Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (648)

Search Parameters:
Keywords = maximum maturity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2135 KB  
Article
Monitoring Wolfberry (Lycium barbarum L.) Canopy Nitrogen Content with Hyperspectral Reflectance: Integrating Spectral Transformations and Multivariate Regression
by Yongmei Li, Hao Wang, Hongli Zhao, Ligen Zhang and Wenjing Xia
Agronomy 2025, 15(9), 2072; https://doi.org/10.3390/agronomy15092072 - 28 Aug 2025
Abstract
Accurate monitoring of canopy nitrogen content in wolfberry (Lycium barbarum L.) is essential for optimizing fertilization management, improving crop yield, and promoting sustainable agriculture. However, the sparse, architecturally complex canopy of this perennial shrub—featuring coexisting branches, leaves, flowers, and fruits across maturity [...] Read more.
Accurate monitoring of canopy nitrogen content in wolfberry (Lycium barbarum L.) is essential for optimizing fertilization management, improving crop yield, and promoting sustainable agriculture. However, the sparse, architecturally complex canopy of this perennial shrub—featuring coexisting branches, leaves, flowers, and fruits across maturity stages—poses significant challenges for canopy spectral-based nitrogen assessment. This study integrates methods across canopy spectral acquisition, transformation, feature spectral selection, and model construction, and specifically explores the potential of hyperspectral remote sensing, integrated with spectral mathematical transformations and machine learning algorithms, for predicting canopy nitrogen content in wolfberry. The overarching goal is to establish a feasible technical framework and predictive model for monitoring canopy nitrogen in wolfberry. In this study, canopy spectral measurements are systematically collected from densely overlapping leaf regions within the east, south, west, and north orientations of the wolfberry canopy. Spectral data undergo mathematical transformation using first-derivative (FD) and continuum-removal (CR) techniques. Optimal spectral variables are identified through correlation analysis combined with Recursive Feature Elimination (RFE). Subsequently, predictive models are constructed using five machine learning algorithms and three linear regression methods. Key results demonstrate that (1) FD and CR transformations enhance the correlation with nitrogen content (max correlation coefficient (r) = −0.577 and 0.522, respectively; p < 0.01), surpassing original spectra (OS, −0.411), while concurrently improving model predictive capability. Validation tests yield maximum R2 values of 0.712 (FD) and 0.521 (CR) versus 0.407 for OS, confirming FD’s superior performance enhancement. (2) Nonlinear machine learning models, by capturing complex canopy-light interactions, outperform linear methods and exhibit superior predictive performance, achieving R2 values ranging from 0.768 to 0.976 in the training set—significantly outperforming linear regression models (R2 = 0.107–0.669). (3) The Random Forest (RF) model trained on FD-processed spectra achieves the highest accuracy, with R2 values of 0.914 (training set) and 0.712 (validation set), along with an RPD of 1.772. This study demonstrates the efficacy of spectral transformations and nonlinear regression methods in enhancing nitrogen content estimation. It establishes the first effective field monitoring strategy and optimal predictive model for canopy nitrogen content in wolfberry. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

15 pages, 5221 KB  
Article
Synergistic Flavor Modulation and Functional Enhancement of Douchiba via Compounding with Bacillus subtilis-Fermented Adlay
by Lian Peng, Yongjun Wu, Anyan Wen, Haiying Zeng and Likang Qin
Foods 2025, 14(17), 2976; https://doi.org/10.3390/foods14172976 - 26 Aug 2025
Abstract
Traditional Douchiba (DCB), a bacterial-type fermented soybean condiment, suffers from pronounced bitterness and limited functional attributes, hindering its broader application. To address these challenges, this study innovatively compounded matured Bacillus subtilis-fermented adlay (BFA) with DCB at varying ratios to develop a fermented [...] Read more.
Traditional Douchiba (DCB), a bacterial-type fermented soybean condiment, suffers from pronounced bitterness and limited functional attributes, hindering its broader application. To address these challenges, this study innovatively compounded matured Bacillus subtilis-fermented adlay (BFA) with DCB at varying ratios to develop a fermented adlay-DCB seasoning (FADS). Key physicochemical, nutritional, functional, and sensory parameters were systematically analyzed, and a multidimensional quality evaluation system was established via the Entropy Method for composite scoring. Results revealed that BFA integration enhanced the brightness and increased the content of total triterpenoid (by 16-fold) and γ-aminobutyric acid (by 9-fold) in FADS. Notably, electronic tongue analysis demonstrated that BFA significantly reduced the bitterness, after-bitterness, and saltiness intensities of DCB, achieving maximum reductions of 90.12% for bitterness and 87.63% for after-bitterness. Meanwhile, GC-MS profiling identified 89 volatile compounds, with pyrazines, alcohols, and acids as the primary volatile components in FADS. Additionally, the S4 sample (the BFA:DCB ratio = 6:4) achieved the highest composite score (0.64), with pyrazines contributing 0.13 points to the evaluation. In summary, BFA not only significantly mitigated bitterness in DCB but also substantially enhanced its bioactive properties. The results offer a scientific basis for the flavor improvement of fermented seasonings. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

16 pages, 2127 KB  
Article
Estimation of Cone Maturity and Effect of Temperature, Light, and Stress Conditions on Seed Germination of Cedrus deodara in Garhwal Himalaya
by Geetanjali Pokhariyal, Vinod Prasad Khanduri, Bhupendra Singh, Rajender Singh Bali, Indra Singh, Deepa Rawat and Manoj Kumar Riyal
Forests 2025, 16(9), 1365; https://doi.org/10.3390/f16091365 - 23 Aug 2025
Viewed by 227
Abstract
Maturity estimation before seed collection is necessary in reducing the costs of seed collection; it allows vigorous seeds to be collected, ensuring that maximum germination will be reached and producing quality planting stock. In addition to this, appropriate temperature, seed size, pH, light, [...] Read more.
Maturity estimation before seed collection is necessary in reducing the costs of seed collection; it allows vigorous seeds to be collected, ensuring that maximum germination will be reached and producing quality planting stock. In addition to this, appropriate temperature, seed size, pH, light, and stress conditions also influence germination. Cones of Cedrus deodara were collected at different intervals to estimate the maturity of the cones. A seed germination test was conducted in the laboratory under constant temperature, seed size, pH, light conditions, and water and salinity stress conditions. Significant (p < 0.05) variations in cones, such as seed morphological characteristics, germination, and related parameters, of C. deodara at different maturity periods were observed. The morphological traits of cones, such as seed weight, seed length, seed width, and seed germination, increased with increasing maturity, while the cone weight, moisture contents, specific gravity, and seed moisture decreased with increasing maturity. A constant temperature of 15 °C to 20 °C (98.0% to 92.0%) and the use of large-sized seeds (99.0%) led to maximum germination. Lower concentrations of Polyethylene glycol (98.0%) and NaCl (78.0%) contributed to maximum seed germination. The germination of C. deodara is temperature-dependent and seed size, light, and high water and salinity stress significantly influence seed germination. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

30 pages, 12874 KB  
Article
Reservoir Properties of Lacustrine Deep-Water Gravity Flow Deposits in the Late Triassic–Early Jurassic Anyao Formation, Paleo-Ordos Basin, China
by Zhen He, Minfang Yang, Lei Wang, Lusheng Yin, Peixin Zhang, Kai Zhou, Peter Turner, Zhangxing Chen, Longyi Shao and Jing Lu
Minerals 2025, 15(9), 888; https://doi.org/10.3390/min15090888 - 22 Aug 2025
Viewed by 248
Abstract
The development of gravity flow sedimentology has improved our understanding of the physical properties of different types of gravity flow deposits, especially the advancement of various gravity flow models. Although studies of gravity flows have developed greatly, the linkage between different sub-facies and [...] Read more.
The development of gravity flow sedimentology has improved our understanding of the physical properties of different types of gravity flow deposits, especially the advancement of various gravity flow models. Although studies of gravity flows have developed greatly, the linkage between different sub-facies and their reservoir properties is hindered by a lack of detailed sedimentary records. Here, integrated test data (including thin-section petrology, high-pressure mercury injection experiments, capillary pressure curve analysis, and scanning electron microscopy) are used to evaluate links between different types of gravity flows and their reservoir properties from the Late Triassic–Early Jurassic Anyao Formation, southeastern Paleo-Ordos Basin, China. The petrological and sedimentological data reveal two types of deep-water gravity flow deposits comprising sandy debris flow (SDF) and turbidity current (TC) deposits. Both are fine-grained lithic sandstones and form low-porosity and ultra-low permeability reservoirs. Secondary porosity, formed by the dissolution of framework grains, including feldspars and lithic fragments, dominates the pore types. This secondary porosity is widely developed in the Anyao Formation and formed by reaction with organic acids during burial (early mesodiagenesis). The associated mud rocks have reached the early mature stage of the oil window with Tmax of 442–448 °C. Compared with the turbidites, the sandy debris flows have higher framework grain content (87.9 vs. 84.8%), framework grain size (0.091 vs. 0.008 mm), porosity (6.97 vs. 3.44%), pore throat radius (0.102 vs. 0.025 μm), and permeability (0.025 vs. 0.005 mD) but are relatively poor in the sorting of framework grains and pore throat radii. The most important petrological factors affecting porosity and permeability of the SDF reservoirs are framework grain size and feldspar grain content, respectively, but those of the TC reservoirs are feldspar grain content and the maximum pore throat radius. Diagenetic dissolution of framework grains is the most important porosity-affecting factor for both SDF and TC reservoirs. Our multi-proxy study provides new insights into the links between gravity flow sub-facies and reservoir properties in the lacustrine deep-water environment. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

19 pages, 3707 KB  
Article
The Effect of a Polypeptide Based Vaccine on Fish Welfare and Infestation of Salmon Lice, Lepeophtheirus salmonis, in Sea Cages with Atlantic Salmon (Salmo salar L.)
by Ragnar Nortvedt, Erik Dahl-Paulsen, Laura Patricia Apablaza Bizama, Amritha Johny and Erik Slinde
Fishes 2025, 10(8), 405; https://doi.org/10.3390/fishes10080405 - 13 Aug 2025
Viewed by 301
Abstract
A new polypeptide vaccine towards salmon lice (Lepeophtheirus salmonis) was given to experimental groups of 2 × 8000 Atlantic salmon parr (Salmo salar L.), following the vaccination of a total of 4 × 8000 parr with a common set of [...] Read more.
A new polypeptide vaccine towards salmon lice (Lepeophtheirus salmonis) was given to experimental groups of 2 × 8000 Atlantic salmon parr (Salmo salar L.), following the vaccination of a total of 4 × 8000 parr with a common set of vaccines used in Norwegian aquaculture to prevent infestation in salmon growing at sea. The remaining 2 × 8000 salmon served as control. The trial was conducted at a sea farm research facility at Knappen-Solheim in Masfjorden, Norway. Natural infestation with sea lice were staged and counted once a week from January–December 2023. The infestation was never above two mature female lice per salmon, the maximum limit set specifically for the present trial by the Norwegian Food Safety Authorities, thus delousing with chemicals or other methods was avoided. Mortality, growth, feed consumption, sexual maturation, slaughter quality, and welfare quality parameters were not significantly different between vaccinated and control salmon. The effect size showed a moderate positive difference of 0.07 mature female salmon lice per salmon in favor of the vaccinated groups from a fish size above 600 g in May until November. All fish were slaughtered and marketed at a size of 5.8 kg (>83% superior quality). Full article
(This article belongs to the Special Issue Healthy Aquaculture and Disease Control)
Show Figures

Figure 1

18 pages, 4123 KB  
Article
Urban Growth and River Course Dynamics: Disconnected Floodplain and Urban Flood Risk in Manohara Watershed, Nepal
by Shobha Shrestha, Prem Sagar Chapagain, Kedar Dahal, Nirisha Adhikari, Prajjwal Shrestha and Laxmi Manandhar
Water 2025, 17(16), 2391; https://doi.org/10.3390/w17162391 - 13 Aug 2025
Viewed by 476
Abstract
Human activities and river course change have a complex reciprocal interaction. The river channel is altered by human activity, and these alterations have an impact on the activities and settlements along the riverbank. Understanding the relationship between urbanization and changes in river morphology [...] Read more.
Human activities and river course change have a complex reciprocal interaction. The river channel is altered by human activity, and these alterations have an impact on the activities and settlements along the riverbank. Understanding the relationship between urbanization and changes in river morphology is crucial for effective river management, safeguarding the urban environment, and mitigating flood hazards. In this context, this study has been conducted to investigate the interrelationship between morphological dynamics, built-up growth, and urban flood risk along the Manohara River in Kathmandu Valley, Nepal. The Sinuosity Index was used to analyze variation in river courses and instability from 1996 to 2023. Built-up change analysis is carried out using supervised maximum likelihood classification method and rate of change is calculated for built-up area growth (2003–2023) and building construction between 2003 and 2021. Flood hazard risk manning was carried out using flood frequency estimation method integrating HEC-GeoRAS modeling. Linear regression and spatial overlay analysis was carried out to examine the interrelationship between river morphology, urban growth, and fold hazed risk. In recent years (2016–2023), the Manohara River has straightened, particularly after 2011. Before 2011, it had significant meandering with pronounced curves and bends, indicating a mature river system. However, the SI value of 1.45 in 2023 and 1.80 in 2003 indicates a significant straightening of high meandering over 20 years. A flood hazard modeling carried out within the active floodplain of the Manohara River shows that 26.4% of the area is under high flood risk and 21% is under moderate risk. Similarly, over 10 years from 2006 to 2016, the rate of built-up change was found to be 9.11, while it was 7.9 between 2011 and 2021. The calculated R2 value of 0.7918 at a significance level of 0.05 (with a p value of 0.0175, and a standard error value of 0.07877) indicates a strong positive relationship between decreasing sinuosity and increasing built-up, which demonstrates the effect of built-up expansion on river morphology, particularly the anthropogenic activities of encroachment and haphazard constructions, mining, dumping wastes, and squatter settlements along the active floodplain, causing instability on the river course and hence, lateral shift. The riverbank and active floodplain are not defined scientifically, which leads to the invasion of the river area. These activities, together with land use alteration in the floodplain, show an increased risk of flood hazards and other natural calamities. Therefore, sustainable protection measures must be prioritized in the active floodplain and flood risk areas, taking into account upstream–downstream linkages and chain effects caused by interaction between natural and adverse anthropogenic activities. Full article
Show Figures

Figure 1

16 pages, 3173 KB  
Article
A Quantitative Approach to Prior Setting for Relative Biomass (B/k) in CMSY++: Application to Snow Crabs (Chionoecetes opilio) in Korean Waters
by Ji-Hyun Eom, Sung-Il Lee and Sang-Chul Yoon
Fishes 2025, 10(8), 400; https://doi.org/10.3390/fishes10080400 - 11 Aug 2025
Viewed by 290
Abstract
Snow crabs (Chionoecetes opilio), a commercially valuable species in Korean waters, have been managed under the Total Allowable Catch (TAC) system since 2002. However, stock assessment has been limited due to difficulties in estimating key ecological traits such as growth, maturity, [...] Read more.
Snow crabs (Chionoecetes opilio), a commercially valuable species in Korean waters, have been managed under the Total Allowable Catch (TAC) system since 2002. However, stock assessment has been limited due to difficulties in estimating key ecological traits such as growth, maturity, and mortality. In this study, the Bayesian Schaefer Model (BSM), implemented within CMSY++ framework, was applied to assess the stock status of snow crabs in Korean waters. BSM requires catch and abundance index data, such as catch per unit effort (CPUE) or biomass, as well as prior information on species resilience and relative biomass (B/k). To improve the reliability of B/k priors, we developed a method to calculate them quantitatively using fishery data, sales amounts, and biological information, unlike the qualitative assumptions on stock and fishing conditions proposed in previous research. Two standardized CPUE indices with differing temporal trends in recent years were used as abundance indices. To address the structural uncertainty associated with these divergent trends, we applied a grid-based approach by treating each CPUE index as an independent model scenario and integrating the posterior distributions. A total of 12,000 posterior estimates (6000 per index) were generated through the BSM and used to construct a Kobe plot. Results indicate that the current biomass is slightly above the level supporting maximum sustainable yield, and fishing mortality slightly below the optimal level, suggesting that the stock is healthy and sustainably exploited. Future research should aim to establish a systematic framework for developing quantitative B/k priors to enhance stock assessment accuracy. Full article
(This article belongs to the Special Issue Modeling Approach for Fish Stock Assessment)
Show Figures

Figure 1

33 pages, 2838 KB  
Article
Daily Profile of miRNAs in the Rat Colon and In Silico Analysis of Their Possible Relationship to Colorectal Cancer
by Iveta Herichová, Denisa Vanátová, Richard Reis, Katarína Stebelová, Lucia Olexová, Martina Morová, Adhideb Ghosh, Miroslav Baláž, Peter Štefánik and Lucia Kršková
Biomedicines 2025, 13(8), 1865; https://doi.org/10.3390/biomedicines13081865 - 31 Jul 2025
Viewed by 472
Abstract
Background: Colorectal cancer (CRC) is strongly influenced by miRNAs as well as the circadian system. Methods: High-throughput sequencing of miRNAs expressed in the rat colon during 24 h light (L)/dark (D) cycle was performed to identify rhythmically expressed miRNAs. The role of miR-150-5p [...] Read more.
Background: Colorectal cancer (CRC) is strongly influenced by miRNAs as well as the circadian system. Methods: High-throughput sequencing of miRNAs expressed in the rat colon during 24 h light (L)/dark (D) cycle was performed to identify rhythmically expressed miRNAs. The role of miR-150-5p in CRC progression was analyzed in DLD1 cell line and human CRC tissues. Results: Nearly 10% of mature miRNAs showed a daily rhythm in expression. A peak of miRNAs’ levels was in most cases observed during the first half of the D phase of the LD cycle. The highest amplitude was detected in expression of miR-150-5p and miR-142-3p. In the L phase of the LD cycle, the maximum in miR-30d-5p expression was detected. Gene ontology enrichment analysis revealed that genes interfering with miRNAs with peak expression during the D phase influence apoptosis, angiogenesis, the immune system, and EGF and TGF-beta signaling. Rhythm in miR-150-5p, miR-142-3p, and miR-30d-5p expression was confirmed by real-time PCR. Oncogenes bcl2 and myb and clock gene cry1 were identified as miR-150-5p targets. miR-150-5p administration promoted camptothecin-induced apoptosis. Expression of myb showed a rhythmic profile in DLD1 cells with inverted acrophase with respect to miR-150-5p. miR-150-5p was decreased in cancer compared to adjacent tissue in CRC patients. Decrease in miR-150-5p was age dependent. Older patients with lower expression of miR-150-5p and higher expression of cry1 showed worse survival in comparison with younger patients. Conclusions: miRNA signaling differs between the L and D phases of the LD cycle. miR-150-5p, targeting myb, bcl2, and cry1, can influence CRC progression in a phase-dependent manner. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Graphical abstract

17 pages, 1893 KB  
Article
Tracking Heat Stress in Broilers: A Thermographic Analysis of Anatomical Sensitivity Across Growth Stages
by Rimena do Amaral Vercellino, Irenilza de Alencar Nääs and Daniella Jorge de Moura
Animals 2025, 15(15), 2233; https://doi.org/10.3390/ani15152233 - 29 Jul 2025
Viewed by 402
Abstract
This study aimed to identify anatomical regions and developmental stages in broiler chickens that serve as reliable thermographic indicators of acute heat stress. Broilers aged 14, 21, 35, and 39 days were exposed to controlled heat stress, and surface temperatures across 12 anatomical [...] Read more.
This study aimed to identify anatomical regions and developmental stages in broiler chickens that serve as reliable thermographic indicators of acute heat stress. Broilers aged 14, 21, 35, and 39 days were exposed to controlled heat stress, and surface temperatures across 12 anatomical regions were recorded using infrared thermography. Thermal response metrics (maximum, minimum, and mean peak variation) were analyzed with repeated-measures ANOVA and eta squared (η2) to quantify the strength of physiological responses. Principal component and cluster analyses grouped body regions based on their thermal sensitivity. The comb and wattle consistently showed the highest temperature increases (ΔT = 2.3–4.1 °C) and strongest effect sizes (η2 ≥ 0.70), establishing them as primary thermoregulatory markers. As age increased, more body regions—especially peripheral zones like the drumstick and tail—exhibited strong responses (η2 > 0.40), indicating an expansion of thermoregulatory activity. Cluster analysis identified three distinct sensitivity groups, confirming anatomical differences in thermal regulation. Thermographic responses to heat stress in broilers depend on age and region. The comb and wattle are the most reliable biomarkers, while peripheral responses grow more prominent with maturity. These findings support the use of targeted, age-specific infrared thermography for monitoring poultry welfare. Full article
Show Figures

Graphical abstract

27 pages, 18566 KB  
Article
Geochemical Characteristics and Controlling Factors of Lower Cretaceous Lacustrine Hydrocarbon Source Rocks in the Erdengsumu Sag, Erlian Basin, NE China
by Juwen Yao, Zhanli Ren, Kai Qi, Jian Liu, Sasa Guo, Guangyuan Xing, Yanzhao Liu and Mingxing Jia
Processes 2025, 13(8), 2412; https://doi.org/10.3390/pr13082412 - 29 Jul 2025
Viewed by 289
Abstract
This study analyzes the lacustrine hydrocarbon source rocks of the Lower Cretaceous in the Erdengsumu sag of the Erlian Basin, evaluating their characteristics and identifying areas with oil resource potential, while also investigating the ancient lake environment, material source input, and controlling factors, [...] Read more.
This study analyzes the lacustrine hydrocarbon source rocks of the Lower Cretaceous in the Erdengsumu sag of the Erlian Basin, evaluating their characteristics and identifying areas with oil resource potential, while also investigating the ancient lake environment, material source input, and controlling factors, ultimately developing a sedimentary model for lacustrine hydrocarbon source rocks. The findings suggest the following: (1) The lower Tengger Member (K1bt1) and the Aershan Formation (K1ba) are the primary oil-producing strata, with an effective hydrocarbon source rock exhibiting a lower limit of total organic carbon (TOC) at 0.95%. The Ro value typically remains below 0.8%, indicating that high-maturity oil production has not yet been attained. (2) The oil generation threshold depths for the Dalestai and Sayinhutuge sub-sags are 1500 m and 1214 m, respectively. The thickness of the effective hydrocarbon source rock surpasses 200 m, covering areas of 42.48 km2 and 88.71 km2, respectively. The cumulative hydrocarbon generation intensity of wells Y1 and Y2 is 486 × 104 t/km2 and 26 × 104 t/km2, respectively, suggesting that the Dalestai sub-sag possesses considerable petroleum potential. The Aershan Formation in the Chagantala sub-sag has a maximum burial depth of merely 1800 m, insufficient to attain the oil generation threshold depth. (3) The research area’s productive hydrocarbon source rocks consist of organic matter types I and II1. The Pr/Ph range is extensive (0.33–2.07), signifying a reducing to slightly oxidizing sedimentary environment. This aligns with the attributes of small fault lake basins, characterized by shallow water and robust hydrodynamics. (4) The low ratio of ∑nC21−/∑nC22+ (0.36–0.81), high CPI values (>1.49), and high C29 sterane concentration suggest a substantial terrestrial contribution, with negligible input from aquatic algae–bacterial organic matter. Moreover, as sedimentation duration extends, the contribution from higher plants progressively increases. (5) The ratio of the width of the deep depression zone to the width of the depression in the Erdengsumu sag is less than 0.25. The boundary fault scale is small, its activity is low, and there is not much input from the ground. Most of the source rocks are in the reducing sedimentary environment of the near-lying gently sloping zone. Full article
(This article belongs to the Topic Petroleum and Gas Engineering, 2nd edition)
Show Figures

Figure 1

14 pages, 2347 KB  
Article
Linking Life History Traits to the Threat Level of European Freshwater Fish
by Olga Petriki and Dimitra C. Bobori
Water 2025, 17(15), 2254; https://doi.org/10.3390/w17152254 - 29 Jul 2025
Viewed by 342
Abstract
Over 40% of freshwater fish species in Europe are currently at risk of extinction, highlighting the need for improved conservation planning. This study examines whether the threat status is associated with life-history and ecological traits across 580 autochthonous (native and endemic) freshwater fish [...] Read more.
Over 40% of freshwater fish species in Europe are currently at risk of extinction, highlighting the need for improved conservation planning. This study examines whether the threat status is associated with life-history and ecological traits across 580 autochthonous (native and endemic) freshwater fish species in European inland waters. Using data from FishBase and the IUCN Red List, we assessed associations between threat level and both categorical (e.g., migratory behavior, commercial importance, reproductive guild, and body shape) and numerical traits (e.g., maximum length, weight, age, growth parameters, and maturity traits). Significant, though modest, associations were identified between species threat level and migratory behavior and reproductive guild. Non-migratory species exhibited higher median threat levels, while amphidromous species showed a non-significant trend toward higher threat, suggesting that limited dispersal ability and dependence on fragmented freshwater networks may increase extinction vulnerability. Species with unclassified reproductive strategies also showed elevated threat levels, possibly reflecting both actual risk and underlying data gaps. In contrast, body shape and trophic level were not significantly associated with threat status. Critically Endangered species tend to be larger, heavier, and mature later—traits characteristic of slow life history strategies that limit population recovery. Although length at maturity and maximum age did not differ significantly among IUCN categories, age at maturity was significantly higher in more threatened species, and growth rate (K) was negatively correlated with threat level. Together, these patterns suggest that slower-growing, later-maturing species face elevated extinction risk. Overall, the findings underscore that the threat level in European freshwater fish is shaped by complex interactions between intrinsic biological traits and external pressures. Trait-based approaches can enhance extinction risk assessments and conservation prioritization, especially in data-deficient freshwater ecosystems facing multifaceted environmental challenges. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

24 pages, 3885 KB  
Article
Discrete Meta-Modeling Method of Breakable Corn Kernels with Multi-Particle Sub-Area Combinations
by Jiangdong Xu, Yanchun Yao, Yongkang Zhu, Chenxi Sun, Zhi Cao and Duanyang Geng
Agriculture 2025, 15(15), 1620; https://doi.org/10.3390/agriculture15151620 - 26 Jul 2025
Viewed by 315
Abstract
Simulation is an important technical tool in corn threshing operations, and the establishment of the corn kernel model is the core part of the simulation process. The existing modeling method is to treat the whole kernel as a rigid body, which cannot be [...] Read more.
Simulation is an important technical tool in corn threshing operations, and the establishment of the corn kernel model is the core part of the simulation process. The existing modeling method is to treat the whole kernel as a rigid body, which cannot be crushed during the simulation process, and the calculation of the crushing rate needs to be considered through multiple criteria such as the contact force, the number of collisions, and so on. Aiming at the issue that kernel crushing during maize threshing cannot be accurately modeled in discrete element simulations, in this study, a sub-area crushing model was constructed; representative samples with 26%, 30% and 34% moisture content were selected from a double-season maturing region in China; based on the physical dimensions and biological structure of the maize kernel, three stress regions were defined; and mechanical property tests were conducted on each of the three stress regions using a texturometer as a way to determine the different crushing forces due to the heterogeneity of the maize structure. The correctness of the model was verified by stacking angle and mechanical property experiments. A discrete element model of corn kernels was established using the Bonding V2 method and sub-area modeling. Bonding parameters were calculated by combining stacking angle tests and mechanical property tests. The flattened corn kernel was used as a prototype, and the bonding parameters were determined through size and mechanical property tests. A 22-ball bonding model was developed using dimensional parameters, and the kernel density was recalculated. Results showed that the relative error between the stacking angle test and the measured mean value was 0.31%. The maximum deviation of axial compression simulation results from the measured mean value was 22.8 N, and the minimum deviation was 3.67 N. The errors between simulated and actual rupture forces at the three force areas were 5%, 10%, and 0.6%, respectively. The decreasing trend of the maximum rupture force for the three moisture levels in the simulation matched that of the actual rupture force. The discrete element model can accurately reflect the rupture force, energy relationship, and rupture process on both sides, top, and bottom of the grain, and it can solve the error problem caused by the contact between the threshing element and the grain line in the actual threshing process to achieve the design optimization of the threshing drum. The modeling method provided in this study can also be applied to breakable discrete element models for wheat and soybean, and it provides a reference for optimizing the design of subsequent threshing devices. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

26 pages, 3318 KB  
Article
Responses of Tomato Growth and Soil Environment Properties to Integrated Deficit Water-Biogas Slurry Application Under Indirect Subsurface Drip Irrigation
by Peng Xiang, Jian Zheng, Panpan Fan, Yan Wang and Fenyan Ma
Agriculture 2025, 15(15), 1601; https://doi.org/10.3390/agriculture15151601 - 25 Jul 2025
Viewed by 450
Abstract
To explore the feasibility of integrated deficit water-biogas slurry irrigation under indirect subsurface drip irrigation, three deficit irrigation levels (60%FC, 70%FC, and 80%FC; FC represents field capacity) were established during the three growth stages of tomatoes. The results indicated that biogas slurry irrigation [...] Read more.
To explore the feasibility of integrated deficit water-biogas slurry irrigation under indirect subsurface drip irrigation, three deficit irrigation levels (60%FC, 70%FC, and 80%FC; FC represents field capacity) were established during the three growth stages of tomatoes. The results indicated that biogas slurry irrigation treatments increased the soil organic matter content in the root zone and water use efficiency (WUE) and reduced soil pH. As the degree of deficit increased, the plant height and stem diameter of tomatoes decreased significantly (p < 0.05), particularly during the seedling and flowering-fruiting stages. A mild deficit during the seedling stage was beneficial for subsequent plant growth, yielding maximum leaf area (6871.42 cm2 plant−1). Moderate deficit treatment at the seedling stage maximized yield, which was 19.79% higher than the control treatment in 2020 and 19.22% higher in 2021. The WUE of severe deficit treatment at the maturity stage increased by 26.6% (2020) and 31.04% (2021) compared to the control treatment. Comprehensive evaluation using TOPSIS combined with the weighted method revealed that severe deficit treatment at the maturity stage provided the best comprehensive benefits for tomatoes. In summary, deficit irrigation at different growth stages positively influenced tomato growth, quality, and soil environment in response to water-biogas slurry irrigation. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

19 pages, 3568 KB  
Article
Heat Impact of Urban Sprawl: How the Spatial Composition of Residential Suburbs Impacts Summer Air Temperatures and Thermal Comfort
by Mahmuda Sharmin, Manuel Esperon-Rodriguez, Lauren Clackson, Sebastian Pfautsch and Sally A. Power
Atmosphere 2025, 16(8), 899; https://doi.org/10.3390/atmos16080899 - 23 Jul 2025
Viewed by 436
Abstract
Urban residential design influences local microclimates and human thermal comfort. This study combines empirical microclimate data with remotely sensed data on tree canopy cover, housing lot size, surface permeability, and roof colour to examine thermal differences between three newly built and three established [...] Read more.
Urban residential design influences local microclimates and human thermal comfort. This study combines empirical microclimate data with remotely sensed data on tree canopy cover, housing lot size, surface permeability, and roof colour to examine thermal differences between three newly built and three established residential suburbs in Western Sydney, Australia. Established areas featured larger housing lots and mature street trees, while newly developed suburbs had smaller lots and limited vegetation cover. Microclimate data were collected during summer 2021 under both heatwave and non-heatwave conditions in full sun, measuring air temperature, relative humidity, wind speed, and wet-bulb globe temperature (WBGT) as an index of heat stress. Daily maximum air temperatures reached 42.7 °C in new suburbs, compared to 39.3 °C in established ones (p < 0.001). WBGT levels during heatwaves were in the “extreme caution” category in new suburbs, while remaining in the “caution” range in established ones. These findings highlight the benefits of larger green spaces, permeable surfaces, and lighter roof colours in the context of urban heat exposure. Maintaining mature trees and avoiding dark roofs can significantly reduce summer heat and improve outdoor thermal comfort across a range of conditions. Results of this work can inform bottom-up approaches to climate-responsive urban design where informed homeowners can influence development outcomes. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

17 pages, 4216 KB  
Article
Sugarcane Phenology Retrieval in Heterogeneous Agricultural Landscapes Based on Spatiotemporal Fusion Remote Sensing Data
by Yingpin Yang, Zhifeng Wu, Dakang Wang, Cong Wang, Xiankun Yang, Yibo Wang, Jinnian Wang, Qiting Huang, Lu Hou, Zongbin Wang and Xu Chang
Agriculture 2025, 15(15), 1578; https://doi.org/10.3390/agriculture15151578 - 23 Jul 2025
Viewed by 319
Abstract
Accurate phenological information on sugarcane is crucial for guiding precise cultivation management and enhancing sugar production. Remote sensing offers an efficient approach for large-scale phenology retrieval, but most studies have primarily focused on staple crops. The methods for retrieving the sugarcane phenology—the germination, [...] Read more.
Accurate phenological information on sugarcane is crucial for guiding precise cultivation management and enhancing sugar production. Remote sensing offers an efficient approach for large-scale phenology retrieval, but most studies have primarily focused on staple crops. The methods for retrieving the sugarcane phenology—the germination, tillering, elongation, and maturity stages—remain underexplored. This study addresses the challenge of accurately monitoring the sugarcane phenology in complex terrains by proposing an optimized strategy integrating spatiotemporal fusion data. Ground-based validation showed that the change detection method based on the Double-Logistic curve significantly outperformed the threshold-based approach, with the highest accuracy for the elongation and maturity stages achieved at the maximum slope points of the ascending and descending phases, respectively. For the germination and tillering stages with low canopy cover, a novel time-windowed change detection method was introduced, using the first local maximum of the third derivative curve (denoted as Point A) to establish a temporal buffer. The optimal retrieval models were identified as 25 days before and 20 days after Point A for germination and tillering, respectively. Among the six commonly used vegetation indices, the NDVI (normalized difference vegetation index) performed the best across all the phenological stages. Spatiotemporal fusion using the ESTARFM (Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) significantly improved the monitoring accuracy in heterogeneous agricultural landscapes, reducing the RMSE (root-mean-squared error) by 21–46%, with retrieval errors decreasing from 18.25 to 12.97 days for germination, from 8.19 to 4.41 days for tillering, from 19.17 to 10.78 days for elongation, and from 19.02 to 15.04 days for maturity, highlighting its superior accuracy. The findings provide a reliable technical solution for precision sugarcane management in heterogeneous landscapes. Full article
Show Figures

Figure 1

Back to TopTop