To address the limitation that single-index evaluation fails to fully reflect the development performance of reservoirs of different types and at various development stages, a multi-index comprehensive evaluation system featuring the workflow of “index screening–weight determination–model evaluation–strategy guidance” was established. Firstly, the grey correlation analysis method (with a correlation degree threshold set at 0.65) was employed to screen 12 key evaluation indicators, including reservoir physical properties (porosity, permeability) and development dynamics (recovery factor, water cut, well activation rate). Subsequently, the fuzzy analytic hierarchy process (FAHP, for subjective weighting, with the consistency ratio (CR) of expert judgments < 0.1) was coupled with the attribute measurement method (for objective weighting, with information entropy redundancy < 5%) to determine the indicator weights, thereby balancing the influences of subjective experience and objective data. Finally, two evaluation models, namely the fuzzy comprehensive decision-making method and the unascertained measurement method, were constructed to conduct evaluations on 308 reservoirs in the Liaohe Oilfield (covering five major categories: integral medium–high-permeability reservoirs, complex fault-block reservoirs, low-permeability reservoirs, special lithology reservoirs, and thermal recovery heavy oil reservoirs). The results indicate that there are 147 high-efficiency reservoirs categorized as Class I and Class II in total. Although these reservoirs account for 47.7% of the total number, they control 71% of the geological reserves (154,548 × 10
4 t) and 78% of the annual oil production (738.2 × 10
4 t) in the oilfield, with an average well activation rate of 65.4% and an average recovery factor of 28.9. Significant quantitative differences are observed in the development characteristics of different reservoir types: Integral medium–high-permeability reservoirs achieve an average recovery factor of 37.6% and an average well activation rate of 74.1% by virtue of their excellent physical properties (permeability mostly > 100 mD), with Block Jin 16 (recovery factor: 56.9%, well activation rate: 86.1%) serving as a typical example. Complex fault-block reservoirs exhibit optimal performance at the stage of “recovery degree > 70%, water cut ≥ 90%”, where 65.6% of the blocks are classified as Class I, and the recovery factor of blocks with a “good” rating (42.3%) is 1.8 times that of blocks with a “poor” rating (23.5%). For low-permeability reservoirs, blocks with a rating below medium grade account for 68% of the geological reserves (8403.2 × 10
4 t), with an average well activation rate of 64.9%. Specifically, Block Le 208 (permeability < 10 mD) has an annual oil production of only 0.83 × 10
4 t. Special lithology reservoirs show polarized development performance, as Block Shugu 1 (recovery factor: 32.0%) and Biantai Buried Hill (recovery factor: 20.4%) exhibit significantly different development effects due to variations in fracture–vug development. Among thermal recovery heavy oil reservoirs, ultra-heavy oil reservoirs (e.g., Block Du 84 Guantao, with a recovery factor of 63.1% and a well activation rate of 92%) are developed efficiently via steam flooding, while extra-heavy oil reservoirs (e.g., Block Leng 42, with a recovery factor of 19.6% and a well activation rate of 30%) are constrained by reservoir heterogeneity. This system refines the quantitative classification boundaries for four development levels of water-flooded reservoirs (e.g., for Class I reservoirs in the high water cut stage, the recovery factor is ≥35% and the water cut is ≥90%), as well as the evaluation criteria for different stages (steam huff and puff, steam flooding) of thermal recovery heavy oil reservoirs. It realizes the transition from traditional single-index qualitative evaluation to multi-index quantitative evaluation, and the consistency between the evaluation results and the on-site development adjustment plans reaches 88%, which provides a scientific basis for formulating development strategies for the Liaohe Oilfield and other similar oilfields.
Full article