An Investigation of the Performance of Equal Channel Angular Pressed Copper Electrodes in Electric Discharge Machining
Abstract
1. Introduction
2. Finite Element Model
3. Methods
3.1. Crystal Plasticity Framework
3.2. Von Mises Plasticity Framework
4. Results and Discussion
4.1. Plastic Strain and Taylor Factor Evolution in ECAP-Processed Copper Electrodes
4.2. Texture Evolution of ECAP-Processed Copper Electrode
4.3. Thermal Effects on Texture Analysis of ECAP-Processed Copper Electrodes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Çogun, C.; Esen, Z.; Genc, A.; Cogun, F.; Akturk, N. Effect of powder metallurgy Cu-B4C electrodes on workpiece surface characteristics and machining performance of electric discharge machining. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2016, 230, 2190–2203. [Google Scholar] [CrossRef]
- Benedict, G.F. Nontraditional Manufacturing Processes, 1st ed.; CRC Press: Boca Raton, FL, USA, 1987. [Google Scholar] [CrossRef]
- Kanagarajan, K.; Arunachalam, R.; Sathiya, P. Modeling of machining parameters in electrical discharge machining of Al 7075 composite using graphite electrode. J. Mater. Process. Technol. 2008, 205, 442–450. [Google Scholar] [CrossRef]
- Çoğun, C.; Ünses, E. Improvement of Electric Discharge Machining (EDM) Performance of Ti-6Al-4V Alloy with Added Graphite Powder to Dielectric. Stroj. Vestn.—J. Mech. Eng. 2015, 61, 409–418. [Google Scholar] [CrossRef]
- Torres-Salcedo, A.; Luis-Pérez, C.J.; Puertas-Arbizu, I.; Corres-Sanz, J.M. A Study on the EDM Drilling of Reaction-Bonded Silicon Carbide Using Different Electrode Materials. Met. Mater. Int. 2023, 126, 5139–5162. [Google Scholar] [CrossRef]
- Voigt, O.; Wendler, M.; Siddique, A.; Stöcker, H.; Quitzke, C.; Peuker, U.A. Characterization and Microstructure of Recycled Eroded Particles from Die-Sink Electro Discharge Machining of H11 Alloy for Applicability in Additive Manufacturing. Met. Mater. Int. 2024, 30, 1209–1226. [Google Scholar] [CrossRef]
- Şimşek, Ü.; Çoġun, C.; Esen, Z. Effects of electrolytic copper and copper alloy electrodes on machining performance in electrical discharge machining (EDM). Mach. Sci. Technol. 2022, 26, 229–244. [Google Scholar] [CrossRef]
- Raj, S.; Kumar, A. Copper and Copper Alloys: Applications and Properties. Mater. Today Proc. 2016, 3, 3580–3585. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X. Recent Developments in Copper Alloys for Heat Transfer and Electronics Applications. J. Mater. Sci. 2021, 56, 11432–11458. [Google Scholar]
- Azadkoli, G.; Azadkoli, P.; Moazami-Goudarzi, M. Enhanced Strength and Ductility of Biodegradable Zn-1Mg Alloy Through EECAP Processing at Different Temperatures. Met. Mater. Int. 2025, 31, 2811–2822. [Google Scholar] [CrossRef]
- Vafaeenezhad, H.; Chegini, M.; Kalaki, A.; Serajian, H. Micromechanical Finite Element Simulation of Low Cycle Fatigue Damage Occurring During Sliding Wear Test of ECAP-Processed AA7075 Alloy. Met. Mater. Int. 2024, 30, 143–166. [Google Scholar] [CrossRef]
- Li, J.; He, T.; Du, X.; Vereschaka, A. Enhancing the corrosion resistance of high-strength Al-Zn-Mg-Cu alloys after equal channel angular pressing by developing retrogression and re-aging strategies. Corros. Sci. 2025, 246, 112736. [Google Scholar] [CrossRef]
- Orlov, D.; Ralston, K.; Birbilis, N.; Estrin, Y. Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Mater. 2011, 59, 6176–6186. [Google Scholar] [CrossRef]
- Alipour, S.; Vafaeenezhad, H.; Ezatirad, F.; Fesahat, M.; Mahmoudi, M.; Mousavi-Khoshdel, S. Effect of grain refinement on the mechanical and corrosion behavior of ECAP-processed Sn-5Sb alloy studied by positron annihilation lifetime and Doppler broadening spectroscopy. J. Alloys Compd. 2025, 1011, 178175. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, P.; Xu, W.; Yan, H. Effect of ECAP on Mechanical Properties and Corrosion Resistance of 2024-CNTs@Ni Composite. Met. Mater. Int. 2023, 30, 1407–1423. [Google Scholar] [CrossRef]
- Khoubrou, I.; Nami, B.; Miresmaeili, S.M.; Yazdani, M. Evolution of Microstructure, Texture and Mechanical Properties of ECAP-Processed ZK60 Magnesium Alloy. Met. Mater. Int. 2025, 31, 227–236. [Google Scholar] [CrossRef]
- Zheng, Y.; Niu, J.; Lu, Y.; Xu, S.; Li, Z.; Zhao, H.; La, P. High strength and high conductivity pure copper prepared by ECAP-Conform combined with cryogenic rolling and recrystallization annealing. J. Mater. Res. Technol. 2025, 36, 3192–3204. [Google Scholar] [CrossRef]
- Zhao, L.; Zhuo, X.; Liu, H.; Jiang, J.; Ma, A. Effect of ECAP on the microstructure and mechanical properties of Zn–0.5Ag–0.08Mg alloy. J. Mater. Res. Technol. 2023, 25, 2619–2630. [Google Scholar] [CrossRef]
- Guo, T.; Gao, Y.; Feng, R.; Qian, D.; Zhang, G.; Ling, D.; Ding, Y. High Strength High Conductivity Copper Prepared by C-ECAP and Cryo-Rolling. Mater. Charact. 2024, 208, 113665. [Google Scholar] [CrossRef]
- Ciemiorek, M.; Pawliszak, L.; Chromiński, W.; Olejnik, L.; Lewandowska, M. Enhancing the Electrical Conductivity of Electrolytic Tough Pitch Copper Rods Processed by Incremental Equal Channel Angular Pressing. Metall. Mater. Trans. A 2020, 51, 3749–3753. [Google Scholar] [CrossRef]
- Shaban, M.; Alsharekh, M.F.; Alsunaydih, F.N.; Alateyah, A.I.; Alawad, M.O.; BaQais, A.; Kamel, M.; Nassef, A.; El-Hadek, M.A.; El-Garaihy, W.H. Investigation of the Effect of ECAP Parameters on Hardness, Tensile Properties, Impact Toughness, and Electrical Conductivity of Pure Cu through Machine Learning Predictive Models. Materials 2022, 15, 9032. [Google Scholar] [CrossRef]
- Skiba, J.; Kulczyk, M.; Przybysz-Gloc, S.; Skorupska, M.; Kobus, M.; Nowak, K. Effect of microstructure refinement of pure copper on improving the performance of electrodes in electro discharge machining (EDM). Sci. Rep. 2023, 13, 16686. [Google Scholar] [CrossRef]
- Marashi, H.; Jafarlou, D.M.; Sarahan, A.A.D.; Mardi, N.A. Employing severe plastic deformation to the processing of electrical discharge machining electrodes. Precis. Eng. 2016, 46, 309–322. [Google Scholar] [CrossRef]
- Gopal, R.; Thangadurai, K.; Thirunavukkarasu, K. Behavior of ECAP Processed Copper Electrodes in Electrical Discharge Machining of AISI H13 Steel. Mater. Today Proc. 2020, 21, 295–298. [Google Scholar] [CrossRef]
- Berndt, N.; Reiser, N.A.; Wagner, M.F.X. Evolution of plastic deformation during multi-pass ECAP of an AA6060 aluminum alloy—An experimental flow line analysis. J. Mater. Res. Technol. 2025, 34, 359–371. [Google Scholar] [CrossRef]
- Lu, C.; Deng, G.; Tieu, A.; Su, L.; Zhu, H.; Liu, X. Crystal plasticity modeling of texture evolution and heterogeneity in equal channel angular pressing of aluminum single crystal. Acta Mater. 2011, 59, 3581–3592. [Google Scholar] [CrossRef]
- Alateyah, A.; Ahmed, M.M.Z.; Alawad, M.O.; Elkatatny, S.; Zedan, Y.; Nassef, A.; El-Garaihy, W. Effect of ECAP die angle on the strain homogeneity, microstructural evolution, crystallographic texture and mechanical properties of pure magnesium: Numerical simulation and experimental approach. J. Mater. Res. Technol. 2022, 17, 1491–1511. [Google Scholar] [CrossRef]
- Deng, G.; Lu, C.; Su, L.; Liu, X.; Tieu, A. Modeling texture evolution during ECAP of copper single crystal by crystal plasticity FEM. Mater. Sci. Eng. A 2012, 534, 68–74. [Google Scholar] [CrossRef]
- Deng, G.; Tieu, K.A.; Su, L.; Lu, C.; Zhu, H.; Wei, P.; Liu, X. Crystal Plasticity FEM Study on the Influence of Crystallographic Orientation in Copper Single Crystals Subjected to Equal Channel Angular Pressing. Steel Res. Int. 2013, 84, 1258–1266. [Google Scholar] [CrossRef]
- Wongsa-Ngam, J.; Noraphaiphipaksa, N.; Kanchanomai, C.; Langdon, T.G. Numerical Investigation of Plastic Strain Homogeneity during Equal-Channel Angular Pressing of a Cu-Zr Alloy. Crystals 2021, 11, 1505. [Google Scholar] [CrossRef]
- Li, S.; Chen, W.; Kosimov, N.; Bhandari, K.S.; Jung, D. Reduction of Explicit Incremental Forming Simulation Time by Mass Scaling Parameters Adjusting and Symmetrical Setting. Int. J. Technol. Eng. Stud. 2021, 7, 27–34. [Google Scholar] [CrossRef]
- Şimşek, Ü.; Miyamoto, H.; Yalçınkaya, T. Crystal plasticity finite element analysis of linear and non-linear extrusion processes. Mater. Res. Proc. 2023, 28, 553–562. [Google Scholar] [CrossRef]
- Harewood, F.; McHugh, P. Comparison of the implicit and explicit finite element methods using crystal plasticity. Comput. Mater. Sci. 2007, 39, 481–494. [Google Scholar] [CrossRef]
- Wei, P.; Lu, C.; Tieu, K.; Su, L.; Deng, G.; Huang, W. A study on the texture evolution mechanism of nickel single crystal deformed by high pressure torsion. Mater. Sci. Eng. A 2017, 684, 239–248. [Google Scholar] [CrossRef]
- Hill, R.; Rice, J. Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Mech. Phys. Solids 1972, 20, 401–413. [Google Scholar] [CrossRef]
- Asaro, R.; Rice, J. Strain localization in ductile single crystals. J. Mech. Phys. Solids 1977, 25, 309–338. [Google Scholar] [CrossRef]
- Lee, E. Elastic-Plastic deformation at finite strains. J. Appl. Mech. 1969, 36, 243–245. [Google Scholar] [CrossRef]
- Abaqus Documentation. Solid (continuum) elements. In Theory Manual; Dassault Systemes Simulia, Inc.: Johnston, RI, USA, 2023; Section 14; pp. 1–2. [Google Scholar]
- Hutchinson, J.W. Bounds and self-consistent estimates for creep of pollycrystalline materials. Proc. R. Soc. Lond. 1976, 348, 101–127. [Google Scholar]
- Anand, L.; Kothari, M. A computational procedure for rate-independent crystal plasticity. J. Mech. Phys. Solids 1996, 44, 525–558. [Google Scholar] [CrossRef]
- Peirce, D.; Asoro, R.; Needleman, A. Material rate dependence and localized deformation in crystalline solids. Acta Metall. 1983, 31, 1951–1976. [Google Scholar] [CrossRef]
- Cowin, S.C. Continuum Mechanics of Anisotropic Materials; Springer: New York, NY, USA, 2013. [Google Scholar]
- Dunne, F.; Petrinic, N. Introduction to Computational Plasticity, 2nd ed.; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Takeuchi, T. Work hardening of copper single crystals with multiple glide orientation. Trans. Jpn. Inst. Met. 1975, 16, 629–640. [Google Scholar] [CrossRef]
- Huang, Y. A User-Material Subroutine Incorporating Single Crystal Plasticity in the Abaqus Finite Element Program; Technical Report; Division of Applied Sciences, Harvard University: Boston, MA, USA, 1991. [Google Scholar]
- Wulfinghoff, S.; Böhlke, T. Equivalent plastic strain gradient crystal plasticity enhanced power law subroutine. GAMM-Mitteilungen 2013, 36, 134–138. [Google Scholar] [CrossRef]
- Ha, C.S.; Plesha, M.E.; Lakes, R.S. Chiral three-dimensional isotropic lattices with negative Poisson’s ratio. Phys. Status Solidi B 2016, 253, 1243–1251. [Google Scholar] [CrossRef]
- Lee, M.G.; Wagoner, R.H.; Kim, S.J. Comparative study of single crystal constitutive equations for crystal plasticity finite element analysis. Int. J. Mod. Phys. B 2008, 22, 5388–5393. [Google Scholar] [CrossRef]
- Şimşek, Ü. Crystal Plasticity Analysis of Severe Plastic Deformation Processes. Ph.D. Dissertation, Middle East Technical University, Ankara, Turkey, 2024. [Google Scholar]
- Şimşek, Ü.; Davut, K.; Miyamoto, H.; Yalçınkaya, T. Comparison of Linear and Nonlinear Twist Extrusion Processes with Crystal Plasticity Finite Element Analysis. Materials 2024, 17, 1139. [Google Scholar] [CrossRef] [PubMed]
- Yalçınkaya, T.; Şimşek, Ü.; Miyamoto, H.; Yuasa, M. Numerical analysis of a new nonlinear twist extrusion process. Metals 2019, 9, 513. [Google Scholar] [CrossRef]
- Basavaraj, V.; Chakkingal, U.; Kumar, T. Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation. J. Mater. Process. Technol. 2009, 209, 89–95. [Google Scholar] [CrossRef]
- Sarma, G.B.; Dawson, P.R. Effects of interactions among crystals on the inhomogeneous deformations of polycrystals. Acta Metall. 1996, 44, 1937–1953. [Google Scholar] [CrossRef]
- Takayama, Y.; Szpunar, J.A. Stored energy and Taylor factor relation in an Al-Mg-Mn alloy sheet worked by continuous cyclic bending. Mater. Trans. 2004, 45, 2316–2325. [Google Scholar] [CrossRef]
- Cho, C.H.; Cho, H. Effect of dislocation characteristics on electrical conductivity and mechanical properties of AA 6201 wires. J. Mater. Sci. Technol. 2021, 85, 13–22. [Google Scholar] [CrossRef]
- Kumar, S.; Beri, N. Study the effect of process parameters on MRR and TWR in EDM of aluminium and mild steel using copper and brass electrodes. Int. J. Adv. Eng. Res. Stud. 2012, 1, 28–30. [Google Scholar]
- Powell, R.W. Correlation of metallic thermal and electrical conductivities for both solid and liquid phases. Int. J. Heat Mass Transf. 1965, 8, 1033–1045. [Google Scholar] [CrossRef]
- Ho, K.H.; Newman, S.T. State of the art in electrical discharge machining. Int. J. Mach. Tools Manuf. 2003, 43, 1287–1300. [Google Scholar] [CrossRef]
- Demir, E. A Taylor-based plasticity model for orthogonal machining of single crystal FCC materials including frictional effects. Int. J. Adv. Manuf. Technol. 2009, 40, 847–856. [Google Scholar] [CrossRef]
- Dolatabadi, J.; Rafiee, M.; Hadad, M.H. Experimental investigation of the effects of cutting parameters on the machinability of ECAP-processed ultrafine-grained copper using tungsten carbide cutting tools. Energy Equip. Syst. 2022, 10, 241–254. [Google Scholar]
- Yang, P.; Zhang, H.; Luan, T.; Jin, Y. Molecular dynamics analysis of microstructural deformation mechanisms in single crystal copper undergoing equal channel angular pressing. AIP Adv. 2025, 15, 015110. [Google Scholar] [CrossRef]
- Dalan, F.C.; Andreani, G.F.D.L.; Travessa, D.N.; Faizov, I.A.; Faizova, S.; Cardoso, K.R. Effect of ECAP processing on distribution of second phase particles, hardness and electrical conductivity of Cu–0.81Cr–0.07Zr alloy. Trans. Nonferr. Met. Soc. China 2022, 32, 217–232. [Google Scholar] [CrossRef]
- Raabe, D.; Roters, F. Using texture components in crystal plasticity finite element simulations. Int. J. Plast. 2004, 20, 339–361. [Google Scholar] [CrossRef]
- Shi, L. Thermal and thermoelectric transport in nanostructures and low-dimensional systems. Nanoscale Microscale Thermophys. Eng. 2018, 22, 163–197. [Google Scholar] [CrossRef]
- Guo, T.; Tai, X.; Wei, S.; Wang, J.; Jia, Z.; Ding, Y. Microstructure and properties of bulk ultrafine grained Cu1.5Cr0.1Si alloy through ECAP by route C and aging treatment. Crystals 2020, 10, 207. [Google Scholar] [CrossRef]
- Fukuda, Y.; Ohishi, K.; Furukawa, M.; Horita, Z.; Langdon, T.G. Influence of crystal orientation on the processing of copper single crystals by ECAP. J. Mater. Sci. 2007, 42, 1501–1511. [Google Scholar] [CrossRef]
- Zhao, Z.; Godfrey, A.; Liu, Q.; Hansen, N. Relation between dislocation density and electrical conductivity in deformed copper. Acta Mater. 2002, 50, 2901–2912. [Google Scholar]
- Liu, Q.; Lin, J.; Huang, Y.; Zheng, Y. Effect of dislocation structures on electrical conductivity of cold-deformed aluminum. Mater. Sci. Eng. A 2014, 609, 154–160. [Google Scholar]
- Belyakov, A.; Kaibyshev, R.; Sakai, T. Texture evolution and its influence on electrical conductivity in copper processed by ECAP. Mater. Charact. 2015, 107, 310–316. [Google Scholar]
- Mishra, R.S.; Ma, Z.Y. Severe plastic deformation and thermomechanical effects during ECAP. Mater. Sci. Eng. A 2007, 466, 59–64. [Google Scholar] [CrossRef]
- Zhang, Y.; Horita, Z.; Langdon, T.G. Stored energy and recrystallization temperature in high purity copper after ECAP. J. Mater. Sci. 2008, 43, 7363–7369. [Google Scholar] [CrossRef]
- Skrotzki, W.; Scheerbaum, N.; Oertel, C.; Brokmeier, H.; Suwas, S.; Toth, L. Recrystallization of high-purity aluminium during equal channel angular pressing. Acta Mater. 2007, 55, 2211–2218. [Google Scholar] [CrossRef]
- Kim, H.S. Prediction of Temperature Rise in Equal Channel Angular Pressing. Mater. Trans. 2001, 42, 536–538. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Anand, L. Elasto-viscoplastic constitutive equations for polycrystalline FCC materials at low homologous temperatures. J. Mech. Phys. Solids 2002, 50, 427–462. [Google Scholar] [CrossRef]
- Humphreys, F.J.; Hatherly, M. Recrystallization and Related Annealing Phenomena; Elsevier: Oxford, UK, 2004. [Google Scholar]
- Doherty, R.D.; Hughes, D.A.; Humphreys, F.J.; Jonas, J.J.; Jensen, D.J.; Kassner, M.E.; King, W.E.; McNelley, T.R.; McQueen, H.J.; Rollett, A.D. Current issues in recrystallization: A review. Mater. Sci. Eng. A 1997, 238, 219–274. [Google Scholar] [CrossRef]
- Rollett, A.D.; Srolovitz, D.J.; Anderson, M.P.; Grest, G.S. Recrystallization in metallic materials. Acta Mater. 2004, 52, 575–607. [Google Scholar] [CrossRef]
Model | Element Type | Element Number | Model Type |
---|---|---|---|
Mold | Linear tet-C3D4 | 381,163 | Rigid |
Punch | Explicit-Hex-C3D8R | 735 | Rigid |
Polycrystal Dummy | Explicit-Hex-C3D8R | 758,462 | Deformable (VM) |
Electrode | Explicit-Hex-C3D8R | 2560 | Deformable (CP) |
Model | n | q | |||||||
---|---|---|---|---|---|---|---|---|---|
(MPa) | (MPa) | (MPa) | (MPa) | (MPa) | (MPa) | () | |||
VUMAT CP | 168,000 | 121,400 | 75,400 | 25 | 115 | 120 | 0.001 | 17 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Şimşek, Ü.; Çoğun, C. An Investigation of the Performance of Equal Channel Angular Pressed Copper Electrodes in Electric Discharge Machining. Crystals 2025, 15, 849. https://doi.org/10.3390/cryst15100849
Şimşek Ü, Çoğun C. An Investigation of the Performance of Equal Channel Angular Pressed Copper Electrodes in Electric Discharge Machining. Crystals. 2025; 15(10):849. https://doi.org/10.3390/cryst15100849
Chicago/Turabian StyleŞimşek, Ülke, and Can Çoğun. 2025. "An Investigation of the Performance of Equal Channel Angular Pressed Copper Electrodes in Electric Discharge Machining" Crystals 15, no. 10: 849. https://doi.org/10.3390/cryst15100849
APA StyleŞimşek, Ü., & Çoğun, C. (2025). An Investigation of the Performance of Equal Channel Angular Pressed Copper Electrodes in Electric Discharge Machining. Crystals, 15(10), 849. https://doi.org/10.3390/cryst15100849