Enhancing Ankle Movement in Stroke Patients: The Impact of Joint Mobilization Combined with Active Stretching
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Procedure
2.3. Intervention
2.3.1. Control Group Intervention Method
2.3.2. Experimental Group Intervention Method
2.4. Outcome Measures
2.4.1. Muscle Tone and Stiffness Measurement
2.4.2. Balance Measurement
2.4.3. BBS
2.4.4. Timed up and Go Test
2.5. Data and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lamontagne, A.; Richards, C.L.; Malouin, F. Coactivation during gait as an adaptive behavior after stroke. J. Electromyogr. Kinesiol. 2000, 10, 407–415. [Google Scholar] [CrossRef]
- Lin, P.-Y.; Yang, Y.R.; Cheng, S.J.; Wang, R.Y. The relation between ankle impairments and gait velocity and symmetry in people with stroke. Arch. Phys. Med. Rehabil. 2006, 87, 562–568. [Google Scholar] [CrossRef]
- Patterson, K.K.; Gage, W.H.; Brooks, D.; Black, S.E.; McIlroy, W.E. Changes in gait symmetry and velocity after stroke: A cross-sectional study from weeks to years after stroke. Neurorehabilit. Neural Repair 2010, 24, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Yildizgoren, M.T.; Velioglu, O.; Demetgul, O.; Turhanoglu, A.D. Assessment of the anterior talofibular ligament thickness in patients with chronic stroke: An ultrasonographic study. J. Med. Ultrasound 2017, 25, 145–149. [Google Scholar] [CrossRef]
- Kitatani, R.; Ohata, K.; Sato, S.; Watanabe, A.; Hashiguchi, Y.; Yamakami, N.; Sakuma, K.; Yamada, S. Ankle muscle coactivation and its relationship with ankle joint kinematics and kinetics during gait in hemiplegic patients after stroke. Somatosens. Mot. Res. 2016, 33, 79–85. [Google Scholar] [CrossRef]
- Hu, C.; Hu, H.; Mai, X.; Lo, W.L.A.; Li, L. Correlation between muscle structures and electrical properties of the tibialis anterior in subacute stroke survivors: A pilot study. Front. Neurosci. 2019, 13, 474242. [Google Scholar] [CrossRef]
- Fatone, S.; Gard, S.A.; Malas, B.S. Effect of ankle-foot orthosis alignment and foot-plate length on the gait of adults with poststroke hemiplegia. Arch. Phys. Med. Rehabil. 2009, 90, 810–818. [Google Scholar] [CrossRef]
- Tutus, N.; Ozdemir, F. The effects of gastrocnemius muscle spasticity on gait symmetry and trunk control in chronic stroke patients. Gait Posture 2023, 105, 45–50. [Google Scholar] [CrossRef]
- Gao, F.; Ren, Y.; Roth, E.J.; Harvey, R.; Zhang, L.Q. Effects of repeated ankle stretching on calf muscle–tendon and ankle biomechanical properties in stroke survivors. Clin. Biomech. 2011, 26, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Kluding, P.M.; Santos, M. Effects of ankle joint mobilizations in adults poststroke: A pilot study. Arch. Phys. Med. Rehabil. 2008, 89, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.L.; Huang, M.H.; Lee, C.L.; Liu, C.W.; Lin, L.J.; Chen, C.H. Effect on spasticity after performance of dynamic-repeated-passive ankle joint motion exercise in chronic stroke patients. Kaohsiung J. Med. Sci. 2006, 22, 610–617. [Google Scholar] [CrossRef]
- Çelik, D.; Kaya Mutlu, E. Does adding mobilization to stretching improve outcomes for people with frozen shoulder? A randomized controlled clinical trial. Clin. Rehabil. 2016, 30, 786–794. [Google Scholar] [CrossRef]
- Alamer, A.; Melese, H.; Getie, K.; Deme, S.; Tsega, M.; Ayhualem, S.; Birhanie, G.; Abich, Y.; Gelaw, A.Y. Effect of Ankle Joint Mobilization with Movement on Range of Motion, Balance and Gait Function in Chronic Stroke Survivors: Systematic Review of Randomized Controlled Trials. Degener. Neurol. Neuromuscul. Dis. 2021, 11, 51–60. [Google Scholar] [CrossRef]
- Park, D.; Cynn, H.S.; Yi, C.; Choi, W.J.; Shim, J.H.; Oh, D.W. Four-week training involving self-ankle mobilization with movement versus calf muscle stretching in patients with chronic stroke: A randomized controlled study. Top. Stroke Rehabil. 2020, 27, 296–304. [Google Scholar] [CrossRef]
- Ersoy, U.; Kocak, U.Z.; Unuvar, E.; Unver, B. The acute effect of talocrural joint mobilization on dorsiflexor muscle strength in healthy individuals: A randomized controlled single-blind study. J. Sport Rehabil. 2019, 28, 601–605. [Google Scholar] [CrossRef]
- Cho, K.-H.; Park, S.J. Effects of joint mobilization and stretching on the range of motion for ankle joint and spatiotemporal gait variables in stroke patients. J. Stroke Cerebrovasc. Dis. 2020, 29, 104933. [Google Scholar] [CrossRef] [PubMed]
- Evjenth, O.; Hamberg, J.; Brady, M.M.J. Muscle Stretching in Manual Therapy: A Clinical Manual; Alfta Rehab Forlag: Alfta, Sweden, 1984.
- Mullix, J.; Warner, M.; Stokes, M. Testing muscle tone and mechanical properties of rectus femoris and biceps femoris using a novel hand held MyotonPRO device: Relative ratios and reliability. Work. Pap. Health Sci. 2012, 1, 1–8. [Google Scholar]
- Chuang, L.-L.; Wu, C.Y.; Lin, K.C. Reliability, validity, and responsiveness of myotonometric measurement of muscle tone, elasticity, and stiffness in patients with stroke. Arch. Phys. Med. Rehabil. 2012, 93, 532–540. [Google Scholar] [CrossRef]
- Daniilidis, K.; Jakubowitz, E.; Thomann, A.; Ettinger, S.; Stukenborg-Colsman, C.; Yao, D. Does a foot-drop implant improve kinetic and kinematic parameters in the foot and ankle? Arch. Orthop. Trauma Surg. 2017, 137, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich-Zwahlen, A.; Casartelli, N.C.; Item-Glatthorn, J.F.; Maffiuletti, N.A. Validity of resting myotonometric assessment of lower extremity muscles in chronic stroke patients with limited hypertonia: A preliminary study. J. Electromyogr. Kinesiol. 2014, 24, 762–769. [Google Scholar] [CrossRef]
- Kim, J.-h.; Choi, B. Intra-and inter-rater reliability of BioRescue. J. Korea Contents Assoc. 2018, 18, 348–352. [Google Scholar]
- Liston, R.A.; Brouwer, B.J. Reliability and validity of measures obtained from stroke patients using the Balance Master. Arch. Phys. Med. Rehabil. 1996, 77, 425–430. [Google Scholar] [CrossRef]
- Berg, K.; Wood-Dauphine, S.; Williams, J.I.; Gayton, D. Measuring balance in the elderly: Preliminary development of an instrument. Physiother. Can. 1989, 41, 304–311. [Google Scholar] [CrossRef]
- Alghadir, A.H.; Al-Eisa, E.S.; Anwer, S.; Sarkar, B. Reliability, validity, and responsiveness of three scales for measuring balance in patients with chronic stroke. BMC Neurol. 2018, 18, 141. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, E.; Khademi-Kalantari, K.; Khalkhali-Zavieh, M.; Rezasoltani, A.; Ghasemi, M.; Baghban, A.A.; Ghasemi, M. The effect of functional stretching exercises on neural and mechanical properties of the spastic medial gastrocnemius muscle in patients with chronic stroke: A randomized controlled trial. J. Stroke Cerebrovasc. Dis. 2018, 27, 1733–1742. [Google Scholar] [CrossRef]
- Rusu, L.; Cosma, G.; Calina, M.L.; Dragomir, M.M.; Marin, M. Evaluation of two muscle training programs by assessment of the muscle tone. Sci. Sports 2015, 30, e65–e72. [Google Scholar] [CrossRef]
- Kay, A.D.; Husbands-Beasley, J.; Blazevich, A.J. Effects of contract–relax, static stretching, and isometric contractions on muscle–tendon mechanics. Med. Sci. Sports Exerc. 2015, 47, 2181–2190. [Google Scholar] [CrossRef]
- Kim, S.-L.; Lee, B.-H. The effects of posterior talar glide and dorsiflexion of the ankle plus mobilization with movement on balance and gait function in patient with chronic stroke: A randomized controlled trial. J. Neurosci. Rural. Pract. 2018, 9, 61–67. [Google Scholar] [CrossRef]
- Kluding, P.; Santos, M. Changes in sit-to-stand following ankle joint mobilizations in subjects with hemiplegia. J. Neurol. Phys. Ther. 2005, 29, 210–211. [Google Scholar] [CrossRef]
- Koo, J.P.; Kim, N.J. The Effects of ankle exercise on balance in stroke patients. J. Int. Acad. Phys. Ther. Res. 2016, 7, 915–918. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, H.M. Effects of proprioceptive neuromuscular facilitation stretching on muscle tone and balance in chronic stroke patients. Front. Neurol. 2020, 11, 586702. [Google Scholar]
- Lee, J.H.; Park, S.Y.; Kim, K. Posterior talar glide joint mobilization improves ankle dorsiflexion and dynamic balance in stroke survivors. J. Mot. Behav. 2021, 53, 512–520. [Google Scholar]
- Wang, L.; Zhang, T.; Li, X. Mechanisms of active stretching in modulating muscle tone and proprioception: Implications for neurorehabilitation. Front. Physiol. 2022, 13, 932114. [Google Scholar]
- Yoon, J.E.; Kim, J.Y.; Park, S.H. Proprioceptive training combined with joint mobilization enhances gait symmetry and balance in post-stroke patients. NeuroRehabilitation 2021, 49, 213–222. [Google Scholar]
- Park, M.J.; Choi, W.; Seo, K. Combined effects of joint mobilization and active stretching on balance and gait in hemiplegic stroke patients. BMC Neurol. 2023, 23, 154. [Google Scholar]
- Chen, R.; Liu, Y.; Xu, Q. Proprioceptive enhancement through ankle interventions improves postural control and gait in stroke rehabilitation. Neurosci. Lett. 2024, 823, 137823. [Google Scholar]
- Whitehead, A.L.; Julious, S.A.; Cooper, C.L.; Campbell, M.J. Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Stat. Methods Med. Res. 2016, 25, 1057–1073. [Google Scholar] [CrossRef]
| Classification | Control Group | Experimental Group | p |
|---|---|---|---|
| Gender (male/female) | 7/5 | 8/4 | 1.000 a |
| Paretic side (left/right) | 4/8 | 4/8 | 1.000 a |
| Type (hemorrhage/infarction) | 4/8 | 2/10 | 0.640 a |
| Vascular damage area (ACA/MCA/PCA/Brain Stem/Basal Ganglia) | 1/5/1/2/3 | 1/4/2/1/4 | 0.922 a |
| Age (years) | 62.67 ± 7.96 | 63.75 ± 7.39 | 0.733 b |
| Height (cm) | 164.92 ± 9.63 | 164.25 ± 7.68 | 0.853 b |
| Weight (kg) | 69.42 ± 8.11 | 69.58 ± 6.92 | 0.957 b |
| Onset period (month) | 12.58 ± 2.68 | 12.42 ± 2.78 | 0.882 b |
| K-MMSE (score) | 26.50 ± 1.24 | 26.92 ± 1.31 | 0.433 b |
| MAS (score) | 2.00 ± 0.85 | 1.92 ± 0.90 | 0.818 b |
| Classification | Pre-Test | Post-Test | Change | 95% CI b | Effect Size | |
|---|---|---|---|---|---|---|
| MGCM Muscle Tone (Hz) | ||||||
| PS | Control group | 17.18 ± 2.52 | 17.18 ± 3.03 | −0.01 ± 0.72 | 1.13 (0.30, 1.95) | 1.17 |
| Experimental group | 16.42 ± 1.96 | 15.28 ± 1.62 | −1.13 ± 1.15 * a | |||
| N-PS | Control group | 15.69 ± 2.53 ‡ | 15.58 ± 2.69 ‡ | −0.12 ± 0.81 | 0.092 (−0.64, 0.82) | 0.11 |
| Experimental group | 14.75 ± 1.54 ‡ | 14.54 ± 1.00 | −0.21 ± 0.90 | |||
| LGCM Muscle Tone (Hz) | ||||||
| PS | Control group | 17.98 ± 2.06 | 17.96 ± 2.32 | −0.03 ± 0.81 | 1.33 (0.27, 2.40) | 1.08 |
| Experimental group | 17.28 ± 2.19 | 15.92 ± 2.45 | −1.36 ± 1.54 * a | |||
| N-PS | Control group | 16.28 ± 1.92 ‡ | 16.27 ± 2.14 ‡ | −0.02 ± 0.82 | 0.33 (−0.45, 1.11) | 0.36 |
| Experimental group | 15.94 ± 1.48 ‡ | 15.59 ± 1.40 | −0.35 ± 1.01 | |||
| TA Muscle Tone (Hz) | ||||||
| PS | Control group | 18.03 ± 2.42 | 18.03 ± 2.44 | 0.01 ± 0.61 | −0.92 (−1.68, −0.15) | 1.02 |
| Experimental group | 18.07 ± 2.50 | 18.99 ± 2.36 | 0.93 ± 1.11 * a | |||
| N-PS | Control group | 20.34 ± 1.37 ‡ | 20.58 ± 1.29 ‡ | 0.24 ± 1.21 | −0.26 (−1.16, 0.65) | 0.24 |
| Experimental group | 20.03 ± 2.32 ‡ | 20.53 ± 2.32 | 0.50 ± 0.89 | |||
| MGCM Stiffness (N/m) | ||||||
| PS | Control group | 317.75 ± 62.73 | 316.58 ± 63.15 | −1.17 ± 9.18 | 30.92 (7.12, 54.72) | 1.10 |
| Experimental group | 297.58 ± 52.05 | 265.50 ± 30.63 | −32.08 ± 38.68 * a | |||
| N-PS | Control group | 284.00 ± 50.21 ‡ | 287.75 ± 54.54 ‡ | 3.75 ± 16.59 | −0.58 (−13.72, 12.56) | 0.04 |
| Experimental group | 256.42 ± 24.24 ‡ | 260.75 ± 17.36 | 4.33 ± 14.33 | |||
| LGCM Stiffness (N/m) | ||||||
| PS | Control group | 328.00 ± 58.10 | 325.08 ± 47.22 | −2.92 ± 24.97 | 31.42 (8.01, 54.82) | 1.14 |
| Experimental group | 315.92 ± 53.95 | 281.58 ± 52.78 | −34.33 ± 29.97 * a | |||
| N-PS | Control group | 306.00 ± 43.55 ‡ | 302.17 ± 43.44 ‡ | −3.83 ± 17.95 | 5.17 (−10.88, 21.22) | 0.27 |
| Experimental group | 287.33 ± 27.98 ‡ | 278.33 ± 20.80 | −9.00 ± 19.89 | |||
| TA Stiffness (N/m) | ||||||
| PS | Control group | 318.50 ± 54.46 | 321.25 ± 54.66 | 2.75 ± 10.47 | −25.83 (−46.82, −4.85) | 1.08 |
| Experimental group | 322.50 ± 55.25 | 351.08 ± 52.34 | 28.58 ± 32.06 * a | |||
| N-PS | Control group | 378.58 ± 40.42 ‡ | 386.33 ± 47.09 ‡ | 7.75 ± 36.35 | 4.08 (−29.73, 37.90) | 0.01 |
| Experimental group | 391.25 ± 38.32 ‡ | 394.92 ± 49.85 | 3.67 ± 43.11 | |||
| Classification | Pre-Test | Post-Test | Change | 95% CI b | Effect Size |
|---|---|---|---|---|---|
| Paretic Side Area (mm2) | |||||
| Control group | 680.75 ± 139.20 | 1118.33 ± 162.85 | 437.58 ± 104.80 * | −222.00 (−362.52, −81.48) | 1.34 |
| Experimental group | 660.75 ± 173.68 | 1320.33 ± 305.72 | 659.58 ± 210.01 * a | ||
| Non-Paretic Side Area (mm2) | |||||
| Control group | 1300.75 ± 192.20 | 1629.17 ± 267.63 | 328.42 ± 182.68 * | −413.83 (−590.14, −237.53) | 1.99 |
| Experimental group | 1258.67 ± 184.20 | 2000.92 ± 262.74 | 742.25 ± 230.98 * a | ||
| Forward Area (mm2) | |||||
| Control group | 1220.67 ± 147.19 | 1609.00 ± 248.71 | 388.33 ± 182.29 * | −328.92 (−487.28, −170.56) | 1.76 |
| Experimental group | 1198.92 ± 168.34 | 1916.17 ± 269.76 | 717.25 ± 191.67 * a | ||
| Backward Area (mm2) | |||||
| Control group | 760.83 ± 186.28 | 1121.83 ± 243.30 | 361.00 ± 189.42 * | −323.58 (>−548.70, −98.47) | 1.22 |
| Experimental group | 720.50 ± 230.65 | 1405.08 ± 356.13 | 684.58 ± 324.82 * a | ||
| Total Area (mm2) | |||||
| Control group | 1981.50 ± 311.24 | 2747.50 ± 399.24 | 766.00 ± 241.24 * | −635.83 (−922.57, −349.10) | 1.88 |
| Experimental group | 1919.42 ± 301.41 | 3321.25 ± 520.94 | 1401.83 ± 413.76 * a | ||
| Classification | Pre-Test | Post-Test | Change | 95% CI b | Effect Size |
|---|---|---|---|---|---|
| BBS (Score) | |||||
| Control group | 35.17 ± 3.49 | 38.08 ± 3.42 | 2.92 ± 1.78 * | −3.08 (−5.36, −0.81) | 1.15 |
| Experimental group | 36.58 ± 4.21 | 42.58 ± 2.43 | 6.00 ± 3.36 * a |
| Classification | Pre-Test | Post-Test | Change | 95% CL b | Effect Size |
|---|---|---|---|---|---|
| TUG (s) | |||||
| Control group | 30.75 ± 4.07 | 27.17 ± 4.47 | −3.58 ± 3.58 * | 6.00 (2.58, 9.42) | 1.49 |
| Experimental group | 29.75 ± 4.79 | 20.17 ± 3.43 | −9.58 ± 4.46 * a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-J.; Cho, K.-H.; Oh, S. Enhancing Ankle Movement in Stroke Patients: The Impact of Joint Mobilization Combined with Active Stretching. Brain Sci. 2025, 15, 1149. https://doi.org/10.3390/brainsci15111149
Park S-J, Cho K-H, Oh S. Enhancing Ankle Movement in Stroke Patients: The Impact of Joint Mobilization Combined with Active Stretching. Brain Sciences. 2025; 15(11):1149. https://doi.org/10.3390/brainsci15111149
Chicago/Turabian StylePark, Shin-Jun, Kyun-Hee Cho, and Seunghue Oh. 2025. "Enhancing Ankle Movement in Stroke Patients: The Impact of Joint Mobilization Combined with Active Stretching" Brain Sciences 15, no. 11: 1149. https://doi.org/10.3390/brainsci15111149
APA StylePark, S.-J., Cho, K.-H., & Oh, S. (2025). Enhancing Ankle Movement in Stroke Patients: The Impact of Joint Mobilization Combined with Active Stretching. Brain Sciences, 15(11), 1149. https://doi.org/10.3390/brainsci15111149

