Melatonin in Glaucoma: Integrative Mechanisms of Intraocular Pressure Control and Neuroprotection
Abstract
:1. Introduction
2. Materials and Methods
3. Melatonin Synthesis and Physiological Functions
3.1. Regulation of Intraocular Pressure by Melatonin
3.2. Neuroprotective Mechanisms of Melatonin in the Retina
4. Melatonin Modulates Multi-Faceted Mechanisms Underlying Glaucomatous Neurodegeneration
4.1. Mitochondrial Dysfunction and Oxidative Imbalance
4.2. Glutamate Excitotoxicity and Calcium Dysregulation
4.3. Neuroinflammation and Autophagy Dysregulation
4.4. Pyroptosis and Inflammatory Cascades
5. Melatonin Exerts Multi-Target Neuroprotective Effects in Glaucoma Pathogenesis
6. Melatonin Delivery Strategies for Ocular Application
7. Discussion
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AADC | Aromatic Amino Acid Decarboxylase |
AOH | Acute Ocular Hypertension |
ATP | Adenosine Triphosphate |
CA | Carbonic Anhydrase |
ETC | Electron Transport Chain |
GABA | Gamma-Aminobutyric Acid |
GHT | Geniculohypothalamic Tract |
GSH | Glutathione |
IL | Interleukin |
IML | Intermediolateral Column |
IOP | Intraocular Pressure |
ipRGC | Intrinsically Photosensitive Retinal Ganglion Cell |
MPTP | Mitochondrial Permeability Transition Pore |
MT | Melatonin Receptor |
NMDA | N-Methyl-D-Aspartate |
NO | Nitric Oxide |
NPY | Neuropeptide Y |
PACAP | Pituitary Adenylate Cyclase-Activating Polypeptide |
PLA | Poly(lactic acid) |
PLGA | Poly(lactic-co-glycolic acid) |
PVN | Paraventricular Nucleus |
RGC | Retinal Ganglion Cell |
RHT | Retinohypothalamic Tract |
ROS | Reactive Oxygen Species |
RNS | Reactive Nitrogen Species |
SCG | Superior Cervical Ganglion |
SCN | Suprachiasmatic Nucleus |
SIRT1 | Sirtuin 1 |
SOD | Superoxide Dismutase |
TPH | Tryptophan Hydroxylase |
UCP2 | Uncoupling Protein 2 |
References
- Quigley, H.A. Neuronal Death in Glaucoma. Prog. Retin. Eye Res. 1999, 18, 39–57. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, R.N.; Leung, C.K.S.; Crowston, J.G.; Medeiros, F.A.; Friedman, D.S.; Wiggs, J.L.; Martin, K.R. Primary open-angle glaucoma. Nat. Rev. Dis. Primers 2016, 2, 16067. [Google Scholar] [CrossRef] [PubMed]
- Quigley, H.A.; Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef]
- Jayaram, H.; Kolko, M.; Friedman, D.S.; Gazzard, G. Glaucoma: Now and Beyond. Lancet 2023, 402, 1788–1801. [Google Scholar] [CrossRef]
- Quigley, H.A.; Addicks, E.M. Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. Investig. Ophthalmol. Vis. Sci. 1980, 192, 137–152. [Google Scholar]
- Irnaten, M.; O’Brien, C.J. Calcium-Signalling in Human Glaucoma Lamina Cribrosa Myofibroblasts. Int. J. Mol. Sci. 2023, 24, 1287. [Google Scholar] [CrossRef]
- Morrison, J.C.; Johnson, E.C.; Cepurna, W.; Jia, L. Understanding Mechanisms of Pressure-Induced Optic Nerve Damage. Prog. Retin. Eye Res. 2005, 24, 217–240. [Google Scholar] [CrossRef]
- Burgoyne, C.F.; Crawford Downs, J.; Bellezza, A.J.; Francis Suh, J.K.; Hart, R.T. The Optic Nerve Head as a Biomechanical Structure: A New Paradigm for Understanding the Role of IOP-related Stress and Strain in the Pathophysiology of Glaucomatous Optic Nerve Head Damage. Prog. Retin. Eye Res. 2005, 24, 39–73. [Google Scholar] [CrossRef]
- Hernandez, M.R. The Optic Nerve Head in Glaucoma: Role of Astrocytes in Tissue Remodeling. Prog. Retin. Eye Res. 2000, 19, 297–321. [Google Scholar] [CrossRef]
- Calkins, D.J. Adaptive Responses to Neurodegenerative Stress in Glaucoma. Prog. Retin. Eye Res. 2021, 84, 100953. [Google Scholar] [CrossRef] [PubMed]
- Calkins, D.J. Critical pathogenic events underlying progression of neurodegeneration in glaucoma. Prog. Retin. Eye Res. 2012, 31, 702–719. [Google Scholar] [CrossRef] [PubMed]
- Czeisler, C.A.; Kronauer, R.E.; Allan, J.S.; Duffy, J.F.; Jewett, M.E.; Brown, E.N.; Ronda, J.M. Bright Light Induction of Strong (Type 0) Resetting of the Human Circadian Pacemaker. Science 1989, 244, 1328–1333. [Google Scholar] [CrossRef] [PubMed]
- Remé, C.; Wirz-Justice, A.; Terman, M. The Visual Input Stage of the Mammalian Circadian Pacemaking System: I. Is There a Clock in the Mammalian Eye? J. Biol. Rhythm. 1991, 6, 5–29. [Google Scholar] [CrossRef]
- Cermakian, N.; Sassone-Corsi, P. Environmental stimulus perception and control of circadian clocks. Curr. Opin. Neurobiol. 2002, 12, 359–365. [Google Scholar] [CrossRef]
- Cahill, G.M.; Menaker, M. Kynurenic Acid Blocks Suprachiasmatic Nucleus Responses to Optic Nerve Stimulation. Brain Res. 1987, 410, 125–129. [Google Scholar] [CrossRef]
- Cahill, G.M.; Menaker, M. Effects of Excitatory Amino Acid Receptor Antagonists and Agonists on Suprachiasmatic Nucleus Responses to Retinohypothalamic Tract Volleys. Brain Res. 1989, 479, 76–82. [Google Scholar] [CrossRef]
- Buijs, R.M.; Kalsbeek, A. Hypothalamic integration of central and peripheral clocks. Nat. Rev. Neurosci. 2001, 2, 521–526. [Google Scholar] [CrossRef]
- Pagano, J.; Giona, F.; Beretta, S.; Verpelli, C.; Sala, C. N-Methyl-d-aspartate Receptor Function in Neuronal and Synaptic Development and Signaling. Curr. Opin. Pharmacol. 2021, 56, 93–101. [Google Scholar] [CrossRef]
- Skene, D.J.; Skornyakov, E.; Chowdhury, N.R.; Gajula, R.P.; Middleton, B.; Satterfield, B.C.; Porter, K.I.; Van Dongen, H.P.A.; Gaddameedhi, S. Separation of circadian- and behavior-driven metabolite rhythms in humans provides a window on peripheral oscillators and metabolism. Proc. Natl. Acad. Sci. USA 2018, 115, 7825–7830. [Google Scholar] [CrossRef]
- Turner, P.L.; Van Someren, E.J.; Mainster, M.A. The Role of Environmental Light in Sleep and Health: Effects of Ocular Aging and Cataract Surgery. Sleep Med. Rev. 2010, 14, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Andrews, C.D.; Foster, R.G.; Alexander, I.; Vasudevan, S.; Downes, S.M.; Heneghan, C.; Plüddemann, A. Sleep–Wake Disturbance Related to Ocular Disease: A Systematic Review of Phase-Shifting Pharmaceutical Therapies. Transl. Vis. Sci. Technol. 2019, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- Megha, K.B.; Arathi, A.; Shikha, S.; Alka, R.; Ramya, P.; Mohanan, P.V. Significance of melatonin in the regulation of circadian rhythms and disease management. Mol. Neurobiol. 2024, 61, 5541–5571. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B.; Hernández-Ruiz, J. Functions of Melatonin in Plants: A Review. J. Pineal Res. 2015, 59, 133–150. [Google Scholar] [CrossRef]
- Zawilska, J.B.; Lorenc, A.; Berezińska, M.; Vivien-Roels, B.; Pévet, P.; Skene, D.J. Diurnal and circadian rhythms in melatonin synthesis in the turkey pineal gland and retina. Gen. Comp. Endocrinol. 2006, 145, 162–168. [Google Scholar] [CrossRef]
- Gianesini, C.; Clesse, D.; Tosini, G.; Hicks, D.; Laurent, V. Unique regulation of the melatonin synthetic pathway in the retina of diurnal female Arvicanthis ansorgei (Rodentia). Endocrinology 2015, 156, 3292–3308. [Google Scholar] [CrossRef]
- Kennaway, D.J. Measuring melatonin by immunoassay. J. Pineal Res. 2020, 69, e12657. [Google Scholar] [CrossRef]
- Martin, X.D.; Malina, H.Z.; Brennan, M.C.; Hendrickson, P.H.; Lichter, P.R. The ciliary body–the third organ found to synthesize indoleamines in humans. Eur. J. Ophthalmol. 1992, 2, 67–72. [Google Scholar] [CrossRef]
- Shahidullah, M.; Delamere, N.A. Mechanical stretch activates TRPV4 and hemichannel responses in the nonpigmented ciliary epithelium. Int. J. Mol. Sci. 2023, 24, 1673. [Google Scholar] [CrossRef]
- Lovenberg, W.; Jequier, E.; Sjoerdsma, A. Tryptophan Hydroxylation: Measurement in Pineal Gland, Brainstem, and Carcinoid Tumor. Science 1967, 155, 217–219. [Google Scholar] [CrossRef]
- Weissbach, H.; Redfield, B.G.; Axelrod, J. Biosynthesis of Melatonin: Enzymic Conversion of Serotonin to N-acetylserotonin. Biochim. Biophys. Acta 1960, 43, 352–353. [Google Scholar] [CrossRef] [PubMed]
- Axelrod, J.; Weissbach, H. Enzymatic O-methylation of N-acetylserotonin to Melatonin. Science 1960, 131, 1312. [Google Scholar] [CrossRef] [PubMed]
- Zawilska, J.B.; Kazula, A.; Zurawska, E.; Nowak, J.Z. Serotonin N-acetyltransferase Activity in Chicken Retina: In Vivo Effects of Phosphodiesterase Inhibitors, Forskolin, and Drugs Affecting Dopamine Receptors. J. Pineal Res. 1991, 11, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Demas, G.E.; Han, Y.; Fink, H.F. Melatonin. Trends Endocrinol. Metab. 2025, 36, 191–192. [Google Scholar] [CrossRef]
- Todorova, V.; Merolla, L.; Karademir, D.; Wögenstein, G.M.; Behr, J.; Ebner, L.J.A.; Samardzija, M.; Grimm, C. Retinal Layer Separation (ReLayS) method enables the molecular analysis of photoreceptor segments and cell bodies, as well as the inner retina. Sci. Rep. 2022, 12, 20195. [Google Scholar] [CrossRef]
- Ikegami, K. Circadian rhythm of intraocular pressure. J. Physiol. Sci. 2024, 74, 14. [Google Scholar] [CrossRef]
- Chiou, G.C.; Aimoto, T.; Chiou, L.Y. Melatonergic involvement in diurnal changes of intraocular pressure in rabbit eyes. Ophthalmic Res. 1985, 17, 373–378. [Google Scholar] [CrossRef]
- Martínez-Águila, A.; Martín-Gil, A.; Carpena-Torres, C.; Pastrana, C.; Carracedo, G. Influence of circadian rhythm in the eye: Significance of melatonin in glaucoma. Biomolecules 2021, 11, 340. [Google Scholar] [CrossRef]
- Tosini, G.; Iuvone, M.; Boatright, J.H. Is the melatonin receptor type 1 involved in the pathogenesis of glaucoma? J. Glaucoma 2013, 22 (Suppl. S5), S49–S50. [Google Scholar] [CrossRef]
- Alcantara-Contreras, S.; Baba, K.; Tosini, G. Removal of Melatonin Receptor Type 1 Increases Intraocular Pressure and Retinal Ganglion Cells Death in the Mouse. Neurosci. Lett. 2011, 494, 61–64. [Google Scholar] [CrossRef]
- Martínez-Águila, A.; Fonseca, B.; Pérez de Lara, M.J.; Miras-Portugal, M.T.; Gómez-Villafuertes, R.; Carracedo, G.; Pintor, J. Changes in Melatonin Receptor Expression in a Murine Model of Glaucoma. Mol. Vis. 2020, 26, 530–539. [Google Scholar] [PubMed]
- Alkozi, H.A.; Navarro, G.; Franco, R.; Pintor, J. Melatonin and the Control of Intraocular Pressure. Prog. Retin. Eye Res. 2020, 75, 100798. [Google Scholar] [CrossRef] [PubMed]
- Pintor, J.; Martin, L.; Pelaez, T.; Hoyle, C.H.V.; Peral, A. Involvement of melatonin MT3 receptors in the regulation of intraocular pressure in rabbits. Eur. J. Pharmacol. 2001, 416, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Serle, J.B.; Wang, R.F.; Peterson, W.M.; Plourde, R.; Yerxa, B.R. Effect of 5-MCA-NAT, a Putative Melatonin MT3 Receptor Agonist, on Intraocular Pressure in Glaucomatous Monkey Eyes. J. Glaucoma 2004, 13, 385. [Google Scholar] [CrossRef]
- Alarma-Estrany, P.; Crooke, A.; Mediero, A.; Peláez, T.; Pintor, J. Sympathetic Nervous System Modulates the Ocular Hypotensive Action of MT2-melatonin Receptors in Normotensive Rabbits. J. Pineal Res. 2008, 45, 468–475. [Google Scholar] [CrossRef]
- Dortch-Carnes, J.; Tosini, G. Melatonin Receptor Agonist-Induced Reduction of SNP-released Nitric Oxide and cGMP Production in Isolated Human Non-Pigmented Ciliary Epithelial Cells. Exp. Eye Res. 2013, 107, 1–10. [Google Scholar] [CrossRef]
- Martínez-Águila, A.; Fonseca, B.; Pérez de Lara, M.J.; Pintor, J. Effect of Melatonin and 5-Methoxycarbonylamino-N-acetyltryptamine on the Intraocular Pressure of Normal and Glaucomatous Mice. J. Pharmacol. Exp. Ther. 2016, 357, 293–299. [Google Scholar] [CrossRef]
- Crooke, A.; Huete-Toral, F.; Martínez-Águila, A.; Martín-Gil, A.; Pintor, J. Melatonin and Its Analog 5-Methoxycarbonylamino-N-acetyltryptamine Potentiate Adrenergic Receptor-Mediated Ocular Hypotensive Effects in Rabbits: Significance for Combination Therapy in Glaucoma. J. Pharmacol. Exp. Ther. 2013, 346, 138–145. [Google Scholar] [CrossRef]
- Li, K.L.; Shan, S.W.; Lin, F.Y.; Ling, C.Y.; Wong, N.W.; Li, H.L.; Han, W.; To, C.H.; Do, C.W. Regulation of Aqueous Humor Secretion by Melatonin in Porcine Ciliary Epithelium. Int. J. Mol. Sci. 2023, 24, 5789. [Google Scholar] [CrossRef]
- Viggiano, S.R.; Koskela, T.K.; Klee, G.G.; Samples, J.R.; Arnce, R.; Brubaker, R.F. The Effect of Melatonin on Aqueous Humor Flow in Humans during the Day. Ophthalmology 1994, 101, 326–331. [Google Scholar] [CrossRef]
- Samples, J.R.; Krause, G.; Lewy, A.J. Effect of Melatonin on Intraocular Pressure. Curr. Eye Res. 1988, 7, 649–653. [Google Scholar] [CrossRef] [PubMed]
- Pescosolido, N.; Gatto, V.; Stefanucci, A.; Rusciano, D. Oral treatment with the melatonin agonist agomelatine lowers the intraocular pressure of glaucoma patients. Ophthalmic Physiol. Opt. 2015, 35, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Ismail, S.A.; Mowafi, H.A. Melatonin provides anxiolysis, enhances analgesia, decreases intraocular pressure, and promotes better operating conditions during cataract surgery under topical anesthesia. Anesth. Analg. 2009, 108, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Dal Monte, M.; Cammalleri, M.; Pezzino, S.; Corsaro, R.; Pescosolido, N.; Bagnoli, P.; Rusciano, D. Hypotensive Effect of Nanomicellar Formulation of Melatonin and Agomelatine in a Rat Model: Significance for Glaucoma Therapy. Diagnostics 2020, 10, 138. [Google Scholar] [CrossRef]
- Dal Monte, M.; Cammalleri, M.; Amato, R.; Pezzino, S.; Corsaro, R.; Bagnoli, P.; Rusciano, D. A Topical Formulation of Melatoninergic Compounds Exerts Strong Hypotensive and Neuroprotective Effects in a Rat Model of Hypertensive Glaucoma. Int. J. Mol. Sci. 2020, 21, 9267. [Google Scholar] [CrossRef]
- Tan, D.X.; Xu, B.; Zhou, X.; Reiter, R.J. Pineal Calcification, Melatonin Production, Aging, Associated Health Consequences and Rejuvenation of the Pineal Gland. Molecules 2018, 23, 301. [Google Scholar] [CrossRef]
- Gitto, E.; Tan, D.X.; Reiter, R.J.; Karbownik, M.; Manchester, L.C.; Cuzzocrea, S.; Fulia, F.; Barberi, I. Individual and Synergistic Antioxidative Actions of Melatonin: Studies with Vitamin E, Vitamin C, Glutathione and Desferrrioxamine (Desferoxamine) in Rat Liver Homogenates. J. Pharm. Pharmacol. 2001, 53, 1393–1401. [Google Scholar] [CrossRef]
- Tan, D.X.; Manchester, L.C.; Terron, M.P.; Flores, L.J.; Reiter, R.J. One Molecule, Many Derivatives: A Never-Ending Interaction of Melatonin with Reactive Oxygen and Nitrogen Species? J. Pineal Res. 2007, 42, 28–42. [Google Scholar] [CrossRef]
- Reiter, R.J.; Tan, D.X.; Rosales-Corral, S.; Manchester, L.C. The universal nature, unequal distribution and antioxidant functions of melatonin and its derivatives. Mini-Rev. Med. Chem. 2013, 13, 373–384. [Google Scholar]
- García, J.J.; López-Pingarrón, L.; Almeida-Souza, P.; Tres, A.; Escudero, P.; García-Gil, F.A.; Tan, D.X.; Reiter, R.J.; Ramírez, J.M.; Bernal-Pérez, M. Protective Effects of Melatonin in Reducing Oxidative Stress and in Preserving the Fluidity of Biological Membranes: A Review. J. Pineal Res. 2014, 56, 225–237. [Google Scholar] [CrossRef]
- Mollaoglu, H.; Topal, T.; Ozler, M.; Uysal, B.; Reiter, R.J.; Korkmaz, A.; Oter, S. Antioxidant Effects of Melatonin in Rats during Chronic Exposure to Hyperbaric Oxygen. J. Pineal Res. 2007, 42, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, K.K.A.C.; Shiroma, M.E.; Damous, L.L.; Simões, M.d.J.; Simões, R.d.S.; Cipolla-Neto, J.; Baracat, E.C.; Soares, J.M., Jr. Antioxidant Actions of Melatonin: A Systematic Review of Animal Studies. Antioxidants 2024, 13, 439. [Google Scholar] [CrossRef] [PubMed]
- Waseem, M.; Tabassum, H.; Parvez, S. Neuroprotective Effects of Melatonin as Evidenced by Abrogation of Oxaliplatin Induced Behavioral Alterations, Mitochondrial Dysfunction and Neurotoxicity in Rat Brain. Mitochondrion 2016, 30, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Chua, S.; Lee, F.Y.; Chiang, H.J.; Chen, K.H.; Lu, H.I.; Chen, Y.T.; Yang, C.C.; Lin, K.C.; Chen, Y.L.; Kao, G.S.; et al. The Cardioprotective Effect of Melatonin and Exendin-4 Treatment in a Rat Model of Cardiorenal Syndrome. J. Pineal Res. 2016, 61, 438–456. [Google Scholar] [CrossRef]
- Yarmohammadi, F.; Barangi, S.; Aghaee-Bakhtiari, S.H.; Hosseinzadeh, H.; Moosavi, Z.; Reiter, R.J.; Hayes, A.W.; Mehri, S.; Karimi, G. Melatonin Ameliorates Arsenic-Induced Cardiotoxicity Through the Regulation of the Sirt1/Nrf2 Pathway in Rats. Biofactors 2023, 49, 620–635. [Google Scholar] [CrossRef]
- Galano, A.; Tan, D.X.; Reiter, R.J. On the Free Radical Scavenging Activities of Melatonin’s Metabolites, AFMK and AMK. J. Pineal Res. 2013, 54, 245–257. [Google Scholar] [CrossRef]
- Barbarossa, A.; Carrieri, A.; Carocci, A. Melatonin and related compounds as antioxidants. Mini-Rev. Med. Chem. 2024, 24, 546–565. [Google Scholar] [CrossRef]
- Jou, M.J.; Peng, T.I.; Reiter, R.J.; Jou, S.B.; Wu, H.Y.; Wen, S.T. Visualization of the Antioxidative Effects of Melatonin at the Mitochondrial Level During Oxidative Stress-Induced Apoptosis of Rat Brain Astrocytes. J. Pineal Res. 2004, 37, 55–70. [Google Scholar] [CrossRef]
- Yamamoto, H.; Tang, H.W. Preventive effect of melatonin against cyanide-induced seizures and lipid peroxidation in mice. Neurosci. Lett. 1996, 207, 89–92. [Google Scholar] [CrossRef]
- Dabbeni-Sala, F.; DI Santo, S.; Franceschini, D.; Skaper, S.D.; Giusti, P. Melatonin Protects against 6-OHDA-induced Neurotoxicity in Rats: A Role for Mitochondrial Complex I Activity. FASEB J. 2001, 15, 164–170. [Google Scholar] [CrossRef]
- Hardeland, R. Melatonin and the Electron Transport Chain. Cell. Mol. Life Sci. 2017, 74, 3883–3896. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Xu, Z.; Yao, D.; Liu, X.; Liu, W.; Wang, N.; Li, X.; Diao, Y.; Zhang, Y.; Zhao, Q. An Integrated Multi-Omics Approach Revealed the Regulation of Melatonin on Age-Dependent Mitochondrial Function Impair and Lipid Dyshomeostasis in Mice Hippocampus. Pharmacol. Res. 2022, 179, 106210. [Google Scholar] [CrossRef] [PubMed]
- Hyun, M.; Kim, H.; Kim, J.; Lee, J.; Lee, H.J.; Rathor, L.; Meier, J.; Larner, A.; Lee, S.M.; Moon, Y.; et al. Melatonin Protects against Cadmium-Induced Oxidative Stress via Mitochondrial STAT3 Signaling in Human Prostate Stromal Cells. Commun. Biol. 2023, 6, 157. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.X.; Manchester, L.C.; Qin, L.; Reiter, R.J. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics. Int. J. Mol. Sci. 2016, 17, 2124. [Google Scholar] [CrossRef]
- Pradeepkiran, J.A.; Baig, J.; Seman, A.; Reddy, P.H. Mitochondria in Aging and Alzheimer’s Disease: Focus on Mitophagy. Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry 2024, 30, 440–457. [Google Scholar] [CrossRef]
- Giannoccaro, M.P.; La Morgia, C.; Rizzo, G.; Carelli, V. Mitochondrial DNA and Primary Mitochondrial Dysfunction in Parkinson’s Disease. Mov. Disord. 2017, 32, 346–363. [Google Scholar] [CrossRef]
- Liot, G.; Valette, J.; Pépin, J.; Flament, J.; Brouillet, E. Energy Defects in Huntington’s Disease: Why “In Vivo” Evidence Matters. Biochem. Biophys. Res. Commun. 2017, 483, 1084–1095. [Google Scholar] [CrossRef]
- Neueder, A.; Kojer, K.; Hering, T.; Lavery, D.J.; Chen, J.; Birth, N.; Hallitsch, J.; Trautmann, S.; Parker, J.; Flower, M.; et al. Abnormal Molecular Signatures of Inflammation, Energy Metabolism, and Vesicle Biology in Human Huntington Disease Peripheral Tissues. Genome Biol. 2022, 23, 189. [Google Scholar] [CrossRef]
- Steinbach, M.J.; Denburg, N.L. Melatonin in Alzheimer’s Disease: Literature Review and Therapeutic Trials. J. Alzheimer’s Dis. 2024, 101, S193–S204. [Google Scholar] [CrossRef]
- Reiter, R.J.; Rosales-Corral, S.; Tan, D.X.; Jou, M.J.; Galano, A.; Xu, B. Melatonin as a Mitochondria-Targeted Antioxidant: One of Evolution’s Best Ideas. Cell. Mol. Life Sci. 2017, 74, 3863–3881. [Google Scholar] [CrossRef]
- Reiter, R.J.; Sharma, R.; Rosales-Corral, S.; de Campos Zuccari, D.A.P.; de Almeida Chuffa, L.G. Melatonin: A Mitochondrial Resident with a Diverse Skill Set. Life Sci. 2022, 301, 120612. [Google Scholar] [CrossRef]
- Urata, Y.; Honma, S.; Goto, S.; Todoroki, S.; Iida, T.; Cho, S.; Honma, K.; Kondo, T. Melatonin Induces Gamma-Glutamylcysteine Synthetase Mediated by Activator Protein-1 in Human Vascular Endothelial Cells. Free Radic. Biol. Med. 1999, 27, 838–847. [Google Scholar] [CrossRef]
- Martín, M.; Macías, M.; Escames, G.; León, J.; Acuña-Castroviejo, D. Melatonin but Not Vitamins C and E Maintains Glutathione Homeostasis in T-Butyl Hydroperoxide-Induced Mitochondrial Oxidative Stress. FASEB J. 2000, 14, 1677–1679. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Rodríguez, G.; Klempin, F.; Babu, H.; Benítez-King, G.; Kempermann, G. Melatonin Modulates Cell Survival of New Neurons in the Hippocampus of Adult Mice. Neuropsychopharmacology 2009, 34, 2180–2191. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Y.; Hong, Y.T.; Chuang, J.I. Fibroblast Growth Factor 9 Prevents MPP+-Induced Death of Dopaminergic Neurons and Is Involved in Melatonin Neuroprotection In Vivo and In Vitro. J. Neurochem. 2009, 109, 1400–1412. [Google Scholar] [CrossRef]
- Wisessmith, W.; Phansuwan-Pujito, P.; Govitrapong, P.; Chetsawang, B. Melatonin Reduces Induction of Bax, Caspase and Cell Death in Methamphetamine-Treated Human Neuroblastoma SH-SY5Y Cultured Cells. J. Pineal Res. 2009, 46, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Choi, G.E.; Chae, C.W.; Lim, J.R.; Jung, Y.H.; Yoon, J.H.; Park, J.Y.; Han, H.J. Melatonin-Mediated FKBP4 Downregulation Protects against Stress-Induced Neuronal Mitochondria Dysfunctions by Blocking Nuclear Translocation of GR. Cell Death Dis. 2023, 14, 146. [Google Scholar] [CrossRef]
- Chetsawang, B.; Chetsawang, J.; Govitrapong, P. Protection against Cell Death and Sustained Tyrosine Hydroxylase Phosphorylation in Hydrogen Peroxide- and MPP-treated Human Neuroblastoma Cells with Melatonin. J. Pineal Res. 2009, 46, 36–42. [Google Scholar] [CrossRef]
- Jung, Y.J.; Choi, H.; Oh, E. Melatonin Attenuates MPP+-Induced Apoptosis via Heat Shock Protein in a Parkinson’s Disease Model. Biochem. Biophys. Res. Commun. 2022, 621, 59–66. [Google Scholar] [CrossRef]
- Radogna, F.; Cristofanon, S.; Paternoster, L.; D’Alessio, M.; De Nicola, M.; Cerella, C.; Dicato, M.; Diederich, M.; Ghibelli, L. Melatonin Antagonizes the Intrinsic Pathway of Apoptosis via Mitochondrial Targeting of Bcl-2. J. Pineal Res. 2008, 44, 316–325. [Google Scholar] [CrossRef]
- Luchetti, F.; Canonico, B.; Betti, M.; Arcangeletti, M.; Pilolli, F.; Piroddi, M.; Canesi, L.; Papa, S.; Galli, F. Melatonin Signaling and Cell Protection Function. FASEB J. 2010, 24, 3603–3624. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.Y.; Zhang, X.; Si, L.N.; Shu, W.H.; Jiang, S.N.; Ding, P.J.; Cheng, L.Y.; Sun, T.C.; Yang, S.H. Melatonin Activates Nrf2/HO-1 Signalling Pathway to Antagonizes Oxidative Stress-Induced Injury via Melatonin Receptor 1 (MT1) in Cryopreserved Mice Ovarian Tissue. Reprod. Domest. Anim. 2024, 59, e14598. [Google Scholar] [CrossRef]
- Yu, Q.; Hua, R.; Zhao, B.; Qiu, D.; Zhang, C.; Huang, S.; Pan, Y. Melatonin Protects TEGDMA-induced Preodontoblast Mitochondrial Apoptosis via the JNK/MAPK Signaling Pathway. Acta Biochim. Biophys. Sin. 2024, 56, 393–404. [Google Scholar] [CrossRef]
- Song, D.; Liu, Y.; Yao, Y.; Liu, F.; Tao, W.; Zhou, X.; Li, R.; Zhang, X.; Li, X. Melatonin Improves Bisphenol A-Induced Cell Apoptosis, Oxidative Stress and Autophagy Impairment via Inhibition of the P38 MAPK Signaling Pathway in FLK-BLV Cells. Environ. Toxicol. 2022, 37, 1551–1562. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jiang, W.; Pan, K.; Tao, L.; Zhu, Y. Melatonin Induces RAW264.7 Cell Apoptosis via the BMAL1/ROS/MAPK-p38 Pathway to Improve Postmenopausal Osteoporosis. Bone Jt. Res. 2023, 12, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Brunet, A.; Sweeney, L.B.; Sturgill, J.F.; Chua, K.F.; Greer, P.L.; Lin, Y.; Tran, H.; Ross, S.E.; Mostoslavsky, R.; Cohen, H.Y.; et al. Stress-Dependent Regulation of FOXO Transcription Factors by the SIRT1 Deacetylase. Science 2004, 303, 2011–2015. [Google Scholar] [CrossRef]
- Gutierrez-Cuesta, J.; Tajes, M.; Jiménez, A.; Coto-Montes, A.; Camins, A.; Pallàs, M. Evaluation of Potential Pro-Survival Pathways Regulated by Melatonin in a Murine Senescence Model. J. Pineal Res. 2008, 45, 497–505. [Google Scholar] [CrossRef]
- Jung-Hynes, B.; Schmit, T.L.; Reagan-Shaw, S.R.; Siddiqui, I.A.; Mukhtar, H.; Ahmad, N. Melatonin, a Novel Sirt1 Inhibitor, Imparts Antiproliferative Effects against Prostate Cancer In Vitro in Culture and In Vivo in TRAMP Model. J. Pineal Res. 2011, 50, 140–149. [Google Scholar] [CrossRef]
- Cao, G.; Lin, M.; Gu, W.; Su, Z.; Duan, Y.; Song, W.; Liu, H.; Zhang, F. The Rules and Regulatory Mechanisms of FOXO3 on Inflammation, Metabolism, Cell Death and Aging in Hosts. Life Sci. 2023, 328, 121877. [Google Scholar] [CrossRef]
- Chang, H.M.; Wu, U.I.; Lan, C.T. Melatonin Preserves Longevity Protein (Sirtuin 1) Expression in the Hippocampus of Total Sleep-Deprived Rats. J. Pineal Res. 2009, 47, 211–220. [Google Scholar] [CrossRef]
- Cachán-Vega, C.; Vega-Naredo, I.; Potes, Y.; Bermejo-Millo, J.C.; Rubio-González, A.; García-González, C.; Antuña, E.; Bermúdez, M.; Gutiérrez-Rodríguez, J.; Boga, J.A.; et al. Chronic Treatment with Melatonin Improves Hippocampal Neurogenesis in the Aged Brain and under Neurodegeneration. Molecules 2022, 27, 5543. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.W.; Lin, T.H.; Swain, S.; Fang, J.K.; Guo, J.H.; Yang, S.F.; Tang, C.H. Melatonin Inhibits ET-1 Production to Break Crosstalk Between Prostate Cancer and Bone Cells: Implication for Osteoblastic Bone Metastasis Treatment. J. Pineal Res. 2024, 76, e70000. [Google Scholar] [CrossRef] [PubMed]
- Azimzadeh, M.; Cheah, P.S.; Ling, K.H. Brain Insulin Resistance in down Syndrome: Involvement of PI3K-akt/mTOR Axis in Early-Onset of Alzheimer’s Disease and Its Potential as a Therapeutic Target. Biochem. Biophys. Res. Commun. 2024, 733, 150713. [Google Scholar] [CrossRef] [PubMed]
- Heras-Sandoval, D.; Pérez-Rojas, J.M.; Hernández-Damián, J.; Pedraza-Chaverri, J. The Role of PI3K/AKT/mTOR Pathway in the Modulation of Autophagy and the Clearance of Protein Aggregates in Neurodegeneration. Cell. Signal. 2014, 26, 2694–2701. [Google Scholar] [CrossRef]
- Huang, Y.B.; Jiang, L.; Liu, X.Q.; Wang, X.; Gao, L.; Zeng, H.X.; Zhu, W.; Hu, X.R.; Wu, Y.G. Melatonin Alleviates Acute Kidney Injury by Inhibiting NRF2/Slc7a11 Axis-Mediated Ferroptosis. Oxid. Med. Cell. Longev. 2022, 2022, 4776243. [Google Scholar] [CrossRef]
- Jung, K.H.; Hong, S.W.; Zheng, H.M.; Lee, D.H.; Hong, S.S. Melatonin Downregulates Nuclear Erythroid 2-Related Factor 2 and Nuclear Factor-kappaB during Prevention of Oxidative Liver Injury in a Dimethylnitrosamine Model. J. Pineal Res. 2009, 47, 173–183. [Google Scholar] [CrossRef]
- Barangi, S.; Mehri, S.; Moosavi, Z.; Yarmohammadi, F.; Hayes, A.W.; Karimi, G. Melatonin Attenuates Liver Injury in Arsenic-Treated Rats: The Potential Role of the Nrf2/HO-1, Apoptosis, and miR-34a/Sirt1/Autophagy Pathways. J. Biochem. Mol. Toxicol. 2024, 38, e23635. [Google Scholar] [CrossRef]
- Martínez-Casales, M.; Hernanz, R.; González-Carnicero, Z.; Barrús, M.T.; Martín, A.; Briones, A.M.; Michalska, P.; León, R.; Pinilla, E.; Simonsen, U.; et al. The Melatonin Derivative ITH13001 Prevents Hypertension and Cardiovascular Alterations in Angiotensin II-infused Mice. J. Pharmacol. Exp. Ther. 2024, 388, 670–687. [Google Scholar] [CrossRef]
- Jung, K.H.; Hong, S.W.; Zheng, H.M.; Lee, H.S.; Lee, H.; Lee, D.H.; Lee, S.Y.; Hong, S.S. Melatonin Ameliorates Cerulein-Induced Pancreatitis by the Modulation of Nuclear Erythroid 2-Related Factor 2 and Nuclear Factor-kappaB in Rats. J. Pineal Res. 2010, 48, 239–250. [Google Scholar] [CrossRef]
- Ferreira de Melo, I.M.; Martins Ferreira, C.G.; Lima da Silva Souza, E.H.; Almeida, L.L.; Bezerra de Sá, F.; Cavalcanti Lapa Neto, C.J.; Paz de Castro, M.V.; Teixeira, V.W.; Coelho Teixeira, Á.A. Melatonin Regulates the Expression of Inflammatory Cytokines, VEGF and Apoptosis in Diabetic Retinopathy in Rats. Chem.-Biol. Interact. 2020, 327, 109183. [Google Scholar] [CrossRef]
- Sardoiwala, M.N.; Nagpal, S.; Bhatt, B.; Roy Choudhury, S.; Karmakar, S. Improved Melatonin Delivery by a Size-Controlled Polydopamine Nanoformulation Attenuates Preclinical Diabetic Retinopathy. Mol. Pharm. 2023, 20, 2899–2910. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Chang, Q.; Cai, J.; Fan, J.; Zhang, X.; Xu, G. Protective Effects of Melatonin on Retinal Inflammation and Oxidative Stress in Experimental Diabetic Retinopathy. Oxid. Med. Cell. Longev. 2016, 2016, 3528274. [Google Scholar] [CrossRef] [PubMed]
- Aranda, M.L.; González Fleitas, M.F.; De Laurentiis, A.; Keller Sarmiento, M.I.; Chianelli, M.; Sande, P.H.; Dorfman, D.; Rosenstein, R.E. Neuroprotective Effect of Melatonin in Experimental Optic Neuritis in Rats. J. Pineal Res. 2016, 60, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.C.; Tsai, C.H.; Wang, Y.H.; Su, C.M.; Wu, H.C.; Fong, Y.C.; Yang, S.F.; Tang, C.H. Melatonin Abolished Proinflammatory Factor Expression and Antagonized Osteoarthritis Progression In Vivo. Cell Death Dis. 2022, 13, 215. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, Y.; Liao, Z.; Zhang, W.; Li, G.; Shi, P.; Cheng, Z.; Chen, Y.; Li, S.; Wang, K.; et al. Melatonin Mitigates Intervertebral Disc Degeneration by Suppressing NLRP3 Inflammasome Activation via the EGR1/DDX3X Pathway. FASEB J. 2024, 38, e70143. [Google Scholar] [CrossRef]
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The Pathophysiology and Treatment of Glaucoma: A Review. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef]
- Syc-Mazurek, S.B.; Fernandes, K.A.; Wilson, M.P.; Shrager, P.; Libby, R.T. Together JUN and DDIT3 (CHOP) Control Retinal Ganglion Cell Death after Axonal Injury. Mol. Neurodegener. 2017, 12, 71. [Google Scholar] [CrossRef]
- Dreyer, E.B.; Zurakowski, D.; Schumer, R.A.; Podos, S.M.; Lipton, S.A. Elevated Glutamate Levels in the Vitreous Body of Humans and Monkeys with Glaucoma. Arch. Ophthalmol. 1996, 114, 299–305. [Google Scholar] [CrossRef]
- Harada, C.; Guo, X.; Harada, T. Monogenic Gene Therapy for Glaucoma and Optic Nerve Injury. Neural Regen. Res. 2025, 20, 815–816. [Google Scholar] [CrossRef]
- Dong, Y.; Fu, Y.; Qian, X.; Lin, L.; Yuan, Y.; Li, Y.; Shao, W.; Gao, Q. Optic Nerve Head Astrocytes Contribute to Vascular Associated Effects. Front. Med. 2022, 9, 943986. [Google Scholar] [CrossRef]
- Nita, M.; Grzybowski, A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid. Med. Cell. Longev. 2016, 2016, 3164734. [Google Scholar] [CrossRef] [PubMed]
- Böhm, E.W.; Buonfiglio, F.; Voigt, A.M.; Bachmann, P.; Safi, T.; Pfeiffer, N.; Gericke, A. Oxidative Stress in the Eye and Its Role in the Pathophysiology of Ocular Diseases. Redox Biol. 2023, 68, 102967. [Google Scholar] [CrossRef] [PubMed]
- Liebmann, J.M.; Cioffi, G.A. Nicking Glaucoma with Nicotinamide? N. Engl. J. Med. 2017, 376, 2079–2081. [Google Scholar] [CrossRef] [PubMed]
- Lopez Sanchez, M.I.G.; Crowston, J.G.; Mackey, D.A.; Trounce, I.A. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies. Pharmacol. Ther. 2016, 165, 132–152. [Google Scholar] [CrossRef]
- Newman, N.J.; Yu-Wai-Man, P.; Biousse, V.; Carelli, V. Understanding the Molecular Basis and Pathogenesis of Hereditary Optic Neuropathies: Towards Improved Diagnosis and Management. Lancet. Neurol. 2023, 22, 172–188. [Google Scholar] [CrossRef]
- Ju, W.K.; Perkins, G.A.; Kim, K.Y.; Bastola, T.; Choi, W.Y.; Choi, S.H. Glaucomatous Optic Neuropathy: Mitochondrial Dynamics, Dysfunction and Protection in Retinal Ganglion Cells. Prog. Retin. Eye Res. 2023, 95, 101136. [Google Scholar] [CrossRef]
- Osborne, N.N.; Álvarez, C.N.; del Olmo Aguado, S. Targeting Mitochondrial Dysfunction as in Aging and Glaucoma. Drug Discov. Today 2014, 19, 1613–1622. [Google Scholar] [CrossRef]
- Lundmark, P.O.; Pandi-Perumal, S.; Srinivasan, V.; Cardinali, D.; Rosenstein, R. Melatonin in the Eye: Implications for Glaucoma. Exp. Eye Res. 2007, 84, 1021–1030. [Google Scholar] [CrossRef]
- Yang, T.H.; Kang, E.Y.C.; Lin, P.H.; Yu, B.B.C.; Wang, J.H.H.; Chen, V.; Wang, N.K. Mitochondria in Retinal Ganglion Cells: Unraveling the Metabolic Nexus and Oxidative Stress. Int. J. Mol. Sci. 2024, 25, 8626. [Google Scholar] [CrossRef]
- Crooke, A.; Huete-Toral, F.; Colligris, B.; Pintor, J. The Role and Therapeutic Potential of Melatonin in Age-Related Ocular Diseases. J. Pineal Res. 2017, 63, e12430. [Google Scholar] [CrossRef]
- Van Bergen, N.J.; Crowston, J.G.; Craig, J.E.; Burdon, K.P.; Kearns, L.S.; Sharma, S.; Hewitt, A.W.; Mackey, D.A.; Trounce, I.A. Measurement of Systemic Mitochondrial Function in Advanced Primary Open-Angle Glaucoma and Leber Hereditary Optic Neuropathy. PLoS ONE 2015, 10, e0140919. [Google Scholar] [CrossRef] [PubMed]
- Babighian, S.; Gattazzo, I.; Zanella, M.S.; Galan, A.; D’Esposito, F.; Musa, M.; Gagliano, C.; Lapenna, L.; Zeppieri, M. Nicotinamide: Bright Potential in Glaucoma Management. Biomedicines 2024, 12, 1655. [Google Scholar] [CrossRef] [PubMed]
- Vallabh, N.A.; Lane, B.; Simpson, D.; Fuchs, M.; Choudhary, A.; Criddle, D.; Cheeseman, R.; Willoughby, C. Massively Parallel Sequencing of Mitochondrial Genome in Primary Open Angle Glaucoma Identifies Somatically Acquired Mitochondrial Mutations in Ocular Tissue. Sci. Rep. 2024, 14, 26324. [Google Scholar] [CrossRef] [PubMed]
- Ulhaq, Z.S.; Bittencourt, G.B.; Soraya, G.V.; Istifiani, L.A.; Pamungkas, S.A.; Ogino, Y.; Nurputra, D.K.; Tse, W.K.F. Association between Glaucoma Susceptibility with Combined Defects in Mitochondrial Oxidative Phosphorylation and Fatty Acid Beta Oxidation. Mol. Asp. Med. 2024, 96, 101238. [Google Scholar] [CrossRef]
- Crowley, S.J.; Acebo, C.; Carskadon, M.A. Human Puberty: Salivary Melatonin Profiles in Constant Conditions. Dev. Psychobiol. 2012, 54, 468–473. [Google Scholar] [CrossRef]
- Qian, J.; Morris, C.J.; Phillips, A.J.K.; Li, P.; Rahman, S.A.; Wang, W.; Hu, K.; Arendt, J.; Czeisler, C.A.; Scheer, F.A.J.L. Unanticipated Daytime Melatonin Secretion on a Simulated Night Shift Schedule Generates a Distinctive 24-h Melatonin Rhythm with Antiphasic Daytime and Nighttime Peaks. J. Pineal Res. 2022, 72, e12791. [Google Scholar] [CrossRef]
- Kilic, E.; Hermann, D.M.; Isenmann, S.; Bähr, M. Effects of Pinealectomy and Melatonin on the Retrograde Degeneration of Retinal Ganglion Cells in a Novel Model of Intraorbital Optic Nerve Transection in Mice. J. Pineal Res. 2002, 32, 106–111. [Google Scholar] [CrossRef]
- Boccuni, I.; Fairless, R. Retinal Glutamate Neurotransmission: From Physiology to Pathophysiological Mechanisms of Retinal Ganglion Cell Degeneration. Life 2022, 12, 638. [Google Scholar] [CrossRef]
- Ishikawa, M. Abnormalities in Glutamate Metabolism and Excitotoxicity in the Retinal Diseases. Scientifica 2013, 2013, 528940. [Google Scholar] [CrossRef]
- Magdaleno Roman, J.Y.; Chapa González, C. Glutamate and Excitotoxicity in Central Nervous System Disorders: Ionotropic Glutamate Receptors as a Target for Neuroprotection. Neuroprotection 2024, 2, 137–150. [Google Scholar] [CrossRef]
- Iacobucci, G.J.; Popescu, G.K. Calcium- and Calmodulin-Dependent Inhibition of NMDA Receptor Currents. Biophys. J. 2024, 123, 277–293. [Google Scholar] [CrossRef] [PubMed]
- González-Cota, A.L.; Martínez-Flores, D.; Rosendo-Pineda, M.J.; Vaca, L. NMDA Receptor-Mediated Ca2+ Signaling: Impact on Cell Cycle Regulation and the Development of Neurodegenerative Diseases and Cancer. Cell Calcium 2024, 119, 102856. [Google Scholar] [CrossRef] [PubMed]
- Rizzuto, R.; De Stefani, D.; Raffaello, A.; Mammucari, C. Mitochondria as Sensors and Regulators of Calcium Signalling. Nat. Rev. Mol. Cell Biol. 2012, 13, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, S.; Su, Y.; Zhang, L.; Guo, T.; Wang, X. Sirtuin-1 Regulates Mitochondrial Calcium Uptake through Mitochondrial Calcium Uptake 1 (MICU1). Life 2025, 15, 174. [Google Scholar] [CrossRef]
- Rolle, T.; Ponzetto, A.; Malinverni, L. The Role of Neuroinflammation in Glaucoma: An Update on Molecular Mechanisms and New Therapeutic Options. Front. Neurol. 2020, 11, 612422. [Google Scholar] [CrossRef]
- Wei, X.; Cho, K.S.; Thee, E.F.; Jager, M.J.; Chen, D.F. Neuroinflammation and Microglia in Glaucoma: Time for a Paradigm Shift. J. Neurosci. Res. 2019, 97, 70–76. [Google Scholar] [CrossRef]
- Porter, K.; Hirt, J.; Stamer, W.D.; Liton, P.B. Autophagic Dysregulation in Glaucomatous Trabecular Meshwork Cells. Biochim. Biophys. Acta–Mol. Basis Dis. 2015, 1852, 379–385. [Google Scholar] [CrossRef]
- Amankwa, C.E.; Young, O.; DebNath, B.; Gondi, S.R.; Rangan, R.; Ellis, D.Z.; Zode, G.; Stankowska, D.L.; Acharya, S. Modulation of Mitochondrial Metabolic Parameters and Antioxidant Enzymes in Healthy and Glaucomatous Trabecular Meshwork Cells with Hybrid Small Molecule SA-2. Int. J. Mol. Sci. 2023, 24, 11557. [Google Scholar] [CrossRef]
- Chen, W.R.; Yang, J.Q.; Liu, F.; Shen, X.Q.; Zhou, Y.J. Melatonin Attenuates Vascular Calcification by Activating Autophagy via an AMPK/mTOR/ULK1 Signaling Pathway. Exp. Cell Res. 2020, 389, 111883. [Google Scholar] [CrossRef]
- Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and mTOR Regulate Autophagy through Direct Phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13, 132–141. [Google Scholar] [CrossRef]
- Zhu, C.Z.; Li, G.Z.; Lyu, H.F.; Lu, Y.Y.; Li, Y.; Zhang, X.N. Modulation of Autophagy by Melatonin and Its Receptors: Implications in Brain Disorders. Acta Pharmacol. Sin. 2025, 46, 525–538. [Google Scholar] [CrossRef]
- Chen, H.; Deng, Y.; Gan, X.; Li, Y.; Huang, W.; Lu, L.; Wei, L.; Su, L.; Luo, J.; Zou, B.; et al. NLRP12 Collaborates with NLRP3 and NLRC4 to Promote Pyroptosis Inducing Ganglion Cell Death of Acute Glaucoma. Mol. Neurodegener. 2020, 15, 26. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Guo, L.; Zhang, Y.; Zhao, M.; Xue, F.; Tan, C.; Huang, J.; Chen, D. Melatonin Alleviates Pyroptosis of Retinal Neurons Following Acute Intraocular Hypertension. CNS Neurol. Disord. Drug Targets 2021, 20, 285–297. [Google Scholar] [CrossRef]
- Zhang, F.; Lin, B.; Huang, S.; Wu, P.; Zhou, M.; Zhao, J.; Hei, X.; Ke, Y.; Zhang, Y.; Huang, D. Melatonin Alleviates Retinal Ischemia-Reperfusion Injury by Inhibiting P53-Mediated Ferroptosis. Antioxidants 2023, 12, 1173. [Google Scholar] [CrossRef]
- Ye, D.; Xu, Y.; Shi, Y.; Fan, M.; Lu, P.; Bai, X.; Feng, Y.; Hu, C.; Cui, K.; Tang, X.; et al. Anti-PANoptosis Is Involved in Neuroprotective Effects of Melatonin in Acute Ocular Hypertension Model. J. Pineal Res. 2022, 73, e12828. [Google Scholar] [CrossRef]
- Shi, Y.; Ye, D.; Cui, K.; Bai, X.; Fan, M.; Feng, Y.; Hu, C.; Xu, Y.; Huang, J. Melatonin Ameliorates Retinal Ganglion Cell Senescence and Apoptosis in a SIRT1-dependent Manner in an Optic Nerve Injury Model. Biochim. Biophys. Acta.–Mol. Basis Dis. 2024, 1870, 167053. [Google Scholar] [CrossRef]
- Marangoz, D.; Guzel, E.; Eyuboglu, S.; Gumusel, A.; Seckin, I.; Ciftci, F.; Yilmaz, B.; Yalvac, I. Comparison of the Neuroprotective Effects of Brimonidine Tartrate and Melatonin on Retinal Ganglion Cells. Int. Ophthalmol. 2018, 38, 2553–2562. [Google Scholar] [CrossRef]
- Hu, C.; Feng, Y.; Huang, G.; Cui, K.; Fan, M.; Xiang, W.; Shi, Y.; Ye, D.; Ye, H.; Bai, X.; et al. Melatonin Prevents EAAC1 Deletion-Induced Retinal Ganglion Cell Degeneration by Inhibiting Apoptosis and Senescence. J. Pineal Res. 2024, 76, e12916. [Google Scholar] [CrossRef]
- González Fleitas, M.F.; Devouassoux, J.; Aranda, M.L.; Dieguez, H.H.; Calanni, J.S.; Iaquinandi, A.; Sande, P.H.; Dorfman, D.; Rosenstein, R.E. Melatonin Prevents Non-Image-Forming Visual System Alterations Induced by Experimental Glaucoma in Rats. Mol. Neurobiol. 2021, 58, 3653–3664. [Google Scholar] [CrossRef]
- Zhao, W.J.; Zhang, M.; Miao, Y.; Yang, X.L.; Wang, Z. Melatonin Potentiates Glycine Currents through a PLC/PKC Signalling Pathway in Rat Retinal Ganglion Cells. J. Physiol. 2010, 588, 2605–2619. [Google Scholar] [CrossRef]
- Zou, J.; Yang, J.; Chen, B.; Jiang, J.; Liu, J.; Wang, C.; Yu, J.; Peng, Q.; Zeng, J.; Zhang, L.; et al. Melatonin Protects against NMDA-induced Retinal Ganglion Cell Injury by Regulating the Microglia-TNFα-RGC P38 MAPK Pathway. Int. Immunopharmacol. 2023, 118, 109976. [Google Scholar] [CrossRef]
- Belforte, N.A.; Moreno, M.C.; de Zavalía, N.; Sande, P.H.; Chianelli, M.S.; Keller Sarmiento, M.I.; Rosenstein, R.E. Melatonin: A Novel Neuroprotectant for the Treatment of Glaucoma. J. Pineal Res. 2010, 48, 353–364. [Google Scholar] [CrossRef]
- Harpsøe, N.G.; Andersen, L.P.H.; Gögenur, I.; Rosenberg, J. Clinical Pharmacokinetics of Melatonin: A Systematic Review. Eur. J. Clin. Pharmacol. 2015, 71, 901–909. [Google Scholar] [CrossRef]
- Lanier, O.L.; Manfre, M.G.; Bailey, C.; Liu, Z.; Sparks, Z.; Kulkarni, S.; Chauhan, A. Review of Approaches for Increasing Ophthalmic Bioavailability for Eye Drop Formulations. AAPS PharmSciTech 2021, 22, 107. [Google Scholar] [CrossRef]
- Yilmaz, T.; Naziroğlu, M.; Celebi, S.; Ozercan, H.I.; Kükner, A.S. Administration of High Dose Intravitreal Melatonin Degenerates Retinal Cells in Guinea Pigs. Pathophysiology 2004, 11, 107–111. [Google Scholar] [CrossRef]
- Mun, J.G.; Wang, D.; Doerflein Fulk, D.L.; Fakhary, M.; Gualco, S.J.; Grant, R.W.; Mitmesser, S.H. A Randomized, Double-Blind, Crossover Study to Investigate the Pharmacokinetics of Extended-Release Melatonin Compared to Immediate-Release Melatonin in Healthy Adults. J. Diet. Suppl. 2024, 21, 182–194. [Google Scholar] [CrossRef]
- Bessone, C.D.V.; Martinez, S.M.; Luna, J.D.; Marquez, M.A.; Ramírez, M.L.; Allemandi, D.A.; Carpentieri, Á.R.; Quinteros, D.A. Neuroprotective Effect of Melatonin Loaded in Ethylcellulose Nanoparticles Applied Topically in a Retinal Degeneration Model in Rabbits. Exp. Eye Res. 2020, 200, 108222. [Google Scholar] [CrossRef]
- Hafner, A.; Lovrić, J.; Romić, M.D.; Juretić, M.; Pepić, I.; Cetina-Čižmek, B.; Filipović-Grčić, J. Evaluation of Cationic Nanosystems with Melatonin Using an Eye-Related Bioavailability Prediction Model. Eur. J. Pharm. Sci. 2015, 75, 142–150. [Google Scholar] [CrossRef]
- Dmour, I. Absorption Enhancement Strategies in Chitosan-Based Nanosystems and Hydrogels Intended for Ocular Delivery: Latest Advances for Optimization of Drug Permeation. Carbohydr. Polym. 2024, 343, 122486. [Google Scholar] [CrossRef]
- Quinteros, D.; Vicario-de-la-Torre, M.; Andrés-Guerrero, V.; Palma, S.; Allemandi, D.; Herrero-Vanrell, R.; Molina-Martínez, I.T. Hybrid Formulations of Liposomes and Bioadhesive Polymers Improve the Hypotensive Effect of the Melatonin Analogue 5-MCA-NAT in Rabbit Eyes. PLoS ONE 2014, 9, e110344. [Google Scholar] [CrossRef]
- Brugnera, M.; Vicario-de-la-Torre, M.; González-Cela Casamayor, M.A.; López-Cano, J.J.; Bravo-Osuna, I.; Huete-Toral, F.; González Rubio, M.L.; Carracedo, G.; Molina-Martínez, I.T.; Andrés-Guerrero, V.; et al. Enhancing the Hypotensive Effect of Latanoprost by Combining Synthetic Phosphatidylcholine Liposomes with Hyaluronic Acid and Osmoprotective Agents. Drug Deliv. Transl. Res. 2024, 14, 2804–2822. [Google Scholar] [CrossRef]
- Musumeci, T.; Bucolo, C.; Carbone, C.; Pignatello, R.; Drago, F.; Puglisi, G. Polymeric Nanoparticles Augment the Ocular Hypotensive Effect of Melatonin in Rabbits. Int. J. Pharm. 2013, 440, 135–140. [Google Scholar] [CrossRef]
- Carbone, C.; Manno, D.; Serra, A.; Musumeci, T.; Pepe, V.; Tisserand, C.; Puglisi, G. Innovative Hybrid vs Polymeric Nanocapsules: The Influence of the Cationic Lipid Coating on the “4S”. Colloids Surf. Biointerfaces 2016, 141, 450–457. [Google Scholar] [CrossRef]
- Romeo, A.; Bonaccorso, A.; Carbone, C.; Lupo, G.; Daniela Anfuso, C.; Giurdanella, G.; Caggia, C.; Randazzo, C.; Russo, N.; Romano, G.L.; et al. Melatonin Loaded Hybrid Nanomedicine: DoE Approach, Optimization and In Vitro Study on Diabetic Retinopathy Model. Int. J. Pharm. 2022, 627, 122195. [Google Scholar] [CrossRef]
- Galindo-Camacho, R.M.; Haro, I.; Gómara, M.J.; Espina, M.; Fonseca, J.; Martins-Gomes, C.; Camins, A.; Silva, A.M.; García, M.L.; Souto, E.B. Cell Penetrating Peptides-Functionalized Licochalcone-a-Loaded PLGA Nanoparticles for Ocular Inflammatory Diseases: Evaluation of In Vitro Anti-Proliferative Effects, Stabilization by Freeze-Drying and Characterization of an In-Situ Forming Gel. Int. J. Pharm. 2023, 639, 122982. [Google Scholar] [CrossRef]
- Romeo, A.; Kazsoki, A.; Omer, S.; Pinke, B.; Mészáros, L.; Musumeci, T.; Zelkó, R. Formulation and Characterization of Electrospun Nanofibers for Melatonin Ocular Delivery. Pharmaceutics 2023, 15, 1296. [Google Scholar] [CrossRef]
- Liu, L.C.; Chen, Y.H.; Lu, D.W. Overview of Recent Advances in Nano-Based Ocular Drug Delivery. Int. J. Mol. Sci. 2023, 24, 15352. [Google Scholar] [CrossRef]
- Cowan, C.S.; Renner, M.; De Gennaro, M.; Gross-Scherf, B.; Goldblum, D.; Hou, Y.; Munz, M.; Rodrigues, T.M.; Krol, J.; Szikra, T.; et al. Cell Types of the Human Retina and Its Organoids at Single-Cell Resolution. Cell 2020, 182, 1623–1640.e34. [Google Scholar] [CrossRef]
- Alarma-Estrany, P.; Guzman-Aranguez, A.; Huete, F.; Peral, A.; Plourde, R., Jr.; Pelaez, T.; Yerxa, B.; Pintor, J. Design of novel melatonin analogs for the reduction of intraocular pressure in normotensive rabbits. J. Pharmacol. Exp. Ther. 2011, 337, 703–709. [Google Scholar] [CrossRef]
- Crooke, A.; Huete-Toral, F.; Martínez-Águila, A.; Martín-Gil, A.; Pintor, J. Involvement of carbonic anhydrases in the ocular hypotensive effect of melatonin analogue 5-MCA-NAT. J. Pineal Res. 2012, 52, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Alkozi, H.A.; Navarro, G.; Aguinaga, D.; Reyes-Resina, I.; Sanchez-Naves, J.; Pérez de Lara, M.J.; Franco, R.; Pintor, J. Adreno-melatonin receptor complexes control ion homeostasis and intraocular pressure - their disruption contributes to hypertensive glaucoma. Br. J. Pharmacol. 2020, 177, 2090–2105. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gubin, D.; Neroev, V.; Malishevskaya, T.; Cornelissen, G.; Astakhov, S.Y.; Kolomeichuk, S.; Yuzhakova, N.; Kabitskaya, Y.; Weinert, D. Melatonin mitigates disrupted circadian rhythms, lowers intraocular pressure, and improves retinal ganglion cells function in glaucoma. J. Pineal Res. 2021, 70, e12730. [Google Scholar] [CrossRef] [PubMed]
- Giannetto, C.; Rajaei, S.M.; Abdous, A.; Ostadhasan, H.; Alagha, H.E.; Faghihi, H.; Piccione, G.; Omidi, R.; Fazio, F. Effects of long-term oral administration of melatonin on tear production, intraocular pressure, and tear and serum melatonin concentrations in healthy dogs. J. Am. Vet. Med. Assoc. 2022, 260, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Cantarini, M.; Rusciano, D.; Amato, R.; Canovai, A.; Cammalleri, M.; Monte, M.D.; Minnelli, C.; Laudadio, E.; Mobbili, G.; Giorgini, G.; et al. Structural Basis for Agonistic Activity and Selectivity toward Melatonin Receptors hMT1 and hMT2. Int. J. Mol. Sci. 2023, 24, 2863. [Google Scholar] [CrossRef]
- Wang, C.; An, Y.; Xia, Z.; Zhou, X.; Li, H.; Song, S.; Ding, L.; Xia, X. The neuroprotective effect of melatonin in glutamate excitotoxicity of R28 cells and mouse retinal ganglion cells. Front. Endocrinol. 2022, 13, 986131. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, S.; Cheng, Q.; Hu, Y.; Fan, X.; Liang, C.; Niu, C.; Kang, Q.; Wei, T. Melatonin antagonizes oxidative stress-induced apoptosis in retinal ganglion cells through activating the thioredoxin-1 pathway. Mol. Cell. Biochem. 2024, 479, 3393–3404. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, X.; Pan, Y. Melatonin in Glaucoma: Integrative Mechanisms of Intraocular Pressure Control and Neuroprotection. Biomedicines 2025, 13, 1213. https://doi.org/10.3390/biomedicines13051213
Hou X, Pan Y. Melatonin in Glaucoma: Integrative Mechanisms of Intraocular Pressure Control and Neuroprotection. Biomedicines. 2025; 13(5):1213. https://doi.org/10.3390/biomedicines13051213
Chicago/Turabian StyleHou, Xinyu, and Yingzi Pan. 2025. "Melatonin in Glaucoma: Integrative Mechanisms of Intraocular Pressure Control and Neuroprotection" Biomedicines 13, no. 5: 1213. https://doi.org/10.3390/biomedicines13051213
APA StyleHou, X., & Pan, Y. (2025). Melatonin in Glaucoma: Integrative Mechanisms of Intraocular Pressure Control and Neuroprotection. Biomedicines, 13(5), 1213. https://doi.org/10.3390/biomedicines13051213