Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (238)

Search Parameters:
Keywords = mechanical connectors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6506 KiB  
Review
Theoretical Modeling and Numerical Simulation of Current-Carrying Friction and Wear: State of the Art and Challenges
by Yijin Sui, Pengfei Xing, Guobin Li, Hongpeng Zhang, Wenzhong Wang and Haibo Zhang
Lubricants 2025, 13(8), 370; https://doi.org/10.3390/lubricants13080370 - 21 Aug 2025
Viewed by 146
Abstract
Current-carrying friction and wear in contact components are key issues in modern electromechanical systems such as slip rings, electrical connectors, motors, and pantographs, directly influencing their efficiency, reliability, and lifespan. Due to the limitations of experimental methods under some extreme conditions, computational simulations [...] Read more.
Current-carrying friction and wear in contact components are key issues in modern electromechanical systems such as slip rings, electrical connectors, motors, and pantographs, directly influencing their efficiency, reliability, and lifespan. Due to the limitations of experimental methods under some extreme conditions, computational simulations have become essential for studying current-carrying friction and wear in such scenarios. This paper presents a comprehensive review of theoretical modeling and numerical simulation methods for current-carrying friction and wear. It begins with discussions of approaches to solve the electrical contact resistance (ECR), a critical parameter that governs current-carrying friction and wear behaviors. Then, it delves into various modeling strategies for current-carrying friction, with an emphasis on the coupled effects of thermal, mechanical, electrical, and magnetic fields. Finally, the review addresses modeling techniques for current-carrying wear, encompassing mechanical wear and arc erosion. By summarizing existing research, this paper identifies key advancements, highlights existing challenges, and outlines future directions, advocating for the development of efficient, universal, and industry-oriented tools that can seamlessly bridge the gap between theoretical modeling and practical applications. Full article
(This article belongs to the Special Issue Advances in Dry and Lubricated Electrical Contacts)
Show Figures

Figure 1

15 pages, 1286 KiB  
Article
Weibull Reliability Based on Random Vibration Performance for Fiber Optic Connectors
by Jesús M. Barraza-Contreras, Manuel R. Piña-Monárrez, María M. Hernández-Ramos and Secundino Ramos-Lozano
Vibration 2025, 8(3), 46; https://doi.org/10.3390/vibration8030046 - 12 Aug 2025
Viewed by 278
Abstract
Communication via optical fiber is increasingly being used in harsh applications where environmental vibration is present. This study involves a Weibull reliability analysis focused on the performance of fiber optic connectors when they are subjected to mechanical random vibration stress to simulate real-world [...] Read more.
Communication via optical fiber is increasingly being used in harsh applications where environmental vibration is present. This study involves a Weibull reliability analysis focused on the performance of fiber optic connectors when they are subjected to mechanical random vibration stress to simulate real-world operating conditions, and the insertion loss (IL) degradation is measurable. By analyzing the testing times and stress levels, the Weibull shape (β) and scale (η) parameters are estimated directly from the maximal and minimal principal IL stresses (σ1, σ2), enabling the prediction of the connector’s reliability with efficiency. The sample size n is derived from the desired reliability (R(t)), and the GR-326 mechanical vibration test (2.306 Grms for six hours) is performed on optical SC angled physical contact (PC) polish fiber endface connectors that are monitored during testing to evaluate the IL transient change in the optical transmission. The method is verified by an experiment performed with σ1=0.3960 and σ2=0.1910 where the IL measurements are captured with an Agilent N7745A source-detector optical equipment, and the Weibull statistical results provide a connector’s reliability R(t) = 0.8474, with a characteristic value of η = 0.2750 dB and β = 3. Finally, the connector’s reliability is as worthy of attention as the telecommunication sign conditions. Full article
Show Figures

Figure 1

20 pages, 5568 KiB  
Article
Dynamic Wear Modeling and Experimental Verification of Guide Cone in Passive Compliant Connectors Based on the Archard Model
by Yuanping He, Bowen Wang, Feifei Zhao, Xingfu Hong, Liang Fang, Weihao Xu, Ming Liao and Fujing Tian
Polymers 2025, 17(15), 2091; https://doi.org/10.3390/polym17152091 - 30 Jul 2025
Viewed by 364
Abstract
To address the wear life prediction challenge of Guide Cones in passive compliant connectors under dynamic loads within specialized equipment, this study proposes a dynamic wear modeling and life assessment method based on the improved Archard model. Through integrated theoretical modeling, finite element [...] Read more.
To address the wear life prediction challenge of Guide Cones in passive compliant connectors under dynamic loads within specialized equipment, this study proposes a dynamic wear modeling and life assessment method based on the improved Archard model. Through integrated theoretical modeling, finite element simulation, and experimental validation, we establish a bidirectional coupling framework analyzing dynamic contact mechanics and wear evolution. By developing phased contact state identification criteria and geometric constraints, a transient load calculation model is established, revealing dynamic load characteristics with peak contact forces reaching 206.34 N. A dynamic contact stress integration algorithm is proposed by combining Archard’s theory with ABAQUS finite element simulation and ALE adaptive meshing technology, enabling real-time iterative updates of wear morphology and contact stress. This approach constructs an exponential model correlating cumulative wear depth with docking cycles (R2 = 0.997). Prototype experiments demonstrate a mean absolute percentage error (MAPE) of 14.6% between simulated and measured wear depths, confirming model validity. With a critical wear threshold of 0.8 mm, the predicted service life reaches 45,270 cycles, meeting 50-year operational requirements (safety margin: 50.9%). This research provides theoretical frameworks and engineering guidelines for wear-resistant design, material selection, and life evaluation in high-reliability automatic docking systems. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

23 pages, 5594 KiB  
Article
Dynamic Properties of Steel-Wrapped RC Column–Beam Joints Connected by Embedded Horizontal Steel Plate: Experimental Study
by Jian Wu, Mingwei Ma, Changhao Wei, Jian Zhou, Yuxi Wang, Jianhui Wang and Weigao Ding
Buildings 2025, 15(15), 2657; https://doi.org/10.3390/buildings15152657 - 28 Jul 2025
Viewed by 414
Abstract
The performance of reinforced concrete (RC) frame structures will gradually decrease over time, posing a threat to the safety of buildings. Although the performance of some buildings may still meet the safety requirements, they cannot meet new usage requirements. Therefore, this paper proposes [...] Read more.
The performance of reinforced concrete (RC) frame structures will gradually decrease over time, posing a threat to the safety of buildings. Although the performance of some buildings may still meet the safety requirements, they cannot meet new usage requirements. Therefore, this paper proposes a new-type joint to promote the development of research on the reinforcement and renovation of RC frame structures in response to this situation. The RC beams and columns of the joints are connected by embedded horizontal steel plate (a single plate with dimension of 150 mm × 200 mm × 5 mm), and the beams and columns are individually wrapped in steel. Through conducting low cyclic loading tests, this paper analyzes the influence of carrying out wrapped steel treatment and the thickness of wrapped steel of the beam and connector on mechanical performance indicators such as hysteresis curve, skeleton curve, stiffness, ductility, and energy dissipation. The experimental results indicate that the reinforcement using steel plate can significantly improve the dynamic performance of the joint. The effect of changing the thickness of the connector on the dynamic performance of the specimen is not significant, while increasing the thickness of wrapped steel of beam can effectively improve the overall strength of joint. The research results of this paper will help promote the application of reinforcement and renovation technology for existing buildings, and improve the quality of human living. Full article
Show Figures

Figure 1

17 pages, 5711 KiB  
Article
Impact of High-Temperature Exposure on Reinforced Concrete Structures Supported by Steel Ring-Shaped Shear Connectors
by Atsushi Suzuki, Runze Yang and Yoshihiro Kimura
Buildings 2025, 15(15), 2626; https://doi.org/10.3390/buildings15152626 - 24 Jul 2025
Viewed by 339
Abstract
Ensuring the structural integrity of reinforced concrete (RC) components in nuclear facilities exposed to extreme conditions is essential for safe decommissioning. This study investigates the impact of high-temperature exposure on RC pedestal structures supported by steel ring-shaped shear connectors—critical elements for maintaining vertical [...] Read more.
Ensuring the structural integrity of reinforced concrete (RC) components in nuclear facilities exposed to extreme conditions is essential for safe decommissioning. This study investigates the impact of high-temperature exposure on RC pedestal structures supported by steel ring-shaped shear connectors—critical elements for maintaining vertical and lateral load paths in containment systems. Scaled-down cyclic loading tests were performed on pedestal specimens with and without prior thermal exposure, simulating post-accident conditions observed at a damaged nuclear power plant. Experimental results show that thermal degradation significantly reduces lateral stiffness, with failure mechanisms concentrating at the interface between the concrete and the embedded steel skirt. Complementary finite element analyses, incorporating temperature-dependent material degradation, highlight the crucial role of load redistribution to steel components when concrete strength is compromised. Parametric studies reveal that while geometric variations in the inner skirt have limited influence, thermal history is the dominant factor affecting vertical capacity. Notably, even with substantial section loss in the concrete, the steel inner skirt maintained considerable load-bearing capacity. This study establishes a validated analytical framework for assessing structural performance under extreme conditions, offering critical insights for risk evaluation and retrofit strategies in the context of nuclear facility decommissioning. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

11 pages, 1124 KiB  
Communication
Fracture Resistance of 3D-Printed Fixed Partial Dentures: Influence of Connector Size and Materials
by Giulia Verniani, Edoardo Ferrari Cagidiaco, SeyedReza Alavi Tabatabaei and Alessio Casucci
Materials 2025, 18(15), 3468; https://doi.org/10.3390/ma18153468 - 24 Jul 2025
Viewed by 379
Abstract
Background: Limited data are available regarding the mechanical performance of 3D-printed fixed partial dentures (FPDs) fabricated from different materials and connector geometries. The purpose of this in vitro study was to evaluate the influence of connector size and material type on the fracture [...] Read more.
Background: Limited data are available regarding the mechanical performance of 3D-printed fixed partial dentures (FPDs) fabricated from different materials and connector geometries. The purpose of this in vitro study was to evaluate the influence of connector size and material type on the fracture resistance of three-unit posterior FPDs fabricated with two commercially available 3D-printable dental resins. Methods: A standardized metal model with two cylindrical abutments was used to design three-unit FPDs. A total of sixty samples were produced, considering three connector sizes (3 × 3 mm, 4 × 4 mm, and 5 × 5 mm) and two different resins: Temp Print (GC Corp., Tokyo, Japan) and V-Print c&b temp (Voco GmbH, Cuxhaven, Germany) (n = 10). Specimens were fabricated with a DLP printer (Asiga MAX UV), post-processed per manufacturer recommendations, and tested for fracture resistance under occlusal loading using a universal testing machine. Data were analyzed using nonparametric tests (Mann–Whitney U and Kruskal–Wallis; α = 0.05). Results: Significant differences were found between material and connector size groups (p < 0.001). Temp Print (GC Corp., Tokyo, Japan) demonstrated higher mean fracture loads (792.34 ± 578.36 N) compared to V-Print c&b temp (Voco GmbH, Cuxhaven, Germany) (359.74 ± 131.64 N), with statistically significant differences at 4 × 4 and 5 × 5 mm connectors. Fracture strength proportionally increased with connector size. FPDs with 5 × 5 mm connectors showed the highest resistance, reaching values above 1500 N. Conclusions: Both connector geometry and material composition significantly affected the fracture resistance of 3D-printed FPDs. Larger connector dimensions and the use of Temp Print (GC Corp., Tokyo, Japan) resin enhanced mechanical performance. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

13 pages, 4489 KiB  
Article
Fatigue Resistance of Customized Implant-Supported Restorations
by Ulysses Lenz, Renan Brandenburg dos Santos, Megha Satpathy, Jason A. Griggs and Alvaro Della Bona
Materials 2025, 18(14), 3420; https://doi.org/10.3390/ma18143420 - 21 Jul 2025
Cited by 1 | Viewed by 412
Abstract
The design of custom abutments (CA) can affect the mechanical reliability of implant-supported restorations. The purpose of the study was to evaluate the influence of design parameters on the fatigue limit of CA and to compare optimized custom designs with the reference abutment [...] Read more.
The design of custom abutments (CA) can affect the mechanical reliability of implant-supported restorations. The purpose of the study was to evaluate the influence of design parameters on the fatigue limit of CA and to compare optimized custom designs with the reference abutment (RA). A morse-tapered dental implant, an anatomical abutment, and a connector screw were digitalized using microcomputed tomography. A cone beam computed tomography scan was obtained from one of the authors to virtually place the implant-abutment assembly in the upper central incisor. Ten design parameters were selected according to the structural geometry of the RA and the implant planning. A reverse-engineered RA model was created in SOLIDWORKS and was modified considering a Taguchi orthogonal array to generate 36 CAs with ±20% dimensional variations. Finite element analysis was conducted in ABAQUS, and fatigue limits were estimated using Fe-safe. ANOVA (α = 0.1) identified the most influential parameters. Von Mises stress values ranged from 229 MPa to 302 MPa, and 94.4% of the CAs had a higher fatigue limit than the RA. Three parameters significantly affected the fatigue performance of the implant system. The design process of custom abutments includes critical design parameters that can be optimized for longer lifetimes of implant-abutment restorations. Full article
(This article belongs to the Special Issue Innovations in Digital Dentistry: Novel Materials and Technologies)
Show Figures

Figure 1

25 pages, 5545 KiB  
Article
Finite Element Analysis of the Mechanical Performance of an Innovative Beam-Column Joint Incorporating V-Shaped Steel as a Replaceable Energy-Dissipating Component
by Lin Zhang, Yiru Hou and Yi Wang
Buildings 2025, 15(14), 2513; https://doi.org/10.3390/buildings15142513 - 17 Jul 2025
Viewed by 308
Abstract
Ductile structures have demonstrated the ability to withstand increased seismic intensity levels. Additionally, these structures can be restored to their operational state promptly following the replacement of damaged components post-earthquake. This capability has been a subject of considerable interest and focus in recent [...] Read more.
Ductile structures have demonstrated the ability to withstand increased seismic intensity levels. Additionally, these structures can be restored to their operational state promptly following the replacement of damaged components post-earthquake. This capability has been a subject of considerable interest and focus in recent years. The study presented in this paper introduces an innovative beam-column connection that incorporates V-shaped steel as the replaceable energy-dissipating component. It delineates the structural configuration and design principles of this joint. Furthermore, the paper conducts a detailed analysis of the joint’s failure mode, stress distribution, and strain patterns using ABAQUS 2022 finite element software, thereby elucidating the failure mechanisms, load transfer pathways, and energy dissipation characteristics of the joint. In addition, the study investigates the impact of critical design parameters, including the strength, thickness, and weakening dimensions of the dog-bone energy-dissipating section, as well as the strength and thickness of the V-shaped plate, on the seismic behavior of the beam-column joint. The outcomes demonstrate that the incorporation of V-shaped steel with a configurable replaceable energy-dissipating component into the traditional dog-bone replaceable joint significantly improves the out-of-plane stability. Concurrently, the V-shaped steel undergoes a process of gradual flattening under load, which allows for a larger degree of deformation. In conclusion, the innovative joint design exhibits superior ductility and load-bearing capacity when contrasted with the conventional replaceable dog-bone energy-dissipating section joint. The joint’s equivalent viscous damping coefficient, ranging between 0.252 and 0.331, demonstrates its robust energy dissipation properties. The parametric analysis results indicate that the LY160 and Q235 steel grades are recommended for the dog-bone connector and V-shaped steel connector, respectively. The optimal thickness ranges are 6–10 mm for the dog-bone connector and 2–4 mm for the V-shaped steel connector, while the weakened dimension should preferably be selected within 15–20 mm. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 5876 KiB  
Article
Optimization of Knitted Strain Sensor Structures for a Real-Time Korean Sign Language Translation Glove System
by Youn-Hee Kim and You-Kyung Oh
Sensors 2025, 25(14), 4270; https://doi.org/10.3390/s25144270 - 9 Jul 2025
Viewed by 376
Abstract
Herein, an integrated system is developed based on knitted strain sensors for real-time translation of sign language into text and audio voices. To investigate how the structural characteristics of the knit affect the electrical performance, the position of the conductive yarn and the [...] Read more.
Herein, an integrated system is developed based on knitted strain sensors for real-time translation of sign language into text and audio voices. To investigate how the structural characteristics of the knit affect the electrical performance, the position of the conductive yarn and the presence or absence of elastic yarn are set as experimental variables, and five distinct sensors are manufactured. A comprehensive analysis of the electrical and mechanical performance, including sensitivity, responsiveness, reliability, and repeatability, reveals that the sensor with a plain-plated-knit structure, no elastic yarn included, and the conductive yarn positioned uniformly on the back exhibits the best performance, with a gauge factor (GF) of 88. The sensor exhibited a response time of less than 0.1 s at 50 cycles per minute (cpm), demonstrating that it detects and responds promptly to finger joint bending movements. Moreover, it exhibits stable repeatability and reliability across various angles and speeds, confirming its optimization for sign language recognition applications. Based on this design, an integrated textile-based system is developed by incorporating the sensor, interconnections, snap connectors, and a microcontroller unit (MCU) with built-in Bluetooth Low Energy (BLE) technology into the knitted glove. The complete system successfully recognized 12 Korean Sign Language (KSL) gestures in real time and output them as both text and audio through a dedicated application, achieving a high recognition accuracy of 98.67%. Thus, the present study quantitatively elucidates the structure–performance relationship of a knitted sensor and proposes a wearable system that accounts for real-world usage environments, thereby demonstrating the commercialization potential of the technology. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

20 pages, 8683 KiB  
Article
Experimental Study on the Force Mechanism of Internal Composite Connectors in Steel–Concrete Composite Sections of Bridge Towers
by Yunwei Du, Zhenqing Yu, Yuyang Chen, Niujing Ma and Ronghui Wang
Buildings 2025, 15(13), 2284; https://doi.org/10.3390/buildings15132284 - 29 Jun 2025
Viewed by 412
Abstract
Current research on the stress mechanisms of composite connectors within steel–concrete structures of bridge towers is sparse, and there is a lack of established experimental methods and finite element modeling techniques for studying these mechanisms. This study focuses on a specific type of [...] Read more.
Current research on the stress mechanisms of composite connectors within steel–concrete structures of bridge towers is sparse, and there is a lack of established experimental methods and finite element modeling techniques for studying these mechanisms. This study focuses on a specific type of composite shear connector within the steel–concrete section of the Shunde Bridge tower. By employing proposed experimental methods and finite element model analysis, this research examines the load–slip curves and stress distribution of these shear connectors. It aims to elucidate the stress mechanisms and mechanical relationships between the composite connectors and the individual perforated plate connectors and shear stud connectors that comprise them. The results demonstrate that the proposed experimental methods and finite element modeling approaches effectively analyze the stress mechanisms of composite connectors, revealing that the ultimate load-bearing capacity and elastic stiffness of the composite connectors are approximately the sum of those of the individual connectors configured in parallel; The mechanical performance of the composite connectors in the steel–concrete section of the bridge tower is approximately the additive sum of the mechanical performances of the individual connectors comprising them. By comparing the experimentally measured load–slip curves with those calculated from the finite element models, it validates the modeling approach of the finite element model, and the material parameters established through material characteristic tests and literature review are reasonable. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 2372 KiB  
Article
Research on Thermal Performance of Polypropylene Fiber-Reinforced Concrete Wall Panels
by Zhe Zhang, Yiru Hou and Yi Wang
Buildings 2025, 15(13), 2199; https://doi.org/10.3390/buildings15132199 - 23 Jun 2025
Viewed by 307
Abstract
The global construction industry faces pressing challenges in enhancing building energy efficiency standards. To address this critical issue, facilitate worldwide green and low-carbon transformation in construction practices and improve the thermal performance of building wall panels to achieve optimal levels, a novel polypropylene [...] Read more.
The global construction industry faces pressing challenges in enhancing building energy efficiency standards. To address this critical issue, facilitate worldwide green and low-carbon transformation in construction practices and improve the thermal performance of building wall panels to achieve optimal levels, a novel polypropylene fiber-reinforced concrete wall panel has been developed and investigated. A three-dimensional steady-state heat transfer finite element model of the wall panel was established to simulate its thermal performance. Key parameters, including the thickness of the inner and outer concrete layers, insulation layer thickness, connector spacing, and connector arrangement patterns, were analyzed to evaluate the thermal performance of the fiber-reinforced concrete composite sandwich wall panel. The results indicate that the heat transfer coefficients of the G-FCSP and FCSP wall panels were 0.768 W/m2 · K and 0.767 W/m2 · K, respectively, suggesting that the glass fiber grid had a negligible impact on the thermal performance of the panels. The embedded insulation layer was crucial for enhancing the thermal insulation performance of the wall panel, effectively preventing heat exchange between the two sides. Increasing the thickness of the concrete layers had a very limited effect on reducing the heat transfer coefficient. Reducing the spacing of the connectors improved the load-bearing capacity of the composite wall panel to some extent but had minimal influence on the heat transfer coefficient; to achieve optimal performance by balancing structural load distribution and thermal damage resistance, a connector spacing ranging from 200 mm to 500 mm is recommended. The variation in heat transfer coefficients among the four different connector arrangement patterns demonstrated that reducing the thermal conduction media within the wall panel should be prioritized while ensuring mechanical performance. It is also recommended that the connectors are arranged in a continuous layout. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

13 pages, 31731 KiB  
Article
Optimized Coupling Coil Geometry for High Wireless Power Transfer Efficiency in Mobile Devices
by Fahad M. Alotaibi
J. Low Power Electron. Appl. 2025, 15(2), 36; https://doi.org/10.3390/jlpea15020036 - 17 Jun 2025
Viewed by 545
Abstract
Wireless Power Transfer (WPT) enables efficient, contactless charging for mobile devices by eliminating mechanical connectors and wiring, thereby enhancing user experience and device longevity. However, conventional WPT systems remain prone to performance issues such as coil misalignment, resonance instability, and thermal losses. Addressing [...] Read more.
Wireless Power Transfer (WPT) enables efficient, contactless charging for mobile devices by eliminating mechanical connectors and wiring, thereby enhancing user experience and device longevity. However, conventional WPT systems remain prone to performance issues such as coil misalignment, resonance instability, and thermal losses. Addressing these challenges involves designing coil geometries that operate at lower resonant frequencies to strengthen magnetic coupling and decrease resistance. This work introduces a WPT system with a performance-driven coil design aimed at maximizing magnetic coupling and mutual inductance between the transmitting (Tx) and receiving (Rx) coils in mobile devices. Due to the nonlinear behavior of magnetic flux and the high computational cost of simulations, exploring the full design space for coils using ANSYS Maxwell becomes impractical. To address this complexity, a machine learning (ML)-based optimization framework is developed to efficiently navigate the design space. The framework integrates a hybrid sequential neural network and multivariate regression model to optimize coil winding and ferrite core geometry. The optimized structure achieves a mutual inductance of 12.52 μH with a conventional core, outperforming many existing ML models. Finite element simulations and experimental results validate the robustness of the method, which offers a scalable solution for efficient wireless charging in compact, misalignment-prone environments. Full article
Show Figures

Figure 1

22 pages, 5614 KiB  
Article
Fatigue Design Research on Notch–Stud Connectors of Timber–Concrete Composite Structures
by Zuen Zheng, Shuai Yuan and Guojing He
Buildings 2025, 15(12), 2033; https://doi.org/10.3390/buildings15122033 - 12 Jun 2025
Viewed by 571
Abstract
To investigate the mechanical behavior and damage mechanism of notch–stud connectors in timber–concrete composites under fatigue loading, fifteen push-out specimens in five groups were designed with load cycles as the key variable. Fatigue failure modes and mechanisms were analyzed to examine fatigue life, [...] Read more.
To investigate the mechanical behavior and damage mechanism of notch–stud connectors in timber–concrete composites under fatigue loading, fifteen push-out specimens in five groups were designed with load cycles as the key variable. Fatigue failure modes and mechanisms were analyzed to examine fatigue life, stiffness degradation, and cumulative damage laws of connectors. Numerical simulations with up to 100 load cycles explored timber/concrete damage effects on stud fatigue performance. Based on the results, an S-N curve was established, a fatigue damage model developed, and a fatigue design method proposed for such connectors. Primary failure modes were stud fracture and local concrete crushing in notches. Stiffness degradation followed an inverted “S”-shaped “fast–slow–fast” pattern. Using residual slip as the damage variable, a two-stage fatigue damage evolution model was constructed from the damage–cycle ratio relationship, offering a new method for shear connector fatigue damage calculation in timber–concrete composites and enabling remaining life prediction for similar composite beam connectors. Finite element simulations of push-out specimens showed high consistency between calculated and experimental fatigue life/damage results, validating the conclusions. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 1551 KiB  
Article
Development and Validation of a Theoretical Model for Flexural Behavior in Timber-Concrete and Bamboo-Concrete Composite Beams
by Thaís P. L. Siqueira, M’hamed Y. R. da Glória, Enzo Martinelli and Romildo D. Toledo Filho
Buildings 2025, 15(12), 2021; https://doi.org/10.3390/buildings15122021 - 12 Jun 2025
Viewed by 707
Abstract
The growing demand for sustainable construction has encouraged the use of composite beams combining timber or bamboo with concrete to optimize structural performance and reduce environmental impact. These hybrid systems, widely used in new constructions and retrofits, present modeling challenges due to the [...] Read more.
The growing demand for sustainable construction has encouraged the use of composite beams combining timber or bamboo with concrete to optimize structural performance and reduce environmental impact. These hybrid systems, widely used in new constructions and retrofits, present modeling challenges due to the nonlinear interaction between materials and their mechanical connections. This study aims to develop and validate a finite element model to simulate the nonlinear flexural behavior of these composite beams. The model is based on an exact solution for two-layer elastic systems and incorporates nonlinear constitutive laws for concrete and timber/bamboo, along with a trilinear shear–slip law to represent interface behavior. Unlike most models, it is applicable to different connector types and a range of materials—including bamboo, timber, and both conventional and lightweight concrete. An incremental–iterative solution captures progressive deformations and failure mechanisms. Validation against 16 experimental beams showed accurate predictions of linear load capacity, mid-span deflection, and initial stiffness. Over 80% of the results showed deviations below 30%, and 50% were within 20%. The model also correctly captured the experimental failure mode in all cases. This approach provides a reliable and versatile tool for the structural analysis and design of composite beams. Full article
(This article belongs to the Special Issue Contemporary Applications of Wood in Architecture and Construction)
Show Figures

Figure 1

21 pages, 4484 KiB  
Article
Analytical and Experimental Investigation of a Three-Module VLFS Connector Based on an Elastic Beam Model
by Yongheng Wang, Xuefeng Wang, Shengwen Xu and Lei Wang
J. Mar. Sci. Eng. 2025, 13(6), 1148; https://doi.org/10.3390/jmse13061148 - 10 Jun 2025
Viewed by 395
Abstract
Very large floating structures (VLFSs) typically employ a modular design approach to mitigate significant hydroelastic loads. A mooring system is commonly employed to maintain the position and heading of a VLFS against the forces of waves, wind, and currents, while a connector is [...] Read more.
Very large floating structures (VLFSs) typically employ a modular design approach to mitigate significant hydroelastic loads. A mooring system is commonly employed to maintain the position and heading of a VLFS against the forces of waves, wind, and currents, while a connector is utilized to restrict the relative motion among the modules. In this paper, we propose a comprehensive connector model based on elastic beam theory. The aim is to establish a unified mathematical model that accommodates various types of flexible connectors by adjusting the specific stiffness and damping parameters. To assess the effectiveness of the model, numerical and experimental studies are conducted on a VLFS composed of three rigid bodies connected in a series by multiple flexible connectors. The results obtained demonstrate that the general connector model is reasonable and can be applied to different types of connectors, thereby facilitating an analysis of the influence of the mechanical properties of the connectors on the motion response of the VLFS. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop