Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,282)

Search Parameters:
Keywords = mechanical property evolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2909 KB  
Article
Research on Intermittent Tensile Deformation to Improve the Properties of Austenitic Stainless Steel
by Huimin Tao, Yafang Cai, Yong Huang, Xiaoliang Wu, Zeqi Tong and Mingming Ding
Coatings 2025, 15(10), 1158; https://doi.org/10.3390/coatings15101158 (registering DOI) - 4 Oct 2025
Abstract
This article conducts intermittent tensile deformation on 304 stainless steel; observes the microstructure, mechanical properties, and corrosion performance evolution of stainless steel under different deformation conditions; and reveals its mechanisms. The results indicate that the performance of 304 stainless steel is significantly affected [...] Read more.
This article conducts intermittent tensile deformation on 304 stainless steel; observes the microstructure, mechanical properties, and corrosion performance evolution of stainless steel under different deformation conditions; and reveals its mechanisms. The results indicate that the performance of 304 stainless steel is significantly affected by the degree of intermittent deformation. Small intermittent deformation can produce a good microstructure with uniform distribution, low martensite content, and weak texture, optimizing comprehensive mechanical properties by improving ductility, yield strength, and tensile strength. On the contrary, excessive intermittent deformation increases martensitic transformation and enhances texture, leading to a transition from ductile fracture to brittle fracture. In addition, small intermittent deformations improve corrosion resistance by promoting the formation of a stable passivation film. The microstructural changes affect the deformation mechanism and surface passivation film of stainless steel, making its mechanical strength and corrosion resistance superior to larger intermittent deformation amounts. Small intermittent deformation can improve the mechanical and corrosion properties of 304 stainless steel. This study provides a reference for the formation and performance control of metal materials and has certain practical value. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

10 pages, 5358 KB  
Article
Microstructural Evolution of Cold-Rolled Type 347H Austenitic Heat-Resistant Steel
by Yanmo Li, Xiangqian Liu, Minghui Zhang, Qiulong Li, Long Niu, Zhihua Wang, Zhe Xu, Wei Wang, Peiyue Li, Bin Chen, Chenxi Liu and Zhihua Sun
Coatings 2025, 15(10), 1157; https://doi.org/10.3390/coatings15101157 (registering DOI) - 4 Oct 2025
Abstract
The influence of cold rolling deformation degree (15%, 30%, 45%, 60%, 75%, and 90%) on the microstructural evolution and the mechanical properties of type 347H austenitic heat-resistant steel was investigated using optical microscopy, X-ray diffraction, magnetic hysteresis loop measurement, transmission electron microscopy, and [...] Read more.
The influence of cold rolling deformation degree (15%, 30%, 45%, 60%, 75%, and 90%) on the microstructural evolution and the mechanical properties of type 347H austenitic heat-resistant steel was investigated using optical microscopy, X-ray diffraction, magnetic hysteresis loop measurement, transmission electron microscopy, and a hardness test. Two types of martensite formed in the deformed specimens, as thin ε-martensite in the cold-rolled steels when the deformation degree was less than 60%, and α′-martensite in the heavily cold-rolled steels when the deformation degree ranged from 60% to 90%. Furthermore, the amount of α′-martensite increases rapidly with the increase in the cold rolling deformation degree. Hence, 60% is considered as the critical point of cold rolling reduction for the formation of α′-martensite. If the specimen experienced a cold rolling reduction of 90%, ε-martensite was hardly observed, while the volume faction of the α′-martensite amounts to 25%. It is verified by the TEM observations that the α′-martensite is transformed from the austenitic matrix as well as the preformed ε-martensite. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

17 pages, 5087 KB  
Article
Study on the Strength Characteristics of Ion-Adsorbed Rare Earth Ore Under Chemical Leaching and the Duncan–Chang Model Parameters
by Zhongqun Guo, Xiaoming Lin, Haoxuan Wang, Qiqi Liu and Jianqi Wu
Metals 2025, 15(10), 1104; https://doi.org/10.3390/met15101104 - 3 Oct 2025
Abstract
Ionic rare earths are extracted from primary sources by the in situ chemical leaching method, where the type and concentration of leaching agents significantly affect the mechanical properties and microstructure of the ore body. In this study, MgSO4 and Al2(SO [...] Read more.
Ionic rare earths are extracted from primary sources by the in situ chemical leaching method, where the type and concentration of leaching agents significantly affect the mechanical properties and microstructure of the ore body. In this study, MgSO4 and Al2(SO4)3 solutions of varying concentrations were used as leaching agents to investigate the evolution of shear strength, the characteristics of Duncan–Chang hyperbolic model parameters, and the changes in microstructural pore characteristics of rare earth samples under different leaching conditions. The results show that the stress–strain curves of all samples consistently exhibit strain-hardening behavior under all leaching conditions, and shear strength is jointly influenced by confining pressure and the chemical interaction between the leaching solution and the soil. The samples leached with MgSO4 exhibited higher shear strength than those treated with water. The samples leached with 3% and 6% Al2(SO4)3 showed increased strength, while 9% Al2(SO4)3 caused a slight decrease. With increasing leaching agent concentration, the cohesion of the samples significantly declined, whereas the internal friction angle remained relatively stable. The Duncan–Chang model accurately described the nonlinear deformation behavior of the rare earth samples, with the model parameter b markedly decreasing as confining pressure increased, indicating that confining stress plays a dominant role in governing the nonlinear response. Under the coupled effects of chemical leaching and mechanical stress, the number and size distribution of pores of the rare earth samples underwent a complex multiscale co-evolution. These results provide theoretical support for the green, efficient, and safe exploitation of ionic rare earth ores. Full article
(This article belongs to the Special Issue Metal Leaching and Recovery)
Show Figures

Figure 1

14 pages, 2643 KB  
Article
Modeling the Rate- and Temperature-Dependent Behavior of Sintered Nano-Silver Paste Using a Variable-Order Fractional Model
by Qinglong Tian, Changyu Liu and Wei Cai
Materials 2025, 18(19), 4595; https://doi.org/10.3390/ma18194595 - 3 Oct 2025
Abstract
Sintered nano-silver paste is widely used in electronic packaging due to its excellent thermal and electrical conductivity. A phenomenological variable-order fractional constitutive model has been developed to characterize the evolution of its mechanical properties, incorporating dependencies on both temperature and strain rate. Based [...] Read more.
Sintered nano-silver paste is widely used in electronic packaging due to its excellent thermal and electrical conductivity. A phenomenological variable-order fractional constitutive model has been developed to characterize the evolution of its mechanical properties, incorporating dependencies on both temperature and strain rate. Based on the Weissenberg number and classical Arrhenius equation, a formulation for relaxation time with temperature and strain rate dependence has been proposed. A temperature- and rate-sensitive fractional order is introduced to capture the coupled influences of thermal and strain rate effects. Furthermore, the effects of temperature and the strain rate on the elastic modulus and relaxation time are quantitatively described through established coupling criteria. Simulation results demonstrate that the proposed model offers high accuracy and strong predictive capability. Comparisons with the classical Anand model highlight the effectiveness of the variable-order fractional model, particularly at lower temperatures. Full article
(This article belongs to the Special Issue Mechanical Behavior and Reliability of Micro-/Nanoscale Materials)
Show Figures

Figure 1

13 pages, 7299 KB  
Article
Effect of Solution and Aging Treatment on the Microstructural Evolution and Mechanical Properties of Cold-Rolled 2024 Aluminum Alloy Sheets
by Luxiang Zhang, Wei Liu, Erli Xia, Wanting Chen, Xuanxuan He and Dewen Tang
Coatings 2025, 15(10), 1139; https://doi.org/10.3390/coatings15101139 - 2 Oct 2025
Abstract
The cold-rolled 2024 aluminum alloy sheets were subjected to solution treatments at different temperatures followed by artificial aging. The microstructure and mechanical properties were investigated using Vickers microhardness testing, tensile testing, optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). [...] Read more.
The cold-rolled 2024 aluminum alloy sheets were subjected to solution treatments at different temperatures followed by artificial aging. The microstructure and mechanical properties were investigated using Vickers microhardness testing, tensile testing, optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results indicate that as the solution temperature increases, the coarse particles gradually dissolved into the matrix. At a solution temperature of 500 °C, the grains become nearly equiaxed with an average size of ~16.47 μm, and no significant grain growth is observed compared to the as-rolled condition. The refined microstructure contributes to excellent mechanical properties. In contrast, when the solution temperature increases to 550 °C, the microstructure shows severe grain coarsening (up to ~61.39 μm), which indicates that overburning occurs, resulting in a drastic deterioration in mechanical performance. As the aging time increases, precipitates become more uniformly and densely distributed throughout the matrix, and the hardness initially increases and reaches a peak after approximately 6 h of aging at 180 °C. The optimal mechanical performance, characterized by a favorable combination of strength and ductility, is achieved at an aging time of 6 h. In summary, the optimal heat treatment condition for the cold-rolled 2024 aluminum alloy sheet is solution treatment at 500 °C for 1 h followed by aging at 180 °C for 6 h, resulting in a hardness of 154 HV, a tensile strength of 465 MPa and an elongation of 13%. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

16 pages, 4973 KB  
Article
Microstructure Evolution of a TRIP Fe–1.4Si–2.6Mn–0.17C Steel After Intercritical Treating and Its Effect on Mechanical Properties
by Valeria Miranda-Lopez, Manuel Alejandro Beltrán-Zúñiga, Victor M. Lopez-Hirata, Hector J. Dorantes-Rosales and Maribel L. Saucedo-Muñoz
Metals 2025, 15(10), 1096; https://doi.org/10.3390/met15101096 - 1 Oct 2025
Abstract
This work studied microstructure evolution during the intercritical treatment of Fe–1.4Si–2.6Mn–0.17C TRIP steel. Steel specimens were heated in the intercritical region, α ferrite and γ austenite phases, at 750 °C for 30 min, water-quenched, air-cooled, and austempered at 350 °C for 30 min. [...] Read more.
This work studied microstructure evolution during the intercritical treatment of Fe–1.4Si–2.6Mn–0.17C TRIP steel. Steel specimens were heated in the intercritical region, α ferrite and γ austenite phases, at 750 °C for 30 min, water-quenched, air-cooled, and austempered at 350 °C for 30 min. Microstructural analysis was performed by optical microscopy, scanning electron microscopy, and X-ray diffraction. All heat-treated specimens were mechanically characterized by uniaxial tension and Vickers hardness tests. Thermo-Calc software 2024b was used to analyze the microstructure and phases of heat-treated steel. The microstructural characterization results revealed that the phases and microconstituents were ferrite, austenite, cementite, pearlite, and retained austenite. Thermo-Calc results were consistent with the phases and microconstituents identified for each heat-treatment condition. On the other hand, the tension test results showed that the yield strength and ultimate tensile strength ranged between 690 and 820 MPa and 1190–1255 MPa, respectively, for these heat-treated steels. Likewise, Thermo-Calc proved to be a powerful tool for designing intercritical heat treatments for TRIP steels. Full article
Show Figures

Graphical abstract

17 pages, 6517 KB  
Article
Investigation of Process and Properties of Cu-Mn-Al Alloy Cladding Deposited on 27SiMn Steel via Cold Metal Transfer
by Jin Peng, Shihua Xie, Junhai Xia, Xingxing Wang, Zenglei Ni, Pei Wang and Nannan Chen
Crystals 2025, 15(10), 858; https://doi.org/10.3390/cryst15100858 - 30 Sep 2025
Abstract
This study systematically investigates the effects of welding current on the macro-morphology, microstructure, mechanical properties, and corrosion resistance of Cu-Mn-Al alloy coatings deposited on 27SiMn steel substrates using Cold Metal Transfer (CMT) technology. The 27SiMn steel is widely applied in coal mining, geology, [...] Read more.
This study systematically investigates the effects of welding current on the macro-morphology, microstructure, mechanical properties, and corrosion resistance of Cu-Mn-Al alloy coatings deposited on 27SiMn steel substrates using Cold Metal Transfer (CMT) technology. The 27SiMn steel is widely applied in coal mining, geology, and engineering equipment due to its high strength and toughness, but its poor corrosion and wear resistance significantly limits service life. To address this issue, a Cu-Mn-Al alloy (high-manganese aluminum bronze) was selected as a cladding material because of its superior combination of mechanical strength, toughness, and excellent corrosion resistance in saline and marine environments. Compared with conventional cladding processes, CMT technology enables low-heat-input deposition, reduces dilution from the substrate, and promotes defect-free coating formation. To the best of our knowledge, this is the first report on the fabrication of Cu-Mn-Al coatings on 27SiMn steel using CMT, aiming to optimize process parameters and establish the relationship between welding current, phase evolution, and coating performance. The experimental results demonstrate that the cladding layer width increases progressively with welding current, whereas the layer height remains relatively stable at approximately 3 mm. At welding currents of 120 A and 150 A, the cladding layer primarily consists of α-Cu, κII, β-Cu3Al, and α-Cu + κIII phases. At higher welding currents (180 A and 210 A), the α-Cu + κIII phase disappears, accompanied by the formation of petal-shaped κI phase. The peak shear strength (509.49 MPa) is achieved at 120 A, while the maximum average hardness (253 HV) is obtained at 150 A. The 120 A cladding layer demonstrates optimal corrosion resistance. These findings provide new insights into the application of CMT in fabricating Cu-Mn-Al protective coatings on steel and offer theoretical guidance for extending the service life of 27SiMn steel components in aggressive environments. Full article
Show Figures

Figure 1

18 pages, 4932 KB  
Article
An Investigation of the Performance of Equal Channel Angular Pressed Copper Electrodes in Electric Discharge Machining
by Ülke Şimşek and Can Çoğun
Crystals 2025, 15(10), 849; https://doi.org/10.3390/cryst15100849 - 29 Sep 2025
Abstract
This study examines the mechanical, thermal, and electrical properties of copper tool electrodes processed via Equal Channel Angular Pressing (ECAP), with a specific focus on their performance in Electrical Discharge Machining (EDM) applications. A novel Crystal Plasticity Finite Element Method (CPFEM) framework is [...] Read more.
This study examines the mechanical, thermal, and electrical properties of copper tool electrodes processed via Equal Channel Angular Pressing (ECAP), with a specific focus on their performance in Electrical Discharge Machining (EDM) applications. A novel Crystal Plasticity Finite Element Method (CPFEM) framework is employed to model anisotropic slip behavior and microscale deformation mechanisms. The primary objective is to elucidate how initial crystallographic orientation influences hardness, thermal conductivity, and electrical conductivity. Simulations are performed on single-crystal copper for three representative Face Centered Cubic (FCC) orientations. Using an explicit CPFEM model, the study examines texture evolution and deformation heterogeneity during the ECAP process of single-crystal copper. The results indicate that the <100> single-crystal orientation exhibits the highest Taylor factor and the most homogeneous distribution of plastic equivalent strain (PEEQ), suggesting enhanced resistance to plastic flow. In contrast, the <111> single-crystal orientation displays localized deformation and reduced hardening. A decreasing Taylor factor correlates with more uniform slip, which improves both electrical and thermal conductivity, as well as machinability, by minimizing dislocation-related resistance. These findings make a novel contribution to the field by highlighting the critical role of crystallographic orientation in governing slip activity and deformation pathways, which directly impact thermal wear resistance and the fabrication efficiency of ECAP-processed copper electrodes in EDM. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

14 pages, 3978 KB  
Article
Research on the Solidification Structure, Properties and Composition Segregation of GCr15 Bearing Steel Under Double-Electrode Regulation
by Qinghe Xiao, Shengli Li, Siyao Liu, Jiyu Zhao, Xingang Ai, Ye Zhou, Xincheng Miao and Min Wang
Metals 2025, 15(10), 1086; https://doi.org/10.3390/met15101086 - 29 Sep 2025
Abstract
To explore the influence of double-electrode regulation technology on the solidification microstructure and properties of GCr15 bearing steel, the double-electrode insertion process was employed in this study, combined with metallographic analysis, mechanical property testing, and electron probe composition characterization. We analyzed the mechanisms [...] Read more.
To explore the influence of double-electrode regulation technology on the solidification microstructure and properties of GCr15 bearing steel, the double-electrode insertion process was employed in this study, combined with metallographic analysis, mechanical property testing, and electron probe composition characterization. We analyzed the mechanisms of solidification microstructure evolution and mechanical property improvement, as well as the composition segregation control effect, of GCr15 steel under double-electrode regulation. The results show that the double-electrode technology significantly refines the microstructure and improves the internal quality of the ingot by optimizing the temperature field and electromagnetic field distribution in the molten pool and enhancing the internal flow of the melt. The tensile strengths in the upper and middle parts were increased by 84.6% and 29.6%, respectively, which can be attributed to the uniform distribution of carbides at the grain boundaries and the reduction of segregation. Composition analysis indicates that the macroscopic segregation index of C element was decreased under the dual-electrode process. This research provides a theoretical basis and process optimization direction for the high-quality preparation of high-carbon chromium bearing steel. Full article
(This article belongs to the Special Issue Green Super-Clean Steels)
Show Figures

Figure 1

18 pages, 5858 KB  
Article
Research on Deformation Behavior and Mechanisms of Concrete Under Hygrothermal Coupling Effects
by Mingyu Li, Chunxiao Zhang, Aiguo Dang, Xiang He, Jingbiao Liu and Xiaonan Liu
Buildings 2025, 15(19), 3514; https://doi.org/10.3390/buildings15193514 - 29 Sep 2025
Abstract
This study elucidated the evolution and catastrophic failure mechanisms of concrete’s mechanical properties under high-temperature and moisture-coupled environments. Specimens underwent hygrothermal shock simulation via constant-temperature drying (100 °C/200 °C, 4 h) followed by water quenching (20 °C, 30 min). Uniaxial compression tests were [...] Read more.
This study elucidated the evolution and catastrophic failure mechanisms of concrete’s mechanical properties under high-temperature and moisture-coupled environments. Specimens underwent hygrothermal shock simulation via constant-temperature drying (100 °C/200 °C, 4 h) followed by water quenching (20 °C, 30 min). Uniaxial compression tests were performed using a uniaxial compression test machine with synchronized multi-scale damage monitoring that integrated digital image correlation (DIC), acoustic emission (AE), and infrared thermography. The results demonstrated that hygrothermal coupling reduced concrete ductility significantly, in which the peak strain decreased from 0.36% (ambient) to 0.25% for both the 100 °C and 200 °C groups, while compressive strength declined to 42.8 MPa (−2.9%) and 40.3 MPa (−8.6%), respectively, with elevated elastic modulus. DIC analysis revealed the temperature-dependent failure mode reconstruction: progressive end cracking (max strain 0.48%) at ambient temperature transitioned to coordinated dual-end cracking with jump-type damage (abrupt principal strain to 0.1%) at 100 °C and degenerated to brittle fracture oriented along a singular path (principal strain band 0.015%) at 200 °C. AE monitoring indicated drastically reduced micro-damage energy barriers at 200 °C, where cumulative energy (4000 mV·ms) plummeted to merely 2% of the ambient group (200,000 mV·ms). Infrared thermography showed that energy aggregation shifted from “centralized” (ambient) to “edge-to-center migration” (200 °C), with intensified thermal shock effects in fracture zones (ΔT ≈ −7.2 °C). The study established that hygrothermal coupling weakens the aggregate-paste interfacial transition zone (ITZ) by concentrating the strain energy along singular weak paths and inducing brittle failure mode degeneration, which thereby provides theoretical foundations for fire-resistant design and catastrophic failure warning systems in concrete structures exposed to coupled environmental stressors. Full article
Show Figures

Figure 1

35 pages, 7715 KB  
Article
Micro-Interface Slip Damping in a Compressed Coir Vibration Isolator
by Jem A. Rongong, Jin-Song Pei, Joseph P. Wright and Gerald A. Miller
Materials 2025, 18(19), 4521; https://doi.org/10.3390/ma18194521 - 29 Sep 2025
Abstract
The micro-interface slip damping mechanism is insensitive to temperature, making it suitable for applications where the operating environment makes viscoelastic polymers ineffective. Damping material systems that rely on micro-interface slip typically embody randomly disposed interlocking units leading to complex material behaviors. This work [...] Read more.
The micro-interface slip damping mechanism is insensitive to temperature, making it suitable for applications where the operating environment makes viscoelastic polymers ineffective. Damping material systems that rely on micro-interface slip typically embody randomly disposed interlocking units leading to complex material behaviors. This work studies a compressed coir vibration isolator that provides a lightweight, low cost and environmentally friendly alternative to common polymer devices. Under cyclic loading, it displays highly nonlinear hysteresis and a gradual change in properties based on the load history. The nonlinear hysteresis is captured with a Masing model, which has been shown to provide an adequate phenomenological representation of systems with large numbers of miniature stick-slip contacts. This study further explores a new way to enrich the Masing model by encoding time evolution using restoring force or displacement time integral, directly adopted from mem-models, a new family of models transferred from electrical engineering. In addition to using the data from the coir isolator, two additional datasets from clayey soil, another application of micro-interface slip damping, are used to validate the modeling approach. Full article
Show Figures

Figure 1

15 pages, 5070 KB  
Article
The Effects of Deep Cryogenic Treatment with Regard to the Mechanical Properties and Microstructural Evolution of Al-Mg Alloys with Different Grain Sizes
by Wei Liu, Luxiang Zhang, Erli Xia, Jing Luo, Yiran Tian, Wentao Cai and Yuqing Gong
Materials 2025, 18(19), 4518; https://doi.org/10.3390/ma18194518 - 28 Sep 2025
Abstract
The tension behaviors of Al-Mg alloys were tested, and the influences of deep cryogenic treatment (DCT) and grain size on their tensile properties were explored. Optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the evolution [...] Read more.
The tension behaviors of Al-Mg alloys were tested, and the influences of deep cryogenic treatment (DCT) and grain size on their tensile properties were explored. Optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the evolution of the microstructure. It was concluded that the alloys with fine grain (FG) had a higher strain hardening capacity and strength, however, the alloys with coarse grain (CG) exhibited better plasticity. This can be explained by the alloy with fine grains having a higher density of grain boundary, which can hinder the motion of the dislocation; therefore, the deformation resistance was improved. For alloys with coarse grains, the dislocation has more freedom to move and is easier to rearrange, which is beneficial to the plasticity. Moreover, when given deep cryogenic treatment, the strength and plasticity of the alloys can be slightly improved, which can be attributed to the microplastic deformation that occurs during cryogenic treatment that can induce internal stress, as cold-induced internal stress is conductive in achieving a finer grain and higher density of dislocation. Full article
Show Figures

Figure 1

17 pages, 693 KB  
Article
Disentanglement of a Bipartite System Portrayed in a (3+1)D Compact Minkowski Manifold: Quadridistances and Quadrispeeds
by Salomon S. Mizrahi
Physics 2025, 7(4), 45; https://doi.org/10.3390/physics7040045 - 28 Sep 2025
Abstract
In special relativity, particle trajectories, whether mass-bearing or not, can be traced on the Minkowski spacetime manifold in (3+1)D. Meantime, in quantum mechanics, trajectories in the phase space are not strictly outlined because coordinate and linear momentum cannot be measured simultaneously with arbitrary [...] Read more.
In special relativity, particle trajectories, whether mass-bearing or not, can be traced on the Minkowski spacetime manifold in (3+1)D. Meantime, in quantum mechanics, trajectories in the phase space are not strictly outlined because coordinate and linear momentum cannot be measured simultaneously with arbitrary precision since they do not commute within the Hilbert space formalism. However, from the density matrix representing a quantum system, the extracted information still produces an imperative description of its properties and, furthermore, by appropriately reordering the matrix entries, additional information can be obtained from the same content. Adhering to this line of work, the paper investigates the definition and the meaning of velocity and speed in a typical quantum phenomenon, the disentanglement for a bipartite system when dynamical evolution is displayed in a (3+1)D pseudo-spacetime whose coordinates are constructed from combinations of entries to the density matrix. The formalism is based on the definition of a Minkowski manifold with compact support, where trajectories are defined following the same reasoning and formalism present in the Minkowski manifold of special relativity. The space-like and time-like regions acquire different significations referred to entangled-like and separable-like, respectively. The definition and the sense of speed and velocities of disentanglement follow naturally from the formalism. Depending on the dynamics of the physical state of the system, trajectories may meander between regions of entanglement and separability in the space of new coordinates defined on the Minkowski manifold. Full article
Show Figures

Figure 1

16 pages, 6762 KB  
Article
Microstructure and Performance Evolution of Post-Plastic Deformed Austenitic Stainless Steel Fabricated by Selective Laser Melting
by Huimin Tao, Zi Li, Linlin Ma, Yafang Cai, Haiteng Xiu, Mingming Ding and Zeqi Tong
Micromachines 2025, 16(10), 1104; https://doi.org/10.3390/mi16101104 - 28 Sep 2025
Abstract
With the rapid development of additive manufacturing technology, selective laser melting (SLM) of austenitic stainless steel has been widely used. SLM stainless steel will inevitably deform during service, so it is necessary to study the microstructure and macro properties of post-plastic deformed SLM [...] Read more.
With the rapid development of additive manufacturing technology, selective laser melting (SLM) of austenitic stainless steel has been widely used. SLM stainless steel will inevitably deform during service, so it is necessary to study the microstructure and macro properties of post-plastic deformed SLM stainless steel. In this paper, the changes in the microstructure, mechanical properties, and corrosion resistance of SLM304 stainless steel after stretch deformation were studied, and the evolution rules were revealed. The results show that, with an increasing plastic deformation amount, SLM304 stainless steel exhibits grain fragmentation, disordered orientation, and subgrain formation, along with changes in the shape and size of the cellular structure. Additionally, the α’ martensite content inside SLM304 stainless steel rises significantly, while the thickness of the surface passivation film slightly decreases. The analysis shows that the combined effect of the complex microstructure makes the nanohardness of SLM304 stainless steel increase with the increase in the stretch deformation amount while its corrosion resistance deteriorates. Therefore, moderate post-plastic deformation can enable SLM stainless steel to balance excellent mechanical and corrosion properties. This study can not only provide a theoretical reference for the performance optimization of additive manufacturing steel but also provide value for the engineering application of additive manufacturing technology. Full article
(This article belongs to the Special Issue Future Prospects of Additive Manufacturing, 2nd Edition)
Show Figures

Figure 1

15 pages, 9898 KB  
Article
Degradation Law and Experimental Study of High- Performance Shotcrete Under the Coupling Effect of Sulfate and Chloride Salt
by Jianyu Yang, Senrui Deng, Guanglin Li and Xujun Dai
Materials 2025, 18(19), 4505; https://doi.org/10.3390/ma18194505 - 27 Sep 2025
Abstract
Shotcrete used in underground structures like tunnels is susceptible to sulfate and chloride erosion. In order to systematically study the deterioration law and mechanism of the durability of high-performance shotcrete under a salt erosion environment, the durability test of high-performance shotcrete was carried [...] Read more.
Shotcrete used in underground structures like tunnels is susceptible to sulfate and chloride erosion. In order to systematically study the deterioration law and mechanism of the durability of high-performance shotcrete under a salt erosion environment, the durability test of high-performance shotcrete was carried out by an indoor long-term immersion test using a clear water solution, Na2SO4 solution, and Na2SO4 and NaCl mixed solution as erosion mediums. A comparative study was conducted on the effects of different curing time, erosion time, erosion medium, and erosion direction on the physical and mechanical properties and SO42− content. The microstructure was analyzed to reveal the time evolution process and mechanism of the durability of high-performance shotcrete under coupled erosion. The results show the following: (1) The mass change rate of high-performance shotcrete under the action of coupling erosion increases first, then decreases, and then increases. The compressive strength of the surface perpendicular to the jet direction is better than that of the surface along the vertical jet direction. (2) The diffusion depth of SO42− along the injection direction is larger, and the content of SO42− is larger at the same depth. The existence of Cl delays the diffusion of SO42− to a certain extent. (3) In the early stage of erosion, the corrosion expansion products generated by the external SO42− entering the concrete will fill the original pores and cracks, which improves the durability of the concrete. In the late stages of erosion, the accumulation of corrosion products increases, which accelerates the deterioration of its durability. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop