Non-Iterative Shrinkage-Thresholding-Reconstructed Compressive Acquisition Algorithm for High-Dynamic GNSS Signals
Abstract
1. Introduction
2. Foundations of CS and ISTA
2.1. Fundamental Theory of CS
2.2. Basic Principles of ISTA
3. NIST-Reconstructed Compressive Acquisition Algorithm
3.1. Compressive Acquisition Model for GNSS Signals
3.2. NIST-Enabled Reconstruction of Correlation Matrix
| Algorithm 1. Detailed procedures of NIST-reconstructed compressive acquisition algorithm |
|
|
3.3. Computational Complexity Analysis
4. Simulations and Result Discussions
4.1. Effects of RTC on NIST-Reconstructed CS Acquisition Algorithm
4.2. Acquisition Performance Evaluations and Comparisons
4.3. Robustness of Acquisition Performance to Various Doppler Frequencies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| NIST | Non-Iterative Shrinkage–Thresholding |
| OMP | Orthogonal Matching Pursuit |
| ISTA | Iterative Shrinkage–Thresholding Algorithm |
| FISTA | Fast Iterative Shrinkage–Thresholding Algorithm |
| PMF-FFT | Partial Match Filter Fast Fourier Transform |
| CS | Compressed Sensing |
| FSS | Frequency Serial Search |
| RTC | Regularization Tuning Coefficient |
| CR | Compression Ratio |
| PSR | Primary-to-Secondary peak Ratio |
References
- Yang, C.Q.; Zang, B.; Gu, B.W.; Zhang, L.; Dai, C.J.; Long, L.L.; Zhang, Z.C.; Ding, L.L.; Ji, H.B. Doppler Positioning of Dynamic Targets with Unknown LEO Satellite Signals. Electronics 2023, 12, 2392. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Li, Y. Low Computational Signal Acquisition for GNSS Receivers Using a Resampling Strategy and Variable Circular Correlation Time. Sensors 2018, 18, 678. [Google Scholar] [CrossRef] [PubMed]
- Stock, W.; Schwarz, R.T.; Hofmann, C.A.; Knopp, A. Survey on Opportunistic PNT With Signals from LEO Communication Satellites. IEEE Commun. Surv. Tutor. 2025, 27, 77–107. [Google Scholar] [CrossRef]
- Zhao, B.F.; Zhang, L.F.; Sun, S.H. Navigation Signal Acquisition Technology Based on Pre-Averaging Processing. GNSS World China 2022, 47, 1–8. [Google Scholar]
- Cheng, X.H.; Xu, W.J. A Fast Acquisition Method for GNSS Receiver with Low Computational Complexity. J. Chin. Inert Technol. 2022, 30, 168–173. [Google Scholar]
- Aggrey, J.; Bisnath, S. Improving GNSS PPP convergence: The case of atmospheric-constrained, multi-GNSS PPP-AR. Sensors 2019, 19, 587. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Y.; Lei, M.; Gao, M.; Fang, Z.B.; Jiang, C. Joint pseudo-range and Doppler positioning method with LEO Satellites’ signals of opportunity. Satell. Navig. 2025, 6, 10. [Google Scholar] [CrossRef]
- Jiang, M.; Qin, H.; Su, Y.; Li, F.; Mao, J. A Design of Differential-Low Earth Orbit Opportunistically Enhanced GNSS (D-LoeGNSS) Navigation Framework. Remote Sens. 2023, 15, 2136. [Google Scholar] [CrossRef]
- Zhang, C.X.; Li, X.M.; Gao, S.; Lin, T.; Wang, L. Performance Analysis of Global Navigation Satellite System Signal Acquisition Aided by Different Grade Inertial Navigation System under Highly Dynamic Conditions. Sensors 2017, 17, 980. [Google Scholar] [CrossRef]
- Wang, Z.H.; Sun, J.R.; Tang, F.Z.; Sun, Y.Y.; Wang, H.W. Improved PMF-FFT-based Capture Algorithm for Beidou High Dynamic Signal. Navig. Control. 2025, 24, 53–60. [Google Scholar]
- Gezici, S. Mean Acquisition Time Analysis of Fixed-Step Serial Search Algorithms. IEEE Trans. Wirel. Commun. 2009, 8, 1096–1101. [Google Scholar] [CrossRef]
- Suwansantisuk, W.; Win, M.Z. Multipath aided rapid acquisition: Optimal search strategies. IEEE Trans. Inf. Theory. 2007, 53, 174–193. [Google Scholar] [CrossRef]
- Guo, W.F.; Niu, X.J.; Guo, C.; Cui, J.S. A new FFT acquisition scheme based on partial matched filter in GNSS receivers for harsh environments. Aerosp. Sci. Technol. 2017, 61, 66–72. [Google Scholar] [CrossRef]
- Wang, X.Y.; Jiang, K.; Chu, R.; Zhang, H.Z.; Wang, C.H. Research on Acquisition Method of DSSS System Based on PMF-FFT. In Proceedings of the Eighth International Conference on Communication, Image and Signal Processing (CCISP), Chengdu, China, 17–19 November 2023; pp. 552–558. [Google Scholar]
- Cheng, J.B.; Li, D.A.; Zhao, J.M.; Wei, Z. A SINS-Assisted Fast Acquisition Method for GNSS Signals Based on Compressed Sensing. In Proceedings of the Sixth International Conference on Advanced Cloud and Big Data (CBD), Lanzhou, China, 12–15 August 2018; pp. 83–88. [Google Scholar]
- Kong, S.H. A Deterministic Compressed GNSS Acquisition Technique. IEEE Trans. Veh. Technol. 2013, 62, 511–521. [Google Scholar] [CrossRef]
- Zhou, F.M.; Zhao, L.L.; Jiang, X.L.; Li, L.M.; Yu, J.P.; Liang, G. GNSS Signal Compression Acquisition Algorithm Based on Sensing Matrix Optimization. Appl. Sci. 2022, 12, 5866. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, L.; Li, L.; Hu, Y.F.; Li, L.M.; Jiang, X.L.; Yu, J.P.; Liang, G. GNSS signal acquisition algorithm based on two-stage compression of code-frequency domain. Appl. Sci. 2022, 12, 6255. [Google Scholar] [CrossRef]
- Wang, K.; Wu, B.; Wang, B. An Improved PMF-FFT Spread Spectrum Signal Acquisition Algorithm Based on Compressed Sensing. Telecommun. Eng. 2018, 58, 661–667. [Google Scholar]
- Zhang, Q.; Zhang, W.J.; Chen, J.; Zhang, F.Y.; Wang, J.; Zhang, X.B. Multi-channel deterministic compressed PMF-FFT acquisition method for GNSS receiver. J. Chin. Inert Technol. 2025, 33, 124–132. [Google Scholar]
- He, G.D.; Song, M.Z.; He, X.; Hu, Y. GPS signal acquisition based on compressive sensing and modified greedy acquisition algorithm. IEEE Access 2019, 7, 40445–40453. [Google Scholar] [CrossRef]
- Yang, F.; Zhou, F.; Pan, L.L.; Lin, J.R. Parallel GPS Signal Acquisition Algorithm Based on Alternating Direction Method of Multipliers. J. Univ. Electron. Sci. Technol. China 2020, 49, 187–193. [Google Scholar]
- Arias-Castro, E.; Eldar, Y.C. Noise Folding in Compressed Sensing. IEEE Signal Process. Lett. 2011, 18, 478–481. [Google Scholar] [CrossRef]
- Peter, S.; Artina, M.; Fornasier, M. Damping Noise-Folding and Enhanced Support Recovery in Compressed Sensing. IEEE Trans. Signal Process. 2015, 63, 5990–6002. [Google Scholar] [CrossRef]
- Daubechies, I.; Defrise, M.; De Mol, C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 2004, 57, 1413–1457. [Google Scholar] [CrossRef]
- Zheng, Z.; Dai, W.; Xue, D.; Li, C.; Zou, J.; Xiong, H. Hybrid ISTA: Unfolding ISTA With Convergence Guarantees Using Free-Form Deep Neural Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 3226–3244. [Google Scholar] [CrossRef] [PubMed]
- Stern, A.S.; Donoho, D.L.; Hoch, J.C. NMR data processing using iterative thresholding and minimum l1-norm reconstruction. J. Magn. Reson. 2007, 188, 295–300. [Google Scholar] [CrossRef]
- Beck, A.; Teboulle, M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM J. Comput. 2009, 2, 183–202. [Google Scholar] [CrossRef]
- Hämarik, U.; Kangro, U.; Kindermann, S.; Raik, K. Semi-heuristic parameter choice rules for Tikhonov regularisation with operator perturbations. J. Inverse Ill-Posed Probl. 2019, 27, 117–131. [Google Scholar] [CrossRef]
- Duarte, M.F.; Eldar, Y.C. Structured Compressed Sensing: From Theory to Applications. IEEE Trans. Signal Process. 2011, 59, 4053–4085. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, Y.; Li, A.L.; Zhang, D. A Survey of Sparse Representation: Algorithms and Applications. IEEE Access. 2015, 3, 400–530. [Google Scholar] [CrossRef]
- Candes, E.J.; Strohmer, T.; Voroninski, V. Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 2013, 66, 1241–1274. [Google Scholar] [CrossRef]
- Wang, H.M.; Yang, S.P.; Liu, Y.Q.; Li, Q. Compressive sensing reconstruction for rolling bearing vibration signal based on improved iterative soft thresholding algorithm. Measurement 2023, 210, 112528. [Google Scholar] [CrossRef]
- Guo, Q.; Teng, Y.Y.; Tong, C.; Li, S.; Wang, X.F. Brain functional network reconstruction based on compressed sensing and fast iterative shrinkage-thresholding algorithm. J. Biomed. Eng. 2020, 37, 855–862. [Google Scholar]
- Liu, T.; Chaman, A.; Belius, D.; Dokmanic, I. Learning multiscale convolutional dictionaries for image reconstruction. IEEE Trans. Comput. Imaging. 2022, 8, 425–437. [Google Scholar] [CrossRef]
- Bredies, K.; Zhariy, M. A discrepancy-based parameter adaptation and stopping rule for minimization algorithms aiming at Tikhonov-type regularization. Inverse Probl. 2013, 29, 025008. [Google Scholar] [CrossRef]
- Entezari, R.; Rashidi, A. Incoherent waveform design for compressed sensing radar based on pulse-train scenario. IET Commun. 2018, 12, 2132–2136. [Google Scholar] [CrossRef]
- Donoho, D.L.; Elad, M.; Temlyakov, V.N. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory. 2006, 52, 6–18. [Google Scholar] [CrossRef]
- Geiger, B.C.; Vogel, C. Influence of Doppler Bin Width on GPS Acquisition Probabilities. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 2570–2584. [Google Scholar] [CrossRef]
- Ban, Y.L.; Niu, X.J.; Zhang, T.S.; Zhang, Q.; Liu, J.N. Modeling and quantitative analysis of GNSS/INS deep integration tracking loops in high dynamics. Micromachines 2017, 8, 272. [Google Scholar] [CrossRef]
- Kim, B.; Kong, S.H. Design of FFT-Based TDCC for GNSS Acquisition. IEEE Trans. Wirel. Commun. 2014, 13, 2798–2808. [Google Scholar] [CrossRef]
- Xie, G. Principles of GPS and Receiver Design, 2nd ed.; National Defense Industry Press: Beijing, China, 2010; pp. 345–348. [Google Scholar]
- Geiger, B.C.; Soudan, M.; Vogel, C. On the detection probability of parallel code phase search algorithms in GPS receivers. In Proceedings of the 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Istanbul, Turkey, 26–30 September 2010; pp. 865–870. [Google Scholar]
- Yang, Y.X.; Mao, Y.; Ren, X.; Jia, X.L.; Sun, B.J. Demand and Key Technology for a LEO Constellation as Augmentation of Satellite Navigation Systems. Satell. Navig. 2024, 5, 11. [Google Scholar] [CrossRef]
- Zhang, R.; Meng, C.; Wang, C.; Wang, Q. LFM signal compressed sensing reconstruction based on improved fast iterative shrinkage-thresholding algorithm. Mod. Electron. Technol. 2022, 45, 11–17. [Google Scholar]
- Puricer, P.; Kovar, P. Technical Limitations of GNSS Receivers in Indoor Positioning. In Proceedings of the 17th International Conference on Radioelektronika, Brno, Czech Republic, 24–25 April 2007; pp. 1–5. [Google Scholar]











| Acquisition Algorithm | Computational Complexity |
|---|---|
| NIST-Recons. CS | |
| OMP-Recons. CS | |
| FISTA-Recons. CS | |
| Conventional CS w/FSS |
| Characteristics | NIST-Recons. CS | OMP-Recons. CS | FISTA-Recons. CS | Conventional CS |
|---|---|---|---|---|
| Operation Mechanism | Non-Iterative | Iterative | Iterative | Iterative |
| Memory Requirement | Moderate | Low | High | Moderate |
| Parameter Tuning | Simple | Simple | Complex | Simple |
| Acquisition Algorithms | CR = 7/8 | CR = 6/8 | CR = 5/8 | CR = 4/8 | CR = 3/8 | CR = 2/8 |
|---|---|---|---|---|---|---|
| NIST-Recons. CS | −26.9 dB | −26 dB | −25.5 dB | −24.4 dB | −23.4 dB | −21.3 dB |
| OMP-Recons. CS | −23.3 dB | −23 dB | −22 dB | −20.9 dB | −20.2 dB | −17.8 dB |
| FISTA-Recons. CS | −24.3 dB | −24.2 dB | −23.3 dB | −22.3 dB | −21.8 dB | −19.5 dB |
| Conventional CS w/FSS | −24.5 dB | −24.2 dB | −23.7 dB | −23 dB | −22.4 dB | −20.5 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Deng, M.; Huang, H.; Wang, X.; Liu, Q. Non-Iterative Shrinkage-Thresholding-Reconstructed Compressive Acquisition Algorithm for High-Dynamic GNSS Signals. Aerospace 2025, 12, 958. https://doi.org/10.3390/aerospace12110958
Ma Z, Deng M, Huang H, Wang X, Liu Q. Non-Iterative Shrinkage-Thresholding-Reconstructed Compressive Acquisition Algorithm for High-Dynamic GNSS Signals. Aerospace. 2025; 12(11):958. https://doi.org/10.3390/aerospace12110958
Chicago/Turabian StyleMa, Zhuang, Mingliang Deng, Hui Huang, Xiaohong Wang, and Qiang Liu. 2025. "Non-Iterative Shrinkage-Thresholding-Reconstructed Compressive Acquisition Algorithm for High-Dynamic GNSS Signals" Aerospace 12, no. 11: 958. https://doi.org/10.3390/aerospace12110958
APA StyleMa, Z., Deng, M., Huang, H., Wang, X., & Liu, Q. (2025). Non-Iterative Shrinkage-Thresholding-Reconstructed Compressive Acquisition Algorithm for High-Dynamic GNSS Signals. Aerospace, 12(11), 958. https://doi.org/10.3390/aerospace12110958

