Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,246)

Search Parameters:
Keywords = mechanisms of obesity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
49 pages, 10722 KB  
Review
Triglycerides, Glucose Metabolism, and Type 2 Diabetes
by Yutang Wang
Int. J. Mol. Sci. 2025, 26(20), 9910; https://doi.org/10.3390/ijms26209910 (registering DOI) - 11 Oct 2025
Abstract
Type 2 diabetes is a major global health burden, causing approximately 2 million deaths annually. Recent studies have revealed a strong positive correlation between elevated triglyceride levels and plasma glucose, as well as increased prevalence, incidence, and mortality of type 2 diabetes, suggesting [...] Read more.
Type 2 diabetes is a major global health burden, causing approximately 2 million deaths annually. Recent studies have revealed a strong positive correlation between elevated triglyceride levels and plasma glucose, as well as increased prevalence, incidence, and mortality of type 2 diabetes, suggesting a potential causal link. This review explores the metabolic interconversion between triglycerides and glucose, emphasizing how excess carbohydrate intake leads to ectopic triglyceride accumulation, which in turn enhances hepatic gluconeogenesis. It highlights key signaling pathways through which ectopic triglyceride deposition drives insulin resistance, hyperinsulinemia, β-cell dysfunction and apoptosis, and increased glucose production—central mechanisms in diabetes pathogenesis. Evidence from clinical interventions, such as the reversal of type 2 diabetes through bariatric surgery and dietary energy restriction, supports the hypothesis that ectopic triglyceride accumulation is a driving factor. Furthermore, this review explains why omega-3 fatty acids and niacin, in contrast to fibrates, do not protect against type 2 diabetes, despite lowering triglycerides. Overall, this review emphasizes the contribution of ectopic triglyceride accumulation—driven by obesity, hypertriglyceridemia, excessive consumption of carbohydrates and fats, and physical inactivity—to the onset and progression of type 2 diabetes, offering valuable insights into potential therapeutic strategies. Full article
(This article belongs to the Special Issue The Role of Lipids in Health and Diseases)
Show Figures

Figure 1

16 pages, 1716 KB  
Review
The Impact of Non-Coding RNA on Inflammation and Airway Remodeling in Asthma Related to Obesity: State-of-the-Art and Therapeutic Perspectives
by Maria Kachel, Wojciech Langwiński and Aleksandra Szczepankiewicz
J. Clin. Med. 2025, 14(20), 7161; https://doi.org/10.3390/jcm14207161 (registering DOI) - 11 Oct 2025
Viewed by 40
Abstract
Asthma is a chronic respiratory disease affecting over 262 million people worldwide, with obesity-associated asthma emerging as a distinct endotype of increasing prevalence characterized by metabolic inflammation and airway remodeling. Unlike allergic asthma, this phenotype is driven by chronic low-grade inflammation, originating from [...] Read more.
Asthma is a chronic respiratory disease affecting over 262 million people worldwide, with obesity-associated asthma emerging as a distinct endotype of increasing prevalence characterized by metabolic inflammation and airway remodeling. Unlike allergic asthma, this phenotype is driven by chronic low-grade inflammation, originating from hypertrophic and hypoxic adipose tissue. This dysregulated state leads to the activation of pro-inflammatory pathways and the secretion of cytokines, contributing to airway dysfunction and remodeling. Recent evidence highlights non-coding RNAs (ncRNAs) as key regulators of these processes. MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) influence inflammation and remodeling by modulating immune cell polarization, cytokine secretion, extracellular matrix composition, and airway smooth muscle cell (ASMC) proliferation. Notably, H19, MEG3, GAS5, miR-26a-1-3p, and miR-376a-3p have been implicated in both asthma and obesity, suggesting their role in linking metabolic dysfunction with airway pathology. Moreover, ncRNAs regulate Treg/Th17 balance, fibroblast activation, and autophagy-related pathways, further influencing airway remodeling. Our in silico analysis highlighted the IGF1R signaling pathway as a key enriched mechanism, linking selected ncRNAs with metabolic dysregulation and inflammation in obesity-related asthma. This paper reviews how ncRNAs regulate inflammation and airway remodeling in obesity-associated asthma, emphasizing their potential molecular links between metabolic dysfunction and airway pathology. Full article
(This article belongs to the Special Issue New Clinical Advances in Chronic Asthma)
Show Figures

Figure 1

37 pages, 1186 KB  
Review
Adipokines at the Metabolic–Brain Interface: Therapeutic Modulation by Antidiabetic Agents and Natural Compounds in Alzheimer’s Disease
by Paulina Ormazabal, Marianela Bastías-Pérez, Nibaldo C. Inestrosa and Pedro Cisternas
Pharmaceuticals 2025, 18(10), 1527; https://doi.org/10.3390/ph18101527 - 11 Oct 2025
Viewed by 36
Abstract
The parallel global increase in obesity and Alzheimer’s disease (AD) underscores an urgent public health challenge, with converging evidence indicating that metabolic dysfunction strongly contributes to neurodegeneration. Obesity is now recognized not only as a systemic metabolic condition but also as a modifiable [...] Read more.
The parallel global increase in obesity and Alzheimer’s disease (AD) underscores an urgent public health challenge, with converging evidence indicating that metabolic dysfunction strongly contributes to neurodegeneration. Obesity is now recognized not only as a systemic metabolic condition but also as a modifiable risk factor for AD, acting through mechanisms such as chronic low-grade inflammation, insulin resistance, and adipose tissue dysfunction. Among the molecular mediators at this interface, adipokines have emerged as pivotal regulators linking metabolic imbalance to cognitive decline. Adipokines are hormone-like proteins secreted by adipose tissue, including adiponectin, leptin, and resistin, that regulate metabolism, inflammation and can influence brain function. Resistin, frequently elevated in obesity, promotes neuroinflammation, disrupts insulin signaling, and accelerates β-amyloid (Aβ) deposition and tau pathology. Conversely, adiponectin enhances insulin sensitivity, suppresses oxidative stress, and supports mitochondrial and endothelial function, thereby exerting neuroprotective actions. The imbalance between resistin and adiponectin may shift the central nervous system toward a pro-inflammatory and metabolically compromised state that predisposes to neurodegeneration. Beyond their mechanistic relevance, adipokines hold translational promise as biomarkers for early risk stratification and therapeutic monitoring. Importantly, natural compounds, including polyphenols, alkaloids, and terpenoids, have shown the capacity to modulate adipokine signaling, restore metabolic homeostasis, and attenuate AD-related pathology in preclinical models. This positions adipokines not only as pathogenic mediators but also as therapeutic targets at the intersection of diabetes, obesity, and dementia. By integrating mechanistic, clinical, and pharmacological evidence, this review emphasizes adipokine signaling as a novel axis for intervention and highlights natural compound-based strategies as emerging therapeutic approaches in obesity-associated AD. Beyond nutraceuticals, antidiabetic agents also modulate adipokines and AD-relevant pathways. GLP-1 receptor agonists, metformin, and thiazolidinediones tend to increase adiponectin and reduce inflammatory tone, while SGLT2 and DPP-4 inhibitors exert systemic anti-inflammatory and hemodynamic benefits with emerging but still limited cognitive evidence. Together, these drug classes offer mechanistically grounded strategies to target the adipokine–inflammation–metabolism axis in obesity-associated AD. Full article
(This article belongs to the Special Issue Emerging Therapies for Diabetes and Obesity)
Show Figures

Figure 1

27 pages, 5364 KB  
Review
Cellular Immunity in Obesity: Pathophysiological Insights and the Impact of Bariatric Surgery
by Tania Rivera-Carranza, Angélica León-Téllez-Girón, Raquel González-Vázquez, Paola Vázquez-Cárdenas, Ana Laura Esquivel-Campos, Felipe Mendoza-Pérez, Martín E. Rojano-Rodríguez, Claudia Mimiaga-Hernández, Juan Carlos Cifuentes-Goches, Omar Edgar Peralta-Valle, Eduardo Zúñiga-León and Rafael Bojalil-Parra
Int. J. Mol. Sci. 2025, 26(20), 9867; https://doi.org/10.3390/ijms26209867 - 10 Oct 2025
Viewed by 137
Abstract
Obesity is considered a state of chronic low-grade inflammation that impacts the development of chronic degenerative diseases. Cellular immunity plays a crucial role in the onset and persistence of this inflammatory condition. As the degree of obesity increases, significant distinct immunometabolic alterations are [...] Read more.
Obesity is considered a state of chronic low-grade inflammation that impacts the development of chronic degenerative diseases. Cellular immunity plays a crucial role in the onset and persistence of this inflammatory condition. As the degree of obesity increases, significant distinct immunometabolic alterations are observed compared to individuals with normal weight. Moreover, obese patients who undergo bariatric surgical procedures for weight loss exhibit changes in the proportion of immune cells. These alterations help to explain several molecular processes associated with inflammation in obesity, including protein activation and inactivation, precursor molecule synthesis, phosphorylation events, and the activation of signal transduction pathways, all of which are orchestrated by immune cells, primarily lymphocyte subpopulations. The study of the immunometabolic profile through lymphocyte subpopulations in obese patients can provide a more comprehensive and objective understanding of disease severity and the risk of developing obesity-related chronic degenerative conditions and thereby improve or propose therapeutic and novel approaches. Therefore, the objective of this narrative review is to offer an integrative perspective on the molecular and pathophysiological mechanisms through which lymphocyte populations contribute to obesity-related inflammation and how weight loss through bariatric surgical procedures may contribute to the therapeutic management of inflammation. Full article
Show Figures

Graphical abstract

15 pages, 353 KB  
Article
Early Maladaptive Schemas, Emotion Regulation, Stress, Social Support, and Lifestyle Factors as Predictors of Eating Behaviors and Diet Quality: Evidence from a Large Community Sample
by Małgorzata Obara-Gołębiowska
Nutrients 2025, 17(20), 3188; https://doi.org/10.3390/nu17203188 (registering DOI) - 10 Oct 2025
Viewed by 112
Abstract
Background: Psychological vulnerabilities, including early maladaptive schemas (EMSs), emotion regulation difficulties, perceived stress, and limited social support, are increasingly recognized as drivers of maladaptive eating and obesity. These findings underscore the need for health education and health promotion strategies that address psychological determinants [...] Read more.
Background: Psychological vulnerabilities, including early maladaptive schemas (EMSs), emotion regulation difficulties, perceived stress, and limited social support, are increasingly recognized as drivers of maladaptive eating and obesity. These findings underscore the need for health education and health promotion strategies that address psychological determinants of eating behavior. However, few studies integrate these psychological mechanisms with dietary and lifestyle indicators in both community and medical populations. Methods: A total of 1500 adults (aged 18–65 years; 53% women) recruited from community and medical settings participated in the study. Data were collected between January 2018 and February 2025 using standardized paper-based questionnaires. Participants completed validated measures of EMSs (YSQ-S3), emotion regulation (DERS), stress (PSS-10), social support (MSPSS), eating-related behaviors (QERB), diet (FFQ-6; Unhealthy Diet Index [UDI]), and physical activity (IPAQ-SF). Anthropometric indices included body mass index (BMI) and waist circumference (WC) as an indicator of central adiposity. Analyses involved multivariate regression, mediation, and moderation models. Results: EMSs were associated with emotional overeating and higher UDI scores. Difficulties in emotion regulation mediated the EMS–eating relationship (β_indirect = 0.27, p < 0.001). Perceived stress amplified, while social support attenuated, the association between EMSs and emotion regulation difficulties. UDI was inversely related to physical activity (β = −0.14, p < 0.01) and positively to sedentary time (β = 0.12, p < 0.01). Both BMI and WC were higher among participants reporting greater stress, emotion dysregulation, and unhealthy eating. All effects remained robust after adjustment for age, gender, and BMI. Conclusions: Early maladaptive schemas and emotion regulation difficulties contribute to unhealthy dietary patterns and central adiposity, with stress and social support acting as contextual moderators. Integrating psychological assessment with validated dietary and lifestyle measures provides a comprehensive framework for obesity prevention and schema-informed interventions. From a lifespan perspective (18–65 years), these findings highlight the need for multidomain strategies targeting cognitive–emotional and behavioral mechanisms of weight regulation. Full article
(This article belongs to the Special Issue Advances in Disordered Eating Behaviours Across the Life Spectrum)
Show Figures

Figure 1

23 pages, 993 KB  
Review
Neutrophilic Asthma—From Mechanisms to New Perspectives of Therapy
by Ilona Iwaszko, Krzysztof Specjalski, Marta Chełmińska and Marek Niedoszytko
J. Clin. Med. 2025, 14(20), 7137; https://doi.org/10.3390/jcm14207137 - 10 Oct 2025
Viewed by 154
Abstract
Neutrophilic asthma (NA) is an inflammatory phenotype of asthma, characterized by predominantly neutrophilic infiltrations in bronchial mucosa. It is usually diagnosed on the basis of high neutrophil count in induced sputum (from >40% to >76%) with low eosinophils (<2%). The prevalence of NA [...] Read more.
Neutrophilic asthma (NA) is an inflammatory phenotype of asthma, characterized by predominantly neutrophilic infiltrations in bronchial mucosa. It is usually diagnosed on the basis of high neutrophil count in induced sputum (from >40% to >76%) with low eosinophils (<2%). The prevalence of NA ranges from 16% to 28% of the adult asthma population depending on the definitions and study methods applied. A clinical picture of NA is characterized by late onset of symptoms, higher exacerbation rate, lower level of symptoms control, and poorer response to steroids compared to eosinophilic phenotype. Comorbidities such as obesity and GERD as well as the influence of environmental factors (air pollution, smoking, bacterial infections) contribute to the development and severe course of the disease. NA is T2-low disease with predominantly Th1/Th17-type inflammation. Neutrophils are key cells responsible for initiating and sustaining inflammation. In addition to their primary functions like phagocytosis, degranulation, and NETosis, neutrophils release several pro-inflammatory cytokines (IL-1α, IL-1β, IL-6, TNF) and chemokines (CXCL-1, -2, -8, -9, -10) responsible for the recruitment of other neutrophils or T cells. Increasing knowledge about the biology of neutrophiles and their role in asthma results in new potential therapies that could improve control of NA, particularly new biologicals targeting Th1/Th17-related cytokines. In this review, we discuss the prevalence, mechanisms, and clinical features of neutrophilic asthma. Furthermore, current therapeutic options and some promising perspectives for the near future are presented. Full article
(This article belongs to the Special Issue Advances in Asthma: 2nd Edition)
Show Figures

Figure 1

12 pages, 351 KB  
Review
Ocular Effects of GLP-1 Receptor Agonists: A Review of Current Evidence and Safety Concerns
by Giuseppe Maria Albanese, Giacomo Visioli, Ludovico Alisi, Francesca Giovannetti, Luca Lucchino, Marta Armentano, Fiammetta Catania, Marco Marenco and Magda Gharbiya
Diabetology 2025, 6(10), 117; https://doi.org/10.3390/diabetology6100117 - 10 Oct 2025
Viewed by 229
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have emerged as cornerstone therapies for type 2 diabetes mellitus and obesity, offering significant cardiovascular and renal protection. However, recent evidence has sparked interest and concern regarding their potential ocular effects. This review critically synthesizes current data on [...] Read more.
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have emerged as cornerstone therapies for type 2 diabetes mellitus and obesity, offering significant cardiovascular and renal protection. However, recent evidence has sparked interest and concern regarding their potential ocular effects. This review critically synthesizes current data on the impact of GLP-1RAs on diabetic retinopathy (DR), nonarteritic anterior ischemic optic neuropathy (NAION), age-related macular degeneration (AMD), and glaucoma or ocular hypertension. While preclinical studies suggest GLP-1RAs exert anti-inflammatory and neuroprotective effects in retinal tissues, clinical data remain mixed. Several large observational studies suggest a protective role against DR and glaucoma, while others raise safety concerns, particularly regarding semaglutide and NAION. Evidence on AMD is conflicting, with signals of both benefit and risk. We also discuss plausible pathophysiological mechanisms and the relevance of metabolic modulation on retinal perfusion. Overall, while GLP-1RAs hold promise for ocular protection in some contexts, vigilance is warranted, especially in patients with pre-existing eye disease. Further ophthalmology-focused prospective trials are essential to clarify long-term safety and guide clinical decision making. Full article
Show Figures

Figure 1

40 pages, 1668 KB  
Review
A Comprehensive Review of Biological Properties of Flavonoids and Their Role in the Prevention of Metabolic, Cancer and Neurodegenerative Diseases
by Milena Alicja Stachelska, Piotr Karpiński and Bartosz Kruszewski
Appl. Sci. 2025, 15(19), 10840; https://doi.org/10.3390/app151910840 - 9 Oct 2025
Viewed by 95
Abstract
Dietary flavonoids are emerging as multifunctional bioactive compounds with significant implications for the prevention and management of chronic diseases. Integrating the latest experimental, clinical, and epidemiological evidence, this review provides a comprehensive synthesis of flavonoid classification, chemistry, dietary sources, and bioavailability, with special [...] Read more.
Dietary flavonoids are emerging as multifunctional bioactive compounds with significant implications for the prevention and management of chronic diseases. Integrating the latest experimental, clinical, and epidemiological evidence, this review provides a comprehensive synthesis of flavonoid classification, chemistry, dietary sources, and bioavailability, with special attention to their structural diversity and core mechanisms. Mechanistic advances related to antioxidant, anti-inflammatory, antimicrobial, anti-obesity, neuroprotective, cardioprotective, and anticancer activities are highlighted, focusing on the modulation of critical cellular pathways such as PI3K/Akt/mTOR, NF-κB, and AMPK. Evidence from in vitro and in vivo models, supported by clinical data, demonstrates flavonoids’ capacity to regulate oxidative stress, inflammation, metabolic syndrome, adipogenesis, cell proliferation, apoptosis, autophagy, and angiogenesis. An inverse correlation between flavonoid-rich dietary patterns and the risk of obesity, cancer, cardiovascular, and neurodegenerative diseases is substantiated. However, translational challenges persist, including bioavailability and the optimization of delivery strategies. In conclusion, a varied dietary intake of flavonoids constitutes a scientifically grounded approach to non-communicable disease prevention, though further research is warranted to refine clinical applications and elucidate molecular mechanisms. Full article
(This article belongs to the Special Issue Innovations in Natural Products and Functional Foods)
Show Figures

Figure 1

17 pages, 587 KB  
Review
Dietary Habits and Their Impact on Pediatric Obesity and Asthma: A Narrative Review with Emphasis on the Mediterranean Diet
by Marianna Deligeorgopoulou, Sophia Tsabouri, Ekaterini Siomou, Antonios P. Vlahos and Anastasios Serbis
Children 2025, 12(10), 1354; https://doi.org/10.3390/children12101354 - 9 Oct 2025
Viewed by 176
Abstract
Obesity and asthma are increasingly prevalent chronic conditions that often coexist in the pediatric population and may influence each other through shared pathophysiological mechanisms. Obesity can affect asthma expression and severity via mechanical effects on the lungs, systemic inflammation, altered adipokine levels, and [...] Read more.
Obesity and asthma are increasingly prevalent chronic conditions that often coexist in the pediatric population and may influence each other through shared pathophysiological mechanisms. Obesity can affect asthma expression and severity via mechanical effects on the lungs, systemic inflammation, altered adipokine levels, and metabolic dysregulation. These mechanisms contribute to a distinct asthma phenotype in children with obesity that is often less responsive to standard therapy. Nutrition plays a critical role in this context by influencing immune function, inflammation, and respiratory outcomes. Specific dietary patterns, such as the Mediterranean diet, along with nutrients including vitamin D, antioxidants, and polyunsaturated fatty acids, have been associated with the modulation of airway inflammation and asthma risk. Additionally, early-life nutritional exposures and gut microbiota composition may influence immune development and the propensity for allergic diseases. This narrative review aims to synthesize current evidence on the interplay between obesity, asthma, and nutrition in the pediatric population, highlighting potential dietary interventions and targets for improved asthma management in children with obesity. Full article
(This article belongs to the Section Global Pediatric Health)
Show Figures

Figure 1

22 pages, 10530 KB  
Article
Preventive Effects of an Opuntia stricta var. dillenii Extract on Lipid Metabolism in a High-Fat High-Fructose Diet-Induced Obesity Animal Model
by Iker Gómez-García, Alfredo Fernández-Quintela, Paula Oliver, Catalina Picó, M. Pilar Cano, María P. Portillo and Jenifer Trepiana
Nutrients 2025, 17(19), 3178; https://doi.org/10.3390/nu17193178 - 8 Oct 2025
Viewed by 188
Abstract
Background: Due to the continuous global rise in obesity prevalence, foods rich in bioactive compounds are increasingly recognised for the management of several diseases. Objective: The present study aims to investigate whether an Opuntia stricta var. dillenii fruit peel extract, rich in betalains [...] Read more.
Background: Due to the continuous global rise in obesity prevalence, foods rich in bioactive compounds are increasingly recognised for the management of several diseases. Objective: The present study aims to investigate whether an Opuntia stricta var. dillenii fruit peel extract, rich in betalains and phenolic compounds, is able to prevent obesity induced by a high-fat high-fructose diet in rats, along with the potential mechanisms of action underlying this effect. Results: The supplementation with Opuntia stricta var. dillenii extract obtained from the peel fruit partially prevents obesity development by attenuating HFHF-induced fat accumulation. This effect was observed predominantly in visceral adipose tissue, rather than in the subcutaneous depot. The obesity prevention was accompanied by the improvement of serum lipid profile. The mechanisms underlying the extract anti-obesity effect which were analysed in epididymal adipose tissue, involve preventing the rise in the availability of triglyceride synthesis substrates induced by high-fat high-fructose feeding, the inhibition of triglyceride assembly, and in the case of the high dose, increased lipolysis. Conclusions: According to these results, the peel wastes of Opuntia stricta var. dillenii fruit represent a promising natural source of bioactive compounds for obesity prevention. Nevertheless, these preclinical effects should be replicated in further studies in human beings. Full article
Show Figures

Figure 1

16 pages, 781 KB  
Review
Obesity and Chronic Kidney Disease: A Comprehensive Review of Mechanisms, Impact, and Management Strategies
by Pallavi Shirsat, Malavika Balachandran, Venkata Sushma Chamarthi and Kunal Sonavane
J. CardioRenal Med. 2025, 1(1), 4; https://doi.org/10.3390/jcrm1010004 - 8 Oct 2025
Viewed by 379
Abstract
Obesity is a significant public health crisis with increasing rates worldwide. Chronic kidney disease (CKD) has also emerged as a leading cause of death worldwide. This review explores the intricate connection between obesity and CKD, discussing the underlying biological mechanisms, clinical consequences of [...] Read more.
Obesity is a significant public health crisis with increasing rates worldwide. Chronic kidney disease (CKD) has also emerged as a leading cause of death worldwide. This review explores the intricate connection between obesity and CKD, discussing the underlying biological mechanisms, clinical consequences of their coexistence, and strategies for evidence-based management. We conducted an extensive literature review of peer-reviewed studies examining obesity–CKD relationships, including epidemiological studies, mechanistic research, clinical trials, and meta-analyses from major medical databases. Obesity serves as both a risk factor for de novo CKD development and a paradoxical protective factor observed in some studies of advanced CKD, particularly in dialysis populations. This review synthesizes current evidence on obesity-related glomerulopathy, the impact of obesity on CKD progression to end-stage renal disease, and the phenomenon known as the “obesity paradox”. Management approaches, including lifestyle interventions, pharmacological treatments, and bariatric surgery, show varying efficacy across different CKD stages. The multifaceted relationship between obesity and CKD necessitates individualized, multidisciplinary approaches to optimize patient outcomes while addressing the unique challenges presented by this complex comorbidity. Early intervention in obese patients may prevent CKD development, while careful management is required in advanced CKD stages where the obesity paradox may confer survival benefits. Full article
Show Figures

Graphical abstract

30 pages, 1765 KB  
Review
Adipocyte–Tumor Interactions in the Bone Marrow Niche: Implications for Metastasis and Therapy
by Alhomam Dabaliz, Mohammad Nawar Al Hakawati, Najmuddeen Alrashdan, Sarah Alrashdan, Mohamad Bakir and Khalid S. Mohammad
Int. J. Mol. Sci. 2025, 26(19), 9781; https://doi.org/10.3390/ijms26199781 - 8 Oct 2025
Viewed by 368
Abstract
Bone metastases continue to be a major cause of morbidity and mortality in patients with advanced cancers, driven by the dynamic remodeling of the bone marrow niche. Traditionally viewed as passive space-fillers, bone marrow adipocytes (BMAs) are now recognized as active regulators of [...] Read more.
Bone metastases continue to be a major cause of morbidity and mortality in patients with advanced cancers, driven by the dynamic remodeling of the bone marrow niche. Traditionally viewed as passive space-fillers, bone marrow adipocytes (BMAs) are now recognized as active regulators of tumor growth, therapeutic resistance, and skeletal pathology. BMAs comprise a significant portion of the adult marrow space, particularly in aging and obesity, and facilitate metastatic colonization through various mechanisms. These include metabolic coupling, where adipocyte-derived fatty acids fuel tumor oxidative phosphorylation; the secretion of adipokines such as leptin and IL-6, which promote epithelial-to-mesenchymal transition, invasion, and immune evasion; regulation of osteoclastogenesis via RANKL expression; and the release of extracellular vesicles that reprogram cancer cell metabolism. Clinical and experimental studies show that BMA expansion correlates with increased tumor burden and poorer outcomes in breast, prostate, lung cancers, and multiple myeloma. Additionally, BMAs actively promote therapeutic resistance through metabolic rewiring and drug sequestration. Experimental models, ranging from in vitro co-cultures to in vivo patient-derived xenografts, demonstrate the complex roles of BMAs and also reveal important translational gaps. Despite promising preclinical approaches such as metabolic inhibitors, PPARγ modulation, adipokine blockade, and lifestyle changes, no therapies directly targeting BMAs have yet reached clinical practice. This review compiles current evidence on the biology of BMAs, their tumor-promoting interactions, and potential therapeutic strategies, while also highlighting unresolved questions about BMA heterogeneity, lipid flux, and immunometabolic crosstalk. By revealing how bone marrow adipocytes actively shape the metastatic niche through metabolic, endocrine, and immunological pathways, this review highlights their potential as novel biomarkers and therapeutic targets for improving the management of bone metastases. Full article
(This article belongs to the Special Issue Novel Molecular Pathways in Oncology, 3rd Edition)
Show Figures

Graphical abstract

16 pages, 842 KB  
Review
Endoscopic Bariatric Therapies for Metabolic Dysfunction-Associated Steatotic Liver Disease: Mechanistic Insights and Metabolic Implications
by Wissam Ghusn, Mira Sridharan, Rachel Fromer, Muhammet Ozdemir, Madeleine G. Haff and Eric J. Vargas
Biomedicines 2025, 13(10), 2437; https://doi.org/10.3390/biomedicines13102437 - 7 Oct 2025
Viewed by 383
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly emerging as the leading cause of chronic liver disease, closely tied to rising global obesity rates. Endoscopic bariatric therapies (EBTs), including endoscopic sleeve gastroplasty (ESG), intragastric balloons (IGB), duodenal-jejunal bypass liners (DJBL), and duodenal mucosal [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly emerging as the leading cause of chronic liver disease, closely tied to rising global obesity rates. Endoscopic bariatric therapies (EBTs), including endoscopic sleeve gastroplasty (ESG), intragastric balloons (IGB), duodenal-jejunal bypass liners (DJBL), and duodenal mucosal resurfacing (DMR), offer minimally invasive interventions that target metabolic dysfunction and weight loss. This review synthesizes current evidence on the mechanisms and hepatic outcomes of EBTs in MASLD, highlighting improvements in hepatic steatosis, liver stiffness, and fibrosis biomarkers across multiple modalities. ESG is consistently associated with reductions in hepatic steatosis and fibrosis scores across multiple studies. IGB therapy improves liver stiffness and reduces hepatic fat as assessed by imaging modalities such as MRI- Proton Density Fat Fraction and ultrasound. DJBL lowers liver enzymes and improves non-invasive markers of steatohepatitis like the Fibroscan-AST score, although its effect on fibrosis appears limited. DMR demonstrates reductions in liver fat, particularly in patients with type 2 diabetes, but evidence for histological improvement in MASLD remains inconsistent. Despite their promise, most EBT studies remain limited by small sample sizes and short follow-up. Further randomized trials are needed to validate long-term efficacy and position EBTs alongside or as alternatives to surgical interventions for MASLD. Full article
Show Figures

Figure 1

11 pages, 523 KB  
Review
Physical Activity During Pregnancy and Gestational Weight Gain: Implications for Maternal–Fetal Epigenetic Programming and Long-Term Health
by Nektaria Zagorianakou, Stylianos Makrydimas, Efthalia Moustakli, Ioannis Mitrogiannis, Ermanno Vitale and George Makrydimas
Genes 2025, 16(10), 1173; https://doi.org/10.3390/genes16101173 - 6 Oct 2025
Viewed by 401
Abstract
Background/Objectives: Gestational weight gain (GWG) is a crucial factor influencing mother and fetal health, as high GWG is associated with adverse pregnancy outcomes and an increased long-term risk of obesity and metabolic issues in the children. In addition to controlling weight, maternal [...] Read more.
Background/Objectives: Gestational weight gain (GWG) is a crucial factor influencing mother and fetal health, as high GWG is associated with adverse pregnancy outcomes and an increased long-term risk of obesity and metabolic issues in the children. In addition to controlling weight, maternal physical activity (PA) during pregnancy may influence fetal development through potential epigenetic mechanisms, including histone modifications, DNA methylation, and the production of non-coding RNA. Methods: This narrative review synthesizes evidence from randomized controlled trials (RCTs; n = 11, 3654 participants) investigating the impact of aerobic PA on GWG, while also highlighting emerging, primarily indirect findings on maternal–fetal epigenetic programming. Results: The majority of RCTs found that supervised PA interventions, especially when paired with nutritional counseling, decreased both the incidence of excessive GWG and total GWG. Enhancements in lipid metabolism, adipokine profiles, and maternal insulin sensitivity point to likely biochemical mechanisms that connect PA to epigenetic modification of fetal metabolic genes (e.g., IGF2, PGC-1α, LEP). Animal and observational studies suggest that maternal activity may influence offspring epigenetic pathways related to obesity and cardiometabolic conditions, although direct human evidence is limited. Conclusions: In addition to potentially changing gene–environment interactions throughout generations, prenatal PA is a low-cost, safe method of improving maternal and newborn health. Future RCTs ought to incorporate molecular endpoints to elucidate the epigenetic processes by which maternal exercise may provide long-term health benefits. Full article
(This article belongs to the Section Epigenomics)
Show Figures

Figure 1

20 pages, 1133 KB  
Review
Exercise, Epigenetics, and Body Composition: Molecular Connections
by Ashley Williams, Danielle D. Wadsworth and Thangiah Geetha
Cells 2025, 14(19), 1553; https://doi.org/10.3390/cells14191553 - 6 Oct 2025
Viewed by 472
Abstract
Exercise plays a crucial role in promoting overall health by activating molecular pathways that contribute to the prevention and management of chronic diseases, slowing epigenetic aging, improving body composition, and reducing the risk of obesity. In skeletal muscle, these benefits are largely mediated [...] Read more.
Exercise plays a crucial role in promoting overall health by activating molecular pathways that contribute to the prevention and management of chronic diseases, slowing epigenetic aging, improving body composition, and reducing the risk of obesity. In skeletal muscle, these benefits are largely mediated by exercise-induced transcriptional and epigenetic responses. Recent advances in epigenetics have intensified interest in understanding how physical activity influences long-term health and body composition at the molecular level. Epigenetic modifications, which regulate gene expression without altering the DNA sequence, are key mechanisms in this process. Emerging research has provided deeper insights into the processes such as DNA methylation, histone modification, and non-coding RNAs, and their connection to exercise. While numerous studies have demonstrated the influence of exercise on the epigenome, fewer have directly examined how these molecular changes relate to alterations in fat mass, lean body mass, and other components of body composition. This comprehensive review synthesizes the current evidence on the interplay between exercise, epigenetic regulation, and body composition, with a focus on adolescents and adults. We highlight key genes involved in metabolism, fat storage, muscle development, and epigenetic aging, and explore how their regulation may contribute to individual variability in exercise response. Understanding these molecular pathways may provide valuable insights for optimizing exercise interventions aimed at improving health outcomes across the lifespan. Full article
Show Figures

Figure 1

Back to TopTop