Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,562)

Search Parameters:
Keywords = mechanical/chemical properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 6333 KiB  
Article
Electrospun Nanofibrous Membranes for Guided Bone Regeneration: Fabrication, Characterization, and Biocompatibility Evaluation—Toward Smart 2D Biomaterials
by Julia Radwan-Pragłowska, Aleksandra Kopacz, Aleksandra Sierakowska-Byczek, Łukasz Janus, Piotr Radomski and Aleksander Radwan-Pragłowski
Appl. Sci. 2025, 15(15), 8713; https://doi.org/10.3390/app15158713 (registering DOI) - 6 Aug 2025
Abstract
Electrospun nanofibrous membranes have gained considerable attention in bone tissue engineering due to their ability to mimic the extracellular matrix and provide a suitable environment for cell attachment and proliferation. This study investigates the fabrication, characterization, and biocompatibility of poly(L-lactic acid) (PLA)-based membranes [...] Read more.
Electrospun nanofibrous membranes have gained considerable attention in bone tissue engineering due to their ability to mimic the extracellular matrix and provide a suitable environment for cell attachment and proliferation. This study investigates the fabrication, characterization, and biocompatibility of poly(L-lactic acid) (PLA)-based membranes enhanced with periclase (MgO) and gold nanoparticles (AuNPs). The membranes were fabricated using an optimized electrospinning process and subsequently characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FT-IR), and contact angle measurements. Additionally, in vitro biodegradation studies in simulated body fluid (SBF) and cytocompatibility tests with osteoblast-like cells were conducted. The results demonstrated that the incorporation of MgO and AuNPs significantly influenced the structural and chemical properties of the membranes, improving their wettability and bioactivity. SEM imaging confirmed uniform fiber morphology with well-distributed nanoparticles. FT-IR spectroscopy indicated successful integration of bioactive components into the PLA matrix. Cytocompatibility assays showed that modified membranes promoted higher osteoblast adhesion and proliferation compared to pristine PLA membranes. Furthermore, biodegradation studies revealed a controlled degradation rate suitable for guided bone regeneration applications. These findings suggest that electrospun PLA membranes enriched with MgO and AuNPs present a promising biomaterial for GBR applications, offering improved bioactivity, mechanical stability, and biocompatibility. Full article
(This article belongs to the Special Issue Bioactive Composite Materials: From Preparation to Application)
42 pages, 1579 KiB  
Review
Antimicrobial Potential of Bee-Derived Products: Insights into Honey, Propolis and Bee Venom
by Agnieszka Grinn-Gofroń, Maciej Kołodziejczak, Rafał Hrynkiewicz, Filip Lewandowski, Dominika Bębnowska, Cezary Adamski and Paulina Niedźwiedzka-Rystwej
Pathogens 2025, 14(8), 780; https://doi.org/10.3390/pathogens14080780 - 6 Aug 2025
Abstract
Bee products, in particular honey, propolis and bee venom, are of growing scientific interest due to their broad spectrum of antimicrobial activity. In the face of increasing antibiotic resistance and the limitations of conventional therapies, natural bee-derived substances offer a promising alternative or [...] Read more.
Bee products, in particular honey, propolis and bee venom, are of growing scientific interest due to their broad spectrum of antimicrobial activity. In the face of increasing antibiotic resistance and the limitations of conventional therapies, natural bee-derived substances offer a promising alternative or support for the treatment of infections. This paper summarizes the current state of knowledge on the chemical composition, biological properties and antimicrobial activity of key bee products. The main mechanisms of action of honey, propolis and bee venom are presented, and their potential applications in the prevention and treatment of bacterial, viral and fungal infections are discussed. Data on their synergy with conventional drugs and prospects for use in medicine and pharmacology are also included. The available findings suggest that, with appropriate standardization and further preclinical and clinical analyses, bee products could become an effective support for the treatment of infections, especially those caused by pathogens resistant to standard therapies. Full article
16 pages, 6256 KiB  
Article
Influence of Alpha/Gamma-Stabilizing Elements on the Hot Deformation Behaviour of Ferritic Stainless Steel
by Andrés Núñez, Irene Collado, Marta Muratori, Andrés Ruiz, Juan F. Almagro and David L. Sales
J. Manuf. Mater. Process. 2025, 9(8), 265; https://doi.org/10.3390/jmmp9080265 - 6 Aug 2025
Abstract
This study investigates the hot deformation behaviour and microstructural evolution of two AISI 430 ferritic stainless steel variants: 0A (basic) and 1C (modified). These variants primarily differ in chemical composition, with 0A containing higher austenite-stabilizing elements (C, N) compared to 1C, which features [...] Read more.
This study investigates the hot deformation behaviour and microstructural evolution of two AISI 430 ferritic stainless steel variants: 0A (basic) and 1C (modified). These variants primarily differ in chemical composition, with 0A containing higher austenite-stabilizing elements (C, N) compared to 1C, which features lower interstitial content and slightly higher Si and Cr. This research aimed to optimize hot rolling conditions for enhanced forming properties. Uniaxial hot compression tests were conducted using a Gleeble thermo-mechanical system between 850 and 990 C at a strain rate of 3.3 s1, simulating industrial finishing mill conditions. Analysis of flow curves, coupled with detailed microstructural characterization using electron backscatter diffraction, revealed distinct dynamic restoration mechanisms influencing each material’s response. Thermodynamic simulations confirmed significant austenite formation in both materials within the tested temperature range, notably affecting their deformation behaviour despite their initial ferritic state. Material 0A consistently exhibited a strong tendency towards dynamic recrystallization (DRX) across a wider temperature range, particularly at 850 C. DRX led to a microstructure with a high concentration of low-angle grain boundaries and sharp deformation textures, actively reorienting grains towards energetically favourable configurations. However, under this condition, DRX did not fully complete the recrystallization process. In contrast, material 1C showed greater activity of both dynamic recovery and DRX, leading to a much more advanced state of grain refinement and recrystallization compared to 0A. This indicates that the composition of 1C helps mitigate the strong influence of the deformation temperature on the crystallographic texture, leading to a weaker texture overall than 0A. Full article
21 pages, 2480 KiB  
Article
Towards Sustainable Building Materials: An Experimental Investigation into the Effect of Recycled Construction Waste Aggregate on the Properties of High-Performance Concrete
by Radoslav Gandel, Jan Jerabek, Andrea Peknikova, Libor Topolář and Oldrich Sucharda
Buildings 2025, 15(15), 2772; https://doi.org/10.3390/buildings15152772 - 6 Aug 2025
Abstract
This study presents a comparison of the mechanical properties of selected high-performance concrete mixtures, some of which contained a proportion of recycled concrete aggregate (15% or 30%) as a substitute for natural aggregate. A reference mixture without recycled concrete aggregate was used for [...] Read more.
This study presents a comparison of the mechanical properties of selected high-performance concrete mixtures, some of which contained a proportion of recycled concrete aggregate (15% or 30%) as a substitute for natural aggregate. A reference mixture without recycled concrete aggregate was used for comparison. Initially, the properties of concrete containing both the natural and recycled aggregate types were characterized. This was followed by a series of mechanical tests investigating the compressive strength, flexural strength, and chemical resistance (including resistance to de-icing agents and sulfuric acid). The structural performance of reinforced concrete (RC) beams produced from the mixtures was assessed, and surface morphology was evaluated using a digital microscope. The results confirmed that the use of recycled aggregate had a measurable yet limited effect on the properties of hardened concrete. While the compressive strength tended to decrease slightly with an increasing degree of replacement, the flexural strength remained stable in all the mixtures. The tested mixtures demonstrated adequate resistance to de-icing agents and sulfuric acid. Interestingly, specimens subjected to a frost-resistance test showed improved flexural strength, potentially due to ongoing hydration or microcrack healing. In addition, the RC beams with partial aggregate replacement achieved a higher load-bearing capacity compared to the reference beams. The optical surface evaluation method proved to be a valuable tool, complementary to conventional strength testing. This research enhances the current understanding of recycled aggregate concrete and supports its potential for structural applications. Full article
(This article belongs to the Special Issue Constructions in Europe: Current Issues and Future Challenges)
Show Figures

Figure 1

23 pages, 4361 KiB  
Article
Novel Visible Light-Driven Ho2InSbO7/Ag3PO4 Photocatalyst for Efficient Oxytetracycline Contaminant Degradation
by Jingfei Luan and Tiannan Zhao
Molecules 2025, 30(15), 3289; https://doi.org/10.3390/molecules30153289 - 6 Aug 2025
Abstract
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by [...] Read more.
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by a series of techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectrum, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. A comprehensive array of analytical techniques, including ultraviolet-visible diffuse reflectance absorption spectra, photoluminescence spectroscopy, time-resolved photoluminescence spectroscopy, photocurrent testing, electrochemical impedance spectroscopy, electron paramagnetic resonance, and ultraviolet photoelectron spectroscopy, was employed to systematically investigate the optical, chemical, and photoelectronic properties of the materials. Using oxytetracycline (OTC), a representative tetracycline antibiotic, as the target substrate, the photocatalytic activity of the HAO composite was assessed under visible light irradiation. Comparative analyses demonstrated that the photocatalytic degradation capability of the HAO composite surpassed those of its individual components. Notably, during the degradation process, the application of the HAO composite resulted in an impressive removal efficiency of 99.89% for OTC within a span of 95 min, along with a total organic carbon mineralization rate of 98.35%. This outstanding photocatalytic performance could be ascribed to the efficient Z-scheme electron-hole separation system occurring between Ho2InSbO7 and Ag3PO4. Moreover, the adaptability and stability of the HAO heterojunction were thoroughly validated. Through experiments involving the capture of reactive species and electron paramagnetic resonance analysis, the active species generated by HAO were identified as hydroxyl radicals (•OH), superoxide anions (•O2), and holes (h+). This identification provides valuable insights into the mechanisms and pathways associated with the photodegradation of OTC. In conclusion, this research not only elucidates the potential of HAO as an efficient Z-scheme heterojunction photocatalyst but also marks a significant contribution to the advancement of sustainable remediation strategies for OTC contamination. Full article
(This article belongs to the Special Issue Nanomaterials in Photochemical Devices: Advances and Applications)
Show Figures

Graphical abstract

20 pages, 1523 KiB  
Article
Structural and Vibrational Characterizations of Alizarin Red S
by César A. N. Catalán, Licínia L. G. Justino, Rui Fausto, Gulce O. Ildiz and Silvia Antonia Brandán
Molecules 2025, 30(15), 3286; https://doi.org/10.3390/molecules30153286 - 5 Aug 2025
Abstract
In this work, the structures of the isolated anion and anhydrous and monohydrated sodium salts of alizarin red S (ARS) have been theoretically investigated within the density functional theory framework (B3LYP/6-311++G** calculations). The combination of calculations with the scaled quantum mechanics force field [...] Read more.
In this work, the structures of the isolated anion and anhydrous and monohydrated sodium salts of alizarin red S (ARS) have been theoretically investigated within the density functional theory framework (B3LYP/6-311++G** calculations). The combination of calculations with the scaled quantum mechanics force field (SQMFF) methodology has allowed the assignment of the experimental infrared spectrum of ARS in the solid phase and the determination of the corresponding force constants. The structural analysis also included the investigation of the NMR and UV-visible spectra of the compound in solution in light of the undertaken quantum chemical calculations, the obtained theoretical data being in good agreement with the corresponding experimental ones. The impact of the presence of the Na+ counterion and hydration water on the properties of the organic ARS fragment was evaluated. Atoms in molecules theory (AIM) analysis was also undertaken to obtain further details on the electronic structure of the investigated species, and the HOMO-LUMO gap was determined to evaluate their relative reactivity. Globally, the results obtained in this work extend the available information on alizarin red S and may also be used for the fast identification of the three studied species of the compound investigated (anhydrous and monohydrated sodium salts and isolated anion). Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Graphical abstract

15 pages, 1228 KiB  
Review
Antimicrobial Effect of Graphene in Dentistry: A Scoping Review
by Ricardo Martuci, Susana João Oliveira, Mateus Martuci, José Reis-Campos and Maria Helena Figueiral
Dent. J. 2025, 13(8), 355; https://doi.org/10.3390/dj13080355 - 5 Aug 2025
Abstract
Background/Objectives: The functionalization of various forms of graphene, such as graphene nanoplatelets, graphene oxide, and reduced graphene oxide, in biomaterials is a promising strategy in dentistry, particularly regarding their antimicrobial potential. However, conclusive studies on the toxicity and biocompatibility of graphene-based materials [...] Read more.
Background/Objectives: The functionalization of various forms of graphene, such as graphene nanoplatelets, graphene oxide, and reduced graphene oxide, in biomaterials is a promising strategy in dentistry, particularly regarding their antimicrobial potential. However, conclusive studies on the toxicity and biocompatibility of graphene-based materials remain limited, and standardized guidelines for their production, handling, and dental applications are still lacking. This scoping review aims to map the available studies on various types of graphene, synthesize evidence on their antimicrobial effectiveness, and describe the main biological responses when functionalized in dental biomaterials. Methods: An electronic search was conducted in the Clarivate, PubMed, and Scopus databases using the descriptors as follows: ‘graphene’ AND ‘antimicrobial effect’ AND ‘bactericidal effect’ AND (‘graphene oxide’ OR ‘dental biofilm’ OR ‘antibacterial properties’ OR ‘dental materials’). Article screening and eligibility assessment were performed based on predefined inclusion and exclusion criteria, following the PRISMA-ScR guidelines. Results: The search identified 793 articles. After removing duplicates, applying the eligibility criteria, and performing a full-text analysis of 64 articles, 21 studies were included in the review. Graphene oxide, particularly at low concentrations, was the most commonly studied graphene variant, demonstrating significant antimicrobial efficacy against S. mutans, S. faecalis, E. coli, P. aeruginosa, and C. albicans. Both mechanical and chemical mechanisms have been linked to the biological responses of graphene-doped biomaterials. The biocompatibility and cytotoxicity of these compounds remain controversial, with some studies reporting favorable outcomes, while others raise significant concerns. Conclusions: Graphene shows great promise as an antimicrobial agent in dental biomaterials. Despite encouraging results, more in vitro and in vivo studies are needed to better understand its biocompatibility and cytotoxicity in dental applications. Additionally, standardized production protocols, clearly defined clinical applications in dentistry, and regulatory guidelines from the World Health Organization concerning handling procedures and occupational risks remain necessary. Full article
(This article belongs to the Special Issue Feature Review Papers in Dentistry)
Show Figures

Figure 1

14 pages, 10994 KiB  
Article
Novel Cemented Carbide Inserts for Metal Grooving Applications
by Janusz Konstanty, Albir Layyous and Łukasz Furtak
Materials 2025, 18(15), 3674; https://doi.org/10.3390/ma18153674 - 5 Aug 2025
Abstract
Although cemented carbides have been manufactured by the powder metallurgy (P/M) technology for over a century now, systematic developmental efforts are still underway. In the present study, tool life improvements in metal grooving applications are the key objective. Four PVD-coated cemented carbides compositions, [...] Read more.
Although cemented carbides have been manufactured by the powder metallurgy (P/M) technology for over a century now, systematic developmental efforts are still underway. In the present study, tool life improvements in metal grooving applications are the key objective. Four PVD-coated cemented carbides compositions, dedicated to groove steel, stainless steel, cast iron, and aluminium alloys, have been newly designed, along with their manufacturing conditions. Physical, mechanical and chemical characteristics—such as sintered density, modulus of elasticity, hardness, fracture toughness, WC grain size, and the chemical composition of the substrate material, as well as the chemical composition, microhardness, structure, and thickness of the coatings—have been studied. A series of grooving tests have also been conducted to assess whether modifications to the thus far marketed tool materials, tool geometries, and coatings can improve cutting performance. In order to compare the laboratory and application properties of the investigated materials with currently produced by reputable companies, commercial inserts have also been tested. The experimental results obtained indicate that the newly developed grooving inserts exhibit excellent microstructural characteristics, high hardness, fracture toughness, and wear resistance and that they show slightly longer tool life compared to the commercial ones. Full article
Show Figures

Figure 1

28 pages, 974 KiB  
Review
Murburn Bioenergetics and “Origins–Sustenance–Termination–Evolution of Life”: Emergence of Intelligence from a Network of Molecules, Unbound Ions, Radicals and Radiations
by Laurent Jaeken and Kelath Murali Manoj
Int. J. Mol. Sci. 2025, 26(15), 7542; https://doi.org/10.3390/ijms26157542 - 5 Aug 2025
Viewed by 255
Abstract
The paradigm-shift idea of murburn concept is no hypothesis but developed directly from fundamental facts of cellular/ecological existence. Murburn involves spontaneous and stochastic interactions (mediated by murzymes) amongst the molecules and unbound ions of cells. It leads to effective charge s [...] Read more.
The paradigm-shift idea of murburn concept is no hypothesis but developed directly from fundamental facts of cellular/ecological existence. Murburn involves spontaneous and stochastic interactions (mediated by murzymes) amongst the molecules and unbound ions of cells. It leads to effective charge separation (ECS) and formation/recruitment of diffusible reactive species (DRS, like radicals whose reactions enable ATP-synthesis and thermogenesis) and emission of radiations (UV/Vis to ELF). These processes also lead to a chemo-electromagnetic matrix (CEM), ascertaining that living cell/organism react/function as a coherent unit. Murburn concept propounds the true utility of oxygen: generating DRS (with catalytic and electrical properties) on the way to becoming water, the life solvent, and ultimately also leading to phase-based macroscopic homeostatic outcomes. Such a layout enables cells to become simple chemical engines (SCEs) with powering, coherence, homeostasis, electro-mechanical and sensing–response (PCHEMS; life’s short-term “intelligence”) abilities. In the current review, we discuss the coacervate nature of cells and dwell upon the ways and contexts in which various radiations (either incident or endogenously generated) could interact in the new scheme of cellular function. Presenting comparative evidence/arguments and listing of systems with murburn models, we argue that the new perceptions explain life processes better and urge the community to urgently adopt murburn bioenergetics and adapt to its views. Further, we touch upon some distinct scientific and sociological contexts with respect to the outreach of murburn concept. It is envisaged that greater awareness of murburn could enhance the longevity and quality of life and afford better approaches to therapies. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

38 pages, 9437 KiB  
Review
Antibacterial Polysaccharides in Dental Implantology
by Lubica Hallmann and Mark Daniel Gerngroß
Mar. Drugs 2025, 23(8), 321; https://doi.org/10.3390/md23080321 - 4 Aug 2025
Viewed by 238
Abstract
Background: The aim of this review is to summarize and evaluate the properties of antibacterial polysaccharides for application in dental implantology to identify knowledge gaps and provide new research ideas. Methods: The electronic databases PubMed, Medline, ProQuest, and Google Scholar were used [...] Read more.
Background: The aim of this review is to summarize and evaluate the properties of antibacterial polysaccharides for application in dental implantology to identify knowledge gaps and provide new research ideas. Methods: The electronic databases PubMed, Medline, ProQuest, and Google Scholar were used to search for peer-reviewed scientific publications published between 2018 and 2025 that provide insights to answer research questions on the role of antibacterial polysaccharides in combating pathogens in dental implantology without triggering immune reactions and inflammation. Further research questions relate to the efficacy against various dental pathogens and the understanding of the antibacterial mechanism, which may enable the development of functionalized polysaccharides with long-term antibacterial activity. Results: Biomedical implants have revolutionized medicine but also increased the risk of infections. Implant infections are a major problem in implantology and lead to implant failure and replacement. An antibacterial coating could be an excellent strategy to extend the lifespan of implants and improve the quality of the patient’s life. Bacterial resistance to antibiotics poses significant challenges for researchers, forcing them to search for new ways to prevent bacterial infections in implantology. Antibacterial natural polymers have recently received considerable research attention due to their long-term antibacterial activity. Polysaccharides from marine sources, such as chitosan and alginate, or pectin, xanthan, etc., from various plants, appear to be promising biopolymers for such applications in implantology due to their antibacterial activity, biocompatibility, and osteogenic properties. The antibacterial activity of these natural biopolymers depends on their chemical and physical properties. Nanopolysaccharides exhibit higher antibacterial activity than conventional polysaccharides, but their toxicity to human cells must be considered. Their antibacterial activity is based on the disruption of bacterial DNA or RNA synthesis, increased cell wall permeability, membrane disruption, and cytoplasmic leakage. Conclusions: Polysaccharides are a class of natural polymers with a broad spectrum of biological activities. They exhibit antioxidant, immunomodulatory, anticoagulant, anticancer, anti-inflammatory, antibacterial, and antiviral activity. Furthermore, polysaccharides are non-cytotoxic and exhibit good biocompatibility with osteogenic cells. Bactericidal polysaccharides are attractive new antibacterial materials against implant infections and open up new perspectives in implantology. Full article
(This article belongs to the Special Issue Marine Biomaterials for Dental Applications)
Show Figures

Figure 1

24 pages, 1861 KiB  
Review
Protective Effect of Melatonin Against Bisphenol A Toxicity
by Seong Soo Joo and Yeong-Min Yoo
Int. J. Mol. Sci. 2025, 26(15), 7526; https://doi.org/10.3390/ijms26157526 - 4 Aug 2025
Viewed by 189
Abstract
Bisphenol A (BPA), a prevalent endocrine-disrupting chemical, is widely found in various consumer products and poses significant health risks, particularly through hormone receptor interactions, oxidative stress, and mitochondrial dysfunction. BPA exposure is associated with reproductive, metabolic, and neurodevelopmental disorders. Melatonin, a neurohormone with [...] Read more.
Bisphenol A (BPA), a prevalent endocrine-disrupting chemical, is widely found in various consumer products and poses significant health risks, particularly through hormone receptor interactions, oxidative stress, and mitochondrial dysfunction. BPA exposure is associated with reproductive, metabolic, and neurodevelopmental disorders. Melatonin, a neurohormone with strong antioxidant and anti-inflammatory properties, has emerged as a potential therapeutic agent to counteract the toxic effects of BPA. This review consolidates recent findings from in vitro and animal/preclinical studies, highlighting melatonin’s protective mechanisms against BPA-induced toxicity. These include its capacity to reduce oxidative stress, restore mitochondrial function, modulate inflammatory responses, and protect against DNA damage. In animal models, melatonin also mitigates reproductive toxicity, enhances fertility parameters, and reduces histopathological damage. Melatonin’s ability to regulate endoplasmic reticulum (ER) stress and cell death pathways underscores its multifaceted protective role. Despite promising preclinical results, human clinical trials are needed to validate these findings and establish optimal dosages, treatment durations, and safety profiles. This review discusses the wide range of potential uses of melatonin for treating BPA toxicity and suggests directions for future research. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

18 pages, 3421 KiB  
Article
Bisphenol E Neurotoxicity in Zebrafish Larvae: Effects and Underlying Mechanisms
by Kaicheng Gu, Lindong Yang, Yi Jiang, Zhiqiang Wang and Jiannan Chen
Biology 2025, 14(8), 992; https://doi.org/10.3390/biology14080992 (registering DOI) - 4 Aug 2025
Viewed by 163
Abstract
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been [...] Read more.
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been frequently detected in environmental matrices such as soil and water in recent years. Existing research has unveiled the developmental and reproductive toxicity of BPE; however, only one in vitro cellular experiment has preliminarily indicated potential neurotoxic risks, with its underlying mechanisms remaining largely unelucidated in the current literature. Potential toxic mechanisms and action targets of BPE were predicted using the zebrafish model via network toxicology and molecular docking, with RT-qPCRs being simultaneously applied to uncover neurotoxic effects and associated mechanisms of BPE. A significant decrease (p < 0.05) in the frequency of embryonic spontaneous movements was observed in zebrafish at exposure concentrations ≥ 0.01 mg/L. At 72 hpf and 144 hpf, the larval body length began to shorten significantly from 0.1 mg/L to 1 mg/L, respectively (p < 0.01), accompanied by a reduced neuronal fluorescence intensity and a shortened neural axon length (p < 0.01). By 144 hpf, the motor behavior in zebrafish larvae was inhibited. Through network toxicology and molecular docking, HSP90AB1 was identified as the core target, with the cGMP/PKG signaling pathway determined to be the primary route through which BPE induces neurotoxicity in zebrafish larvae. BPE induces neuronal apoptosis and disrupts neurodevelopment by inhibiting the cGMP/PKG signaling pathway, ultimately suppressing the larval motor behavior. To further validate the experimental outcomes, we measured the expression levels of genes associated with neurodevelopment (elavl3, mbp, gap43, syn2a), serotonergic synaptic signaling (5-ht1ar, 5-ht2ar), the cGMP/PKG pathway (nos3), and apoptosis (caspase-3, caspase-9). These results offer crucial theoretical underpinnings for evaluating the ecological risks of BPE and developing environmental management plans, as well as crucial evidence for a thorough comprehension of the toxic effects and mechanisms of BPE on neurodevelopment in zebrafish larvae. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Graphical abstract

15 pages, 5625 KiB  
Article
Effect of Phosphogypsum Characteristics on the Properties of Phosphogypsum-Based Binders
by Nataliya Alfimova, Kseniya Levickaya, Il’ya Buhtiyarov, Ivan Nikulin, Marina Kozhukhova and Valeria Strokova
J. Compos. Sci. 2025, 9(8), 413; https://doi.org/10.3390/jcs9080413 - 4 Aug 2025
Viewed by 193
Abstract
Phosphogypsum, a byproduct of orthophosphoric acid production, is one of the large-tonnage wastes. Since phosphogypsum mainly consists of CaSO4 2H2O, it can be considered as an alternative gypsum-bearing raw material in the production of gypsum binders. However, its features, such [...] Read more.
Phosphogypsum, a byproduct of orthophosphoric acid production, is one of the large-tonnage wastes. Since phosphogypsum mainly consists of CaSO4 2H2O, it can be considered as an alternative gypsum-bearing raw material in the production of gypsum binders. However, its features, such as particle morphology and the presence of impurities, can negatively affect the characteristics of phosphogypsum-based binders. Identification of these factors will allow us to develop methods for their minimization and increasing the efficiency of phosphogypsum use from the required source as a raw material for the production of phosphogypsum-based binders. In this regard, the manuscript contains a comprehensive and comparative analysis of phosphogypsum and natural gypsum, which makes it possible to establish their differences in chemical composition and structural and morphological features, which subsequently affect the properties of the phosphogypsum-based binder. It has been established that the key factor negatively affecting the strength of phosphogypsum-based paste (2.58 MPa) is its high water demand (0.89), which is due to the high values of the specific surface area of the particles and the presence of a large number of conglomerates with significant porosity in phosphogypsum. It has been suggested that preliminary grinding of phosphogypsum can help reduce the amount of water required to obtain fresh phosphogypsum-based paste with a standard consistency and improve its physical and mechanical properties. Full article
(This article belongs to the Special Issue From Waste to Advance Composite Materials, 2nd Edition)
Show Figures

Figure 1

26 pages, 6743 KiB  
Review
Nudibranchs as Sources of Marine Natural Products with Antitumor Activity: A Comprehensive Review
by Máximo Servillera, Mercedes Peña, Laura Cabeza, Héctor J. Pula, Jose Prados and Consolación Melguizo
Mar. Drugs 2025, 23(8), 319; https://doi.org/10.3390/md23080319 - 3 Aug 2025
Viewed by 281
Abstract
Nudibranchs have garnered increasing interest in biomedical research due to their complex chemical defense mechanisms, many of which are derived from their diet, including sponges, cnidarians, tunicates, and algae. Their remarkable ability to sequester dietary toxins and synthesize secondary metabolites positions them as [...] Read more.
Nudibranchs have garnered increasing interest in biomedical research due to their complex chemical defense mechanisms, many of which are derived from their diet, including sponges, cnidarians, tunicates, and algae. Their remarkable ability to sequester dietary toxins and synthesize secondary metabolites positions them as a promising source of biologically active compounds with potential therapeutic applications, particularly in oncology. This study aimed to review and summarize the available literature on the bioactive potential of nudibranch-derived compounds, focusing mainly on their antitumor properties. Although research in this area is still limited, recent studies have identified alkaloids and terpenoids isolated from species such as Dolabella auricularia, Jorunna funebris, Dendrodoris fumata, and members of the genus Phyllidia. These compounds exhibit notable cytotoxic activity against human cancer cell lines, including those from colon (HCT-116, HT-29, SW-480), lung (A549), and breast (MCF7) cancer. These findings suggest that compounds derived from nudibranchs could serve as scaffolds for the development of more effective and selective anticancer therapies. In conclusion, nudibranchs represent a valuable yet underexplored resource for antitumor drug discovery, with significant potential to contribute to the development of novel cancer treatments. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents, 4th Edition)
Show Figures

Graphical abstract

27 pages, 11202 KiB  
Article
Durability Analysis of Brick-Faced Clay-Core Walls in Traditional Residential Architecture in Quanzhou, China
by Yuhong Ding, Ruiming Guan, Li Chen, Jinxuan Wang, Yangming Zhang, Yili Fu and Canjin Zhang
Coatings 2025, 15(8), 909; https://doi.org/10.3390/coatings15080909 (registering DOI) - 3 Aug 2025
Viewed by 165
Abstract
This study analyzes the durability of brick-faced clay-core walls (BCWs) in the traditional residential architecture of Quanzhou—a UNESCO World Heritage City. Taking the northern gable of Ding Gongchen’s former residence as an example, the mechanical properties, microscopic structure, and changes in chemical symbol, [...] Read more.
This study analyzes the durability of brick-faced clay-core walls (BCWs) in the traditional residential architecture of Quanzhou—a UNESCO World Heritage City. Taking the northern gable of Ding Gongchen’s former residence as an example, the mechanical properties, microscopic structure, and changes in chemical symbol, oxides and minerals of the red bricks and clay-cores were analyzed using finite element mechanics analysis (FEM), scanning electron microscopy (SEM), X-ray fluorescence (XRF), and X-ray diffraction (XRD). The results indicate a triple mechanism: (1) The collaborative protection and reinforcement mechanism of “brick-wrapped-clay”. (2) The infiltration and destruction mechanism of external pollutants. (3) The material stability mechanism of silicate minerals. Therefore, the key to maintaining the durability of BCWs lies in the synergistic effect of brick and clay materials and the stability of silicate mineral materials, providing theoretical and methodological support for sustainable research into brick and clay constructions. Full article
Show Figures

Graphical abstract

Back to TopTop