children and their siblings compared to the healthy controls, while rs2119882 (MT1) and rs1562444 (MT2) are associated with DIMS, DA, and SHY. ASD Children carrying the rs2119882 T allele have higher scores for DIMS and DA compared to C allele carriers, and those carrying rs1562444 A allele have higher scores for SHY than G allele carriers. After rehabilitative treatment, homozygous TT carriers of rs2119882 showed less improvement in DIMS symptoms compared to CT and CC carriers. A similar result was observed for AA carriers of SNP rs1562444 about SHY. We may suggest that the MT1 and MT2 variants may serve as useful predictive genetic markers for the severity of sleep disorders in children with ASD, potentially informing the design of more targeted rehabilitative treatments. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 856 KiB  
Review
Melatonin in Glaucoma: Integrative Mechanisms of Intraocular Pressure Control and Neuroprotection
by Xinyu Hou and Yingzi Pan
Biomedicines 2025, 13(5), 1213; https://doi.org/10.3390/biomedicines13051213 - 16 May 2025
Viewed by 1373
Abstract
Background: Glaucoma is a leading cause of irreversible visual loss worldwide, characterized by progressive retinal ganglion cell (RGC) degeneration and optic nerve damage. Current therapies mainly focus on lowering intraocular pressure (IOP), yet fail to address pressure-independent neurodegenerative mechanisms. Melatonin, an endogenously [...] Read more.
Background: Glaucoma is a leading cause of irreversible visual loss worldwide, characterized by progressive retinal ganglion cell (RGC) degeneration and optic nerve damage. Current therapies mainly focus on lowering intraocular pressure (IOP), yet fail to address pressure-independent neurodegenerative mechanisms. Melatonin, an endogenously produced indoleamine, has gained attention for its potential in modulating both IOP and neurodegeneration through diverse cellular pathways. This review evaluates the therapeutic relevance of melatonin in glaucoma by examining its mechanistic actions and emerging delivery approaches. Methods: A comprehensive literature search was conducted via PubMed and Medline to identify studies published between 2000 and 2025 on melatonin’s roles in glaucoma. Included articles discussed its effects on IOP regulation, RGC survival, oxidative stress, mitochondrial integrity, and inflammation. Results: Evidence supports melatonin’s involvement in IOP reduction via MT receptor activation and its synergism with adrenergic and enzymatic regulators. Moreover, it protects RGCs by mitigating oxidative stress, preventing mitochondrial dysfunction, and inhibiting apoptotic and inflammatory cascades. Recent advances in ocular drug delivery systems enhance its bioavailability and therapeutic potential. Conclusions: Melatonin represents a multi-target candidate for glaucoma treatment. Further clinical studies are necessary to establish optimal dosing strategies, delivery methods, and long-term safety in patients. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

22 pages, 1908 KiB  
Article
Melatonin Improves Lipid Homeostasis, Mitochondrial Biogenesis, and Antioxidant Defenses in the Liver of Prediabetic Rats
by Milena Cremer de Souza, Maria Luisa Gonçalves Agneis, Karoliny Alves das Neves, Matheus Ribas de Almeida, Geórgia da Silva Feltran, Ellen Mayara Souza Cruz, João Paulo Ferreira Schoffen, Luiz Gustavo de Almeida Chuffa and Fábio Rodrigues Ferreira Seiva
Int. J. Mol. Sci. 2025, 26(10), 4652; https://doi.org/10.3390/ijms26104652 - 13 May 2025
Viewed by 830
Abstract
Type 2 diabetes mellitus represents a major global health burden and is often preceded by a prediabetic state characterized by insulin resistance and metabolic dysfunction. Mitochondrial alterations, oxidative stress, and disturbances in lipid metabolism are central to the prediabetes pathophysiology. Melatonin, a pleiotropic [...] Read more.
Type 2 diabetes mellitus represents a major global health burden and is often preceded by a prediabetic state characterized by insulin resistance and metabolic dysfunction. Mitochondrial alterations, oxidative stress, and disturbances in lipid metabolism are central to the prediabetes pathophysiology. Melatonin, a pleiotropic indolamine, is known to regulate metabolic and mitochondrial processes; however, its therapeutic potential in prediabetes remains poorly understood. This study investigated the effects of melatonin on energy metabolism, oxidative stress, and mitochondrial function in a rat model of prediabetes induced by chronic sucrose intake and low-dose streptozotocin administration. Following prediabetes induction, animals were treated with melatonin (20 mg/kg) for four weeks. Biochemical analyses were conducted to evaluate glucose and lipid metabolism, and mitochondrial function was assessed via gene expression, enzymatic activity, and oxidative stress markers. Additionally, hepatic mitochondrial dynamics were examined by quantifying key regulators genes associated with biogenesis, fusion, and fission. Prediabetic animals exhibited dyslipidemia, hepatic lipid accumulation, increased fat depots, and impaired glucose metabolism. Melatonin significantly reduced serum glucose, triglycerides, and total cholesterol levels, while enhancing the hepatic high-density lipoprotein content. It also stimulated β-oxidation by upregulating hydroxyacyl-CoA dehydrogenase and citrate synthase activity. Mitochondrial dysfunction in prediabetic animals was evidenced by the reduced expression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha and mitochondrial transcription factor A, both of which were markedly upregulated by melatonin. The indolamine also modulated mithocondrial dynamics by regulating fusion and fission markers, including mitosuin 1 and 2, optic atrophy protein, and dynamin-related protein. Additionally, melatonin mitigated oxidative stress by enhancing the activity of superoxide dismutase and catalase while reducing lipid peroxidation. These findings highlight melatonin’s protective role in prediabetes by improving lipid and energy metabolism, alleviating oxidative stress, and restoring mitochondrial homeostasis. This study provides novel insights into the therapeutic potential of melatonin in addressing metabolic disorders, particularly in mitigating mitochondrial dysfunction associated with prediabetes. Full article
Show Figures

Figure 1

18 pages, 574 KiB  
Review
Expert Consensus on the Use of Diphenhydramine for Short-Term Insomnia: Efficacy, Safety, and Clinical Applications
by Daniel Felipe Ariza-Salamanca, Marco Venegas, Karem Parejo, Steve Amado, Jorge Echeverry and Carlos Alberto Calderón-Ospina
J. Clin. Med. 2025, 14(10), 3297; https://doi.org/10.3390/jcm14103297 - 9 May 2025
Viewed by 2552
Abstract
Insomnia is the most prevalent sleep disorder, estimated to affect at least one-third of the global population. There are a variety of treatment options available for both acute and chronic insomnia. Currently, the pharmacological arsenal for treating insomnia includes short- or intermediate-acting benzodiazepine [...] Read more.
Insomnia is the most prevalent sleep disorder, estimated to affect at least one-third of the global population. There are a variety of treatment options available for both acute and chronic insomnia. Currently, the pharmacological arsenal for treating insomnia includes short- or intermediate-acting benzodiazepine hypnotics, non-benzodiazepine hypnotic sedatives, melatonin receptor agonists, orexin receptor antagonist, and sedating antidepressants. Diphenhydramine, a first-generation antihistamine, is commonly used in the treatment of allergies and dermatitis. This review examines the preclinical and clinical efficacy and safety evidence of diphenhydramine in treating short-term insomnia. Additionally, it provides expert consensus on its implementation as an over-the-counter medication for this condition. The available evidence indicates that diphenhydramine is an effective treatment for acute insomnia in adults, offering a safe and affordable option for most patients suffering from this condition. Experts concur that there is strong evidence supporting the recommendation of diphenhydramine for the treatment of acute insomnia in adults. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

16 pages, 5080 KiB  
Article
Exploring the Therapeutic Potential of Rehmannia glutinosa: A Network Pharmacology and Molecular Docking Analysis Across Multiple Diseases
by Jinyoung Park, Muhammad Yasir, Eun-Taek Han, Jin-Hee Han, Won Sun Park, Jongseon Choe and Wanjoo Chun
Curr. Issues Mol. Biol. 2025, 47(5), 329; https://doi.org/10.3390/cimb47050329 - 3 May 2025
Viewed by 847
Abstract
Rehmannia glutinosa (RG), a fundamental herb in traditional Chinese medicine belonging to the Orobanchaceae family, has been widely used for centuries due to its diverse therapeutic properties, including promoting blood circulation, enhancing immunity, managing diabetes, reducing inflammation, and supporting kidney function. Despite its [...] Read more.
Rehmannia glutinosa (RG), a fundamental herb in traditional Chinese medicine belonging to the Orobanchaceae family, has been widely used for centuries due to its diverse therapeutic properties, including promoting blood circulation, enhancing immunity, managing diabetes, reducing inflammation, and supporting kidney function. Despite its traditional significance, scientific studies on RG’s therapeutic mechanisms remain limited, and its underlying pharmacological pathways are not extensively elucidated. This study employed network pharmacology and molecular docking to identify RG’s active compounds and investigate their therapeutic potential in allergy, anemia, diabetes, and menopause. From an initial pool of 122 compounds, 50 bioactive compounds were screened based on bioavailability and drug-likeness, resulting in 40 active compounds and 11 target proteins closely associated with these conditions. Key active compounds identified included iridoid glycosides (rehmaglutin A, B, C, D, jioglutin A, B, C, jioglutolide) and other bioactive molecules such as caffeic acid, geraniol, 5-hydroxytryptamine, melatonin, and rhodioloside. Molecular docking technology was employed to verify the stable binding of target proteins with active compounds. Protein–protein interaction (PPI) analysis revealed that RG’s core target proteins are central to pathways regulating inflammation, cell survival, apoptosis, and immune response. Enrichment analyses demonstrated that RG’s target proteins intersect significantly with pathways including the AGE-RAGE signaling pathway in diabetic complications, IL-17, HIF-1 signaling, and neuroactive ligand-receptor interactions, all of which are essential in managing diabetes and menopause symptoms. These findings underscore RG’s multi-target therapeutic potential, particularly in modulating immunity, metabolism, and inflammation. This study highlights RG’s potential as a therapeutic agent and provides a framework for future research to further elucidate its mechanisms and support the development of targeted drugs based on RG’s active compounds. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

12 pages, 947 KiB  
Article
Interaction Between Dietary Fiber Intake and MTNR1B rs10830963 Polymorphism on Glycemic Profiles in Young Brazilian Adults
by Ana Carolina da Silva Lima, Nathália Teixeira Cruvinel, Nara Rubia da Silva, Marcela Moraes Mendes, Amélia Cristina Stival Duarte, Alexandre Siqueira Guedes Coelho, Karani S. Vimaleswaran and Maria Aderuza Horst
Genes 2025, 16(5), 497; https://doi.org/10.3390/genes16050497 - 27 Apr 2025
Viewed by 631
Abstract
Background/Objective: The single-nucleotide polymorphism (SNP) rs10830963 in the melatonin receptor 1B (MTNR1B) gene influences insulin secretion and glucose metabolism and has been associated with an increased risk of type-2 diabetes. This study aimed to explore the interaction between dietary intake and [...] Read more.
Background/Objective: The single-nucleotide polymorphism (SNP) rs10830963 in the melatonin receptor 1B (MTNR1B) gene influences insulin secretion and glucose metabolism and has been associated with an increased risk of type-2 diabetes. This study aimed to explore the interaction between dietary intake and the MTNR1B rs10830963 polymorphism on glycemic profiles in young Brazilian adults. Methods: This cross-sectional study assessed 200 healthy young adults (19–24 years), evaluating the MTNR1B rs10830963 genotype, anthropometric parameters, glycemic markers (fasting insulin, glucose, HOMA-IR, and HOMA-β), and dietary intake via three 24 h dietary recalls. Genotype–diet interactions were tested using multivariate linear regression models adjusted for confounders. Results: The carriers of the G allele exhibited a positive association with fasting insulin levels (p = 0.003), insulin/glucose ratio (p = 0.004), HOMA-IR (p = 0.003), and HOMA-β (p = 0.018). Energy-adjusted fiber intake showed a significant genotype-specific interaction only in carriers of the G allele, where higher dietary fiber intake was significantly associated with lower fasting insulin (pinteraction = 0.034) and HOMA-IR (pinteraction = 0.028). Conclusion: Our findings indicate that the MTNR1B rs10830963 polymorphism is associated with glycemic markers, and dietary fiber intake may attenuate the adverse effects of the MTNR1B rs10830963 G allele on glycemic profiles in young Brazilian adults. This highlights the potential role of fiber in improving health outcomes for individuals carrying this risk allele. To validate these results and assess the broader implications for the Brazilian population, further intervention studies and larger-scale research are essential. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

29 pages, 1843 KiB  
Review
Molecular Links Between Circadian Rhythm Disruption, Melatonin, and Neurodegenerative Diseases: An Updated Review
by Kemal Hüsnü Can Baser, Ismail Celil Haskologlu and Emine Erdag
Molecules 2025, 30(9), 1888; https://doi.org/10.3390/molecules30091888 - 23 Apr 2025
Cited by 3 | Viewed by 3471
Abstract
Circadian rhythms are molecular oscillations governed by transcriptional–translational feedback loops (TTFLs) operating in nearly all cell types and are fundamental to physiological homeostasis. Key circadian regulators, such as circadian locomotor output cycles kaput (CLOCK), brain and muscle ARNT-like 1 (BMAL1), period [...] Read more.
Circadian rhythms are molecular oscillations governed by transcriptional–translational feedback loops (TTFLs) operating in nearly all cell types and are fundamental to physiological homeostasis. Key circadian regulators, such as circadian locomotor output cycles kaput (CLOCK), brain and muscle ARNT-like 1 (BMAL1), period (PER), and cryptochrome (CRY) gene families, regulate intracellular metabolism, oxidative balance, mitochondrial function, and synaptic plasticity. Circadian disruption is known as a central contributor to the molecular pathophysiology of neurodegenerative disorders. Disease-specific disruptions in clock gene expression and melatoninergic signaling are known as potential early-stage molecular biomarkers. Melatonin, a neurohormone secreted by the pineal gland, modulates clock gene expression, mitochondrial stability, and inflammatory responses. It also regulates epigenetic and metabolic processes through nuclear receptors and metabolic regulators involved in circadian and cellular stress pathways, thereby exerting neuroprotective effects and maintaining neuronal integrity. This review provides recent findings from the past five years, highlighting how circadian dysregulation mediates key molecular and cellular disturbances and the translational potential of circadian-based therapies in neurodegenerative diseases. Full article
Show Figures

Figure 1

16 pages, 4955 KiB  
Article
Genome-Wide Association Study (GWAS) on Reproductive Seasonality in Indigenous Greek Sheep Breeds: Insights into Genetic Integrity
by Danai Antonopoulou, George Symeon, Konstantinos Zaralis, Meni Avdi, Ilias S. Frydas and Ioannis A. Giantsis
Curr. Issues Mol. Biol. 2025, 47(4), 279; https://doi.org/10.3390/cimb47040279 - 16 Apr 2025
Viewed by 664
Abstract
A key feature in sheep biology is reproduction seasonality which concerns the cyclical occurrence of natural breeding, which therefore does not take place throughout the year. Since sheep are short-day breeders, the amount of daylight has an impact on their reproductive activity. The [...] Read more.
A key feature in sheep biology is reproduction seasonality which concerns the cyclical occurrence of natural breeding, which therefore does not take place throughout the year. Since sheep are short-day breeders, the amount of daylight has an impact on their reproductive activity. The melatonin receptor subtype 1A (MTNR1A) gene is the primary gene that has been linked with seasonality. Nonetheless, information regarding the potential genetic association between other loci and the seasonality of sheep reproduction is scarce. Genome-wide association study (GWAS) is considered a cutting-edge methodology for comprehending the genetic architecture of complex traits since it enables the discovery of many markers linked to different features. In the present study, three indigenous Greek sheep breeds were investigated using GWAS—two of which presented strict patterns of reproduction seasonality, i.e., the Florina and Karagkouniko breeds, while the third one, i.e., the Chios breed had the ability to exhibit estrus throughout the year—in an attempt to detect the genetic loci linked with reproduction seasonality. All three breeds of investigated animals were purebred with Chios and Florina breeds originating from the Greek national stationary stock, whereas Karagkouniko originated from a commercial farm. Interestingly, a significant genetic differentiation of the national stationary stock groups was suggested by principal component analysis, phylogenetic analysis, and admixture and spatial point patterns, with these two breeds being less heterogeneous. This finding highlights the value of stationary stocks towards the maintenance of genetic integrity in indigenous sheep, demonstrating the Greek station’s critical role in the conservation of native sheep breeds. On the other hand, according to the GWAS data analysis, no genetic loci were correlated with reproduction seasonality, emphasizing the MTNR1A gene as the main determinant of the seasonality in native non genetically improved breeds. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

Back to TopTop