Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = matrix-assisted pulsed laser evaporation technique

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
50 pages, 4603 KB  
Review
Polymeric Composite Thin Films Deposited by Laser Techniques for Antimicrobial Applications—A Short Overview
by Anita Ioana Visan and Irina Negut
Polymers 2025, 17(15), 2020; https://doi.org/10.3390/polym17152020 - 24 Jul 2025
Viewed by 921
Abstract
Polymeric composite thin films have emerged as promising antimicrobial materials, particularly in response to rising antibiotic resistance. This review highlights the development and application of such films produced by laser-based deposition techniques, notably pulsed laser deposition and matrix-assisted pulsed laser evaporation. These methods [...] Read more.
Polymeric composite thin films have emerged as promising antimicrobial materials, particularly in response to rising antibiotic resistance. This review highlights the development and application of such films produced by laser-based deposition techniques, notably pulsed laser deposition and matrix-assisted pulsed laser evaporation. These methods offer precise control over film composition, structure, and thickness, making them ideal for embedding antimicrobial agents such as metal nanoparticles, antibiotics, and natural compounds into polymeric matrices. The resulting composite coatings exhibit enhanced antimicrobial properties against a wide range of pathogens, including antibiotic-resistant strains, by leveraging mechanisms such as ion release, reactive oxygen species generation, and membrane disruption. The review also discusses critical parameters influencing antimicrobial efficacy, including film morphology, composition, and substrate interactions. Applications include biomedical devices, implants, wound dressings, and surfaces in the healthcare and food industries. Full article
(This article belongs to the Special Issue Polymer Thin Films and Their Applications)
Show Figures

Figure 1

24 pages, 4823 KB  
Article
Bioactive Glass and Melittin Thin Films Deposited by MAPLE for Titanium Implant Functionalization
by Mihaela Dinu, Bogdan Bita, Anca Constantina Parau, Carmen Ristoscu and Irina Negut
Materials 2025, 18(10), 2410; https://doi.org/10.3390/ma18102410 - 21 May 2025
Viewed by 818
Abstract
The development of bioactive coatings for metallic implants is essential to enhance osseointegration and improve implant longevity. In this study, composite thin films based on bioactive glass and melittin were synthesized using the matrix-assisted pulsed laser evaporation technique and deposited onto titanium substrates. [...] Read more.
The development of bioactive coatings for metallic implants is essential to enhance osseointegration and improve implant longevity. In this study, composite thin films based on bioactive glass and melittin were synthesized using the matrix-assisted pulsed laser evaporation technique and deposited onto titanium substrates. The coatings were characterized using physicochemical analysis methods, including scanning electron microscopy, atomic force microscopy, contact angle measurements, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and electrochemical impedance spectroscopy. Simulated body fluid immersion tests were also conducted to assess bioactivity over time. Scanning electron microscopy and atomic force microscopy revealed dense, irregular surface textures with nanoscale features and an average roughness of ~120 nm, favorable for cell adhesion. Contact angle measurements showed a significant shift from hydrophobic (~95° for bare titanium) to moderately hydrophilic (~62° for the bioglass and melittin coating) surfaces, indicating improved biocompatibility. Electrochemical impedance spectroscopy demonstrated enhanced corrosion resistance in simulated body fluid, with the coating exhibiting a ~45% decrease in impedance magnitude after 12 h of immersion, compared to only 4% for bare titanium. Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy analyses confirmed the progressive formation of a carbonated apatite layer after 7 days of simulated body fluid exposure, suggesting high bioactivity and osteoconductive potential. The combined effects of bioactive glass and melittin in the thin film structure offer promising applications in orthopedic and dental implants, enhancing both biological performance and structural integrity. Full article
Show Figures

Figure 1

20 pages, 4906 KB  
Article
Antibacterial Properties and Long-Term Corrosion Resistance of Bioactive Coatings Obtained by Matrix-Assisted Pulsed Laser Evaporation on TiZrTaAg
by Andrei Bogdan Stoian, Mariana Prodana, Radu Nartita, Daniela Ionita and Madalina Simoiu
Metals 2025, 15(3), 253; https://doi.org/10.3390/met15030253 - 27 Feb 2025
Cited by 2 | Viewed by 1204
Abstract
The long-term corrosion and antibacterial evaluation of bioactive coating obtained by matrix-assisted pulsed laser evaporation (MAPLE) on TiZrTaAg is crucial for assessing its potential in biomedical applications. The MAPLE deposition technique involves the formation of a dense and adherent layer on the surface [...] Read more.
The long-term corrosion and antibacterial evaluation of bioactive coating obtained by matrix-assisted pulsed laser evaporation (MAPLE) on TiZrTaAg is crucial for assessing its potential in biomedical applications. The MAPLE deposition technique involves the formation of a dense and adherent layer on the surface of the alloy which can include a multitude of components such as bioactive glass, ZnO and graphene oxide. Long-term corrosion studies in simulated body fluids evaluate the stability and integrity of the coating over extended periods, ensuring its durability in the physiological environment. The results showed that the coatings, especially the one incorporating graphene oxide (GO), significantly reduced the corrosion rate of TiZrTaAg compared to the uncoated alloy. Antibacterial evaluation assesses the coating’s ability to inhibit bacterial colonization and biofilm formation, which are major concerns in implant-associated infections. The coatings demonstrated high antibacterial activity, with the one with the GO-containing film exhibiting the highest bacterial inhibition, achieving 83% against Staphylococcus aureus and 71% against Escherichia coli. The study concluded that the MAPLE-modified TiZrTaAg alloy with bioactive coatings, particularly the one with GO, shows promising potential for biomedical applications due to enhanced corrosion resistance and strong antibacterial properties. Full article
Show Figures

Figure 1

14 pages, 5400 KB  
Article
Graphene Oxide–Antibiotic Coatings with Improved Resistance to Microbial Colonization for Arthroplasty Implants
by Gheorghe Iosub, Adelina-Gabriela Niculescu, Valentina Grumezescu, Gabriela Dorcioman, Oana Gherasim, Valentin Crăciun, Dragoș Mihai Rădulescu, Alexandru Mihai Grumezescu, Miruna Silvia Stan, Sorin Constantinescu, Alina Maria Holban and Adrian-Radu Rădulescu
J. Compos. Sci. 2025, 9(2), 82; https://doi.org/10.3390/jcs9020082 - 10 Feb 2025
Cited by 1 | Viewed by 1324
Abstract
In this study, we investigated the biocompatibility and antibacterial efficiency of hydroxyapatite/graphene oxide/ceftazidime (HAp/GO/CFZ) coatings obtained by the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique for arthroplasty implants. The coatings were evaluated for their ability to inhibit biofilm formation by model opportunistic pathogens, specifically [...] Read more.
In this study, we investigated the biocompatibility and antibacterial efficiency of hydroxyapatite/graphene oxide/ceftazidime (HAp/GO/CFZ) coatings obtained by the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique for arthroplasty implants. The coatings were evaluated for their ability to inhibit biofilm formation by model opportunistic pathogens, specifically Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, for 24, 48, and 72 h. A significant reduction in the biofilm formation was demonstrated by coating surfaces, which led to a diminution of approximately 4 logs in the CFU/mL values compared to controls. These findings suggested that HAp/GO/CFZ coatings have the potential to prevent infections associated with arthroplasty implants, thereby improving patient outcomes and implant longevity. Full article
(This article belongs to the Special Issue Advances in Laser Fabrication of Composites)
Show Figures

Figure 1

19 pages, 4846 KB  
Article
Development of Hybrid Implantable Local Release Systems Based on PLGA Nanoparticles with Applications in Bone Diseases
by Maria Viorica Ciocîlteu, Andreea Gabriela Mocanu, Andrei Biță, Costel Valentin Manda, Claudiu Nicolicescu, Gabriela Rău, Ionela Belu, Andreea Silvia Pîrvu, Maria Balasoiu, Valentin Nănescu and Oana Elena Nicolaescu
Polymers 2024, 16(21), 3064; https://doi.org/10.3390/polym16213064 - 31 Oct 2024
Cited by 3 | Viewed by 1445
Abstract
The current strategy for treating osteomyelitis includes surgical procedures for complete debridement of the formed biofilm and necrotic tissues, systemic and oral antibiotic therapy, and the clinical use of cements and three-dimensional scaffolds as bone defect fillers and delivery systems for therapeutic agents. [...] Read more.
The current strategy for treating osteomyelitis includes surgical procedures for complete debridement of the formed biofilm and necrotic tissues, systemic and oral antibiotic therapy, and the clinical use of cements and three-dimensional scaffolds as bone defect fillers and delivery systems for therapeutic agents. The aim of our research was to formulate a low-cost hybrid nanoparticulate biomaterial using poly(lactic-co-glycolic acid) (PLGA), in which we incorporated the therapeutic agent (ciprofloxacin), and to deposit this material on titanium plates using the matrix-assisted pulsed laser evaporation (MAPLE) technique. The deposited material demonstrated antibacterial properties, with all analyzed samples inhibiting the growth of tested bacterial strains, confirming the release of active substances from the investigated biocomposite. The poly(lactic-co-glycolic acid)-ciprofloxacin (PLGA-CIP) nanoparticle scaffolds displayed a prolonged local sustained release profile over a period of 45 days, which shows great promise in bone infections. Furthermore, the burst release ensures a highly efficient concentration, followed by a constant sustained release which allows the drug to remain in the implant-adjacent area for an extended time period. Full article
(This article belongs to the Special Issue Polymer Materials for Drug Delivery and Tissue Engineering II)
Show Figures

Figure 1

17 pages, 4413 KB  
Article
MAPLE-Deposited Perylene Diimide Derivative Based Layers for Optoelectronic Applications
by Carmen Breazu, Mihaela Girtan, Anca Stanculescu, Nicoleta Preda, Oana Rasoga, Andreea Costas, Ana Maria Catargiu, Gabriel Socol, Andrei Stochioiu, Gianina Popescu-Pelin, Sorina Iftimie, Gabriela Petre and Marcela Socol
Nanomaterials 2024, 14(21), 1733; https://doi.org/10.3390/nano14211733 - 29 Oct 2024
Cited by 1 | Viewed by 1236
Abstract
Nowadays, the development of devices based on organic materials is an interesting research challenge. The performance of such devices is strongly influenced by material selection, material properties, design, and the manufacturing process. Usually, buckminsterfullerene (C60) is employed as electron transport material in organic [...] Read more.
Nowadays, the development of devices based on organic materials is an interesting research challenge. The performance of such devices is strongly influenced by material selection, material properties, design, and the manufacturing process. Usually, buckminsterfullerene (C60) is employed as electron transport material in organic photovoltaic (OPV) devices due to its high mobility. However, considering its low solubility, there have been many attempts to replace it with more soluble non-fullerene compounds. In this study, bulk heterojunction thin films with various compositions of zinc phthalocyanine (ZnPc), a perylene diimide derivative, or C60 were prepared by matrix-assisted pulsed laser evaporation (MAPLE) technique to assess the influence of C60 replacement on fabricated heterostructure properties. The investigations revealed that the optical features and the electrical parameters of the organic heterostructures based on this perylene diimide derivative used as an organic acceptor were improved. An increase in the JSC value (4.3 × 10−4 A/cm2) was obtained for the structures where the perylene diimide derivative acceptor entirely replaced C60 compared to the JSC value (7.5 × 10−8 A/cm2) for the heterostructure fabricated only with fullerene. These results are encouraging, demonstrating the potential of non-fullerene compounds as electron transport material in OPV devices. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

36 pages, 3550 KB  
Review
Advanced Laser Techniques for the Development of Nature-Inspired Biomimetic Surfaces Applied in the Medical Field
by Anita Ioana Visan and Gianina Florentina Popescu-Pelin
Coatings 2024, 14(10), 1290; https://doi.org/10.3390/coatings14101290 - 9 Oct 2024
Cited by 6 | Viewed by 3648
Abstract
This review focuses on the innovative use of laser techniques in developing and functionalizing biomimetic surfaces, emphasizing their potential applications in the medical and biological fields. Drawing inspiration from the remarkable properties of various natural systems, such as the water-repellent lotus leaf, the [...] Read more.
This review focuses on the innovative use of laser techniques in developing and functionalizing biomimetic surfaces, emphasizing their potential applications in the medical and biological fields. Drawing inspiration from the remarkable properties of various natural systems, such as the water-repellent lotus leaf, the adhesive gecko foot, the strong yet lightweight spider silk, and the unique optical structures of insect wings, we explore the potential for replicating these features through advanced laser surface modifications. Depending on the nature and architecture of the surface, particular techniques have been designed and developed. We present an in-depth analysis of various methodologies, including laser ablation/evaporation techniques, such as Pulsed Laser Deposition and Matrix-Assisted Pulsed Laser Evaporation, and approaches for laser surface structuring, including two-photon lithography, direct laser interference patterning, laser-induced periodic surface structures, direct laser writing, laser-induced forward transfer, and femtosecond laser ablation of metals in organic solvents. Additionally, specific applications are highlighted with the aim of synthesizing this knowledge and outlining future directions for research that further explore the intersection of laser techniques and biomimetic surfaces, paving the way for advancements in biomedical applications. Full article
(This article belongs to the Special Issue Biomimetic Approaches in Coatings Synthesis)
Show Figures

Figure 1

20 pages, 6296 KB  
Article
New Fe3O4-Based Coatings with Enhanced Anti-Biofilm Activity for Medical Devices
by Ioana Adelina Pirușcă, Paul Cătălin Balaure, Valentina Grumezescu, Stefan-Andrei Irimiciuc, Ovidiu-Cristian Oprea, Alexandra Cătălina Bîrcă, Bogdan Vasile, Alina Maria Holban, Ionela C. Voinea, Miruna S. Stan, Roxana Trușcă, Alexandru Mihai Grumezescu and George-Alexandru Croitoru
Antibiotics 2024, 13(7), 631; https://doi.org/10.3390/antibiotics13070631 - 7 Jul 2024
Cited by 8 | Viewed by 2564
Abstract
With the increasing use of invasive, interventional, indwelling, and implanted medical devices, healthcare-associated infections caused by pathogenic biofilms have become a major cause of morbidity and mortality. Herein, we present the fabrication, characterization, and in vitro evaluation of biocompatibility and anti-biofilm properties of [...] Read more.
With the increasing use of invasive, interventional, indwelling, and implanted medical devices, healthcare-associated infections caused by pathogenic biofilms have become a major cause of morbidity and mortality. Herein, we present the fabrication, characterization, and in vitro evaluation of biocompatibility and anti-biofilm properties of new coatings based on Fe3O4 nanoparticles (NPs) loaded with usnic acid (UA) and ceftriaxone (CEF). Sodium lauryl sulfate (SLS) was employed as a stabilizer and modulator of the polarity, dispersibility, shape, and anti-biofilm properties of the magnetite nanoparticles. The resulting Fe3O4 functionalized NPs, namely Fe3O4@SLS, Fe3O4@SLS/UA, and Fe3O4@SLS/CEF, respectively, were prepared by co-precipitation method and fully characterized by XRD, TEM, SAED, SEM, FTIR, and TGA. They were further used to produce nanostructured coatings by matrix-assisted pulsed laser evaporation (MAPLE) technique. The biocompatibility of the coatings was assessed by measuring the cell viability, lactate dehydrogenase release, and nitric oxide level in the culture medium and by evaluating the actin cytoskeleton morphology of murine pre-osteoblasts. All prepared nanostructured coatings exhibited good biocompatibility. Biofilm growth inhibition ability was tested at 24 h and 48 h against Staphylococcus aureus and Pseudomonas aeruginosa as representative models for Gram-positive and Gram-negative bacteria. The coatings demonstrated good biocompatibility, promoting osteoblast adhesion, migration, and growth without significant impact on cell viability or morphology, highlighting their potential for developing safe and effective antibacterial surfaces. Full article
(This article belongs to the Special Issue Nanomaterials as Antimicrobial Agents for Biomedical Applications)
Show Figures

Figure 1

25 pages, 15644 KB  
Article
Biological and Physicochemical Analysis of Sr-Doped Hydroxyapatite/Chitosan Composite Layers
by Maria Elena Zarif, Bogdan Bita, Sasa Alexandra Yehia-Alexe, Irina Negut, Gratiela Gradisteanu Pircalabioru, Ecaterina Andronescu and Andreea Groza
Polymers 2024, 16(13), 1922; https://doi.org/10.3390/polym16131922 - 5 Jul 2024
Cited by 4 | Viewed by 1768
Abstract
In this work results are presented on the evaluation of HAp, HApSr, HAp_CS, and HApSr_CS layers deposited on Ti substrates regarding L929 cell viability and cytotoxicity as well as antimicrobial activity against Staphylococcus aureus, in connection with their physicochemical properties. The HAp [...] Read more.
In this work results are presented on the evaluation of HAp, HApSr, HAp_CS, and HApSr_CS layers deposited on Ti substrates regarding L929 cell viability and cytotoxicity as well as antimicrobial activity against Staphylococcus aureus, in connection with their physicochemical properties. The HAp and HApSr layers generated by radio-frequency magnetron sputtering technique were further covered with chitosan by a matrix-assisted pulsed laser evaporation technique. During the plasma depositions, the Ti substrates were heated externally by a home-made oven above 100 °C. The HApSr_CS layers generated on the unpolished Ti substrates at 100 °C and 400 °C showed the highest biocompatibility properties and antimicrobial activity against Staphylococcus aureus. The morphology of the layer surfaces, revealed by scanning electron microscopy, is dependent on substrate temperature and substrate surface roughness. The optically polished surfaces of Ti substrates revealed grain-like and microchannel structure morphologies of the layers deposited at 25 °C substrate temperature and 400 °C, respectively. Chitosan has no major influence on HAp and HApSr layer surface morphologies. X-ray photoelectron spectroscopy indicated the presence of Ca 2p3/2 peak characteristic of the HAp structure even in the case of the HApSr_CS samples generated at a 400 °C substrate temperature. Fourier transform infrared spectroscopy investigations showed shifts in the wavenumber positions of the P-O absorption bands as a function of Sr or chitosan presence in the HAp layers generated at 25, 100, and 400 °C substrate temperatures. Full article
(This article belongs to the Special Issue Recent Advances in Polymer Composites for Functional Applications)
Show Figures

Figure 1

21 pages, 3862 KB  
Article
Nanostructured Coatings Based on Graphene Oxide for the Management of Periprosthetic Infections
by Sorin Constantinescu, Adelina-Gabriela Niculescu, Ariana Hudiță, Valentina Grumezescu, Dragoș Rădulescu, Alexandra Cătălina Bîrcă, Gabriela Dorcioman, Oana Gherasim, Alina Maria Holban, Bianca Gălățeanu, Bogdan Ștefan Vasile, Alexandru Mihai Grumezescu, Alexandra Bolocan and Radu Rădulescu
Int. J. Mol. Sci. 2024, 25(4), 2389; https://doi.org/10.3390/ijms25042389 - 17 Feb 2024
Cited by 4 | Viewed by 2786
Abstract
To modulate the bioactivity and boost the therapeutic outcome of implantable metallic devices, biodegradable coatings based on polylactide (PLA) and graphene oxide nanosheets (nGOs) loaded with Zinforo™ (Zin) have been proposed in this study as innovative alternatives for the local management of biofilm-associated [...] Read more.
To modulate the bioactivity and boost the therapeutic outcome of implantable metallic devices, biodegradable coatings based on polylactide (PLA) and graphene oxide nanosheets (nGOs) loaded with Zinforo™ (Zin) have been proposed in this study as innovative alternatives for the local management of biofilm-associated periprosthetic infections. Using a modified Hummers protocol, high-purity and ultra-thin nGOs have been obtained, as evidenced by X-ray diffraction (XRD) and transmission electron microscopy (TEM) investigations. The matrix-assisted pulsed laser evaporation (MAPLE) technique has been successfully employed to obtain the PLA-nGO-Zin coatings. The stoichiometric and uniform transfer was revealed by infrared microscopy (IRM) and scanning electron microscopy (SEM) studies. In vitro evaluation, performed on fresh blood samples, has shown the excellent hemocompatibility of PLA-nGO-Zin-coated samples (with a hemolytic index of 1.15%), together with their anti-inflammatory ability. Moreover, the PLA-nGO-Zin coatings significantly inhibited the development of mature bacterial biofilms, inducing important anti-biofilm efficiency in the as-coated samples. The herein-reported results evidence the promising potential of PLA-nGO-Zin coatings to be used for the biocompatible and antimicrobial surface modification of metallic implants. Full article
(This article belongs to the Special Issue Nanoparticles: From Synthesis to Applications 2.0)
Show Figures

Figure 1

15 pages, 4122 KB  
Article
Polypyrrole–Tungsten Oxide Nanocomposite Fabrication through Laser-Based Techniques for an Ammonia Sensor: Achieving Room Temperature Operation
by Mihaela Filipescu, Stefan Dobrescu, Adrian Ionut Bercea, Anca Florina Bonciu, Valentina Marascu, Simona Brajnicov and Alexandra Palla-Papavlu
Polymers 2024, 16(1), 79; https://doi.org/10.3390/polym16010079 - 26 Dec 2023
Cited by 1 | Viewed by 2194
Abstract
A highly sensitive ammonia-gas sensor based on a tungsten trioxide and polypyrrole (WO3/PPy) nanocomposite synthesized using pulsed-laser deposition (PLD) and matrix-assisted pulsed-laser evaporation (MAPLE) is presented in this study. The WO3/PPy nanocomposite is prepared through a layer-by-layer alternate deposition [...] Read more.
A highly sensitive ammonia-gas sensor based on a tungsten trioxide and polypyrrole (WO3/PPy) nanocomposite synthesized using pulsed-laser deposition (PLD) and matrix-assisted pulsed-laser evaporation (MAPLE) is presented in this study. The WO3/PPy nanocomposite is prepared through a layer-by-layer alternate deposition of the PPy thin layer on the WO3 mesoporous layer. Extensive characterization using X-ray diffraction, FTIR and Raman spectroscopy, scanning electron microscopy, atomic force microscopy, and water contact angle are carried out on the as-prepared layers. The gas-sensing properties of the WO3/PPy nanocomposite layers are systematically investigated upon exposure to ammonia gas. The results demonstrate that the WO3/PPy nanocomposite sensor exhibits a lower detection limit, higher response, faster response/recovery time, and exceptional repeatability compared to the pure PPy and WO3 counterparts. The significant improvement in gas-sensing properties observed in the WO3/PPy nanocomposite layer can be attributed to the distinctive interactions occurring at the p–n heterojunction established between the n-type WO3 and p-type PPy. Additionally, the enhanced surface area of the WO3/PPy nanocomposite, achieved through the PLD and MAPLE synthesis techniques, contributes to its exceptional gas-sensing performance. Full article
(This article belongs to the Special Issue Laser-Enabled Advances in Polymers)
Show Figures

Graphical abstract

17 pages, 5960 KB  
Article
Lead-Free Perovskite Thin Films for Gas Sensing through Surface Acoustic Wave Device Detection
by Nicoleta Enea, Valentin Ion, Cristian Viespe, Izabela Constantinoiu, Anca Bonciu, Maria Luiza Stîngescu, Ruxandra Bîrjega and Nicu Doinel Scarisoreanu
Nanomaterials 2024, 14(1), 39; https://doi.org/10.3390/nano14010039 - 22 Dec 2023
Cited by 1 | Viewed by 2429
Abstract
Thin film technology shows great promise in fabricating electronic devices such as gas sensors. Here, we report the fabrication of surface acoustic wave (SAW) sensors based on thin films of (1 − x) Ba(Ti0.8Zr0.2)O3−x(Ba0.7Ca0.3 [...] Read more.
Thin film technology shows great promise in fabricating electronic devices such as gas sensors. Here, we report the fabrication of surface acoustic wave (SAW) sensors based on thin films of (1 − x) Ba(Ti0.8Zr0.2)O3−x(Ba0.7Ca0.3)TiO3 (BCTZ50, x = 50) and Polyethylenimine (PEI). The layers were deposited by two laser-based techniques, namely pulsed laser deposition (PLD) for the lead-free material and matrix assisted pulsed laser evaporation (MAPLE) for the sensitive polymer. In order to assay the impact of the thickness, the number of laser pulses was varied, leading to thicknesses between 50 and 350 nm. The influence of BCTZ film’s crystallographic features on the characteristics and performance of the SAW device was studied by employing substrates with different crystal structures, more precisely cubic Strontium Titanate (SrTiO3) and orthorhombic Gadolinium Scandium Oxide (GdScO3). The SAW sensors were further integrated into a testing system to evaluate the response of the BCTZ thin films with PEI, and then subjected to tests for N2, CO2 and O2 gases. The influence of the MAPLE’s deposited PEI layer on the overall performance was demonstrated. For the SAW sensors based on BCTZ/GdScO3 thin films with a PEI polymer, a maximum frequency shift of 39.5 kHz has been obtained for CO2; eight times higher compared to the sensor without the polymeric layer. Full article
(This article belongs to the Special Issue New Challenges in Designed Nanointerfaces)
Show Figures

Figure 1

17 pages, 11557 KB  
Article
Spectral Analysis of Strontium-Doped Calcium Phosphate/Chitosan Composite Films
by Maria Elena Zarif, Bogdan Bita, Sasa Alexandra Yehia-Alexe, Irina Negut and Andreea Groza
Polymers 2023, 15(21), 4245; https://doi.org/10.3390/polym15214245 - 28 Oct 2023
Cited by 3 | Viewed by 1782
Abstract
Strontium-doped calcium phosphate/chitosan films were synthetized on silicon substrates using the radio-frequency magnetron sputtering technique and the matrix-assisted pulsed laser evaporation technique. The deposition conditions associated with the radio-frequency magnetron sputtering discharge, in particular, include the high temperature at the substrate, which promotes [...] Read more.
Strontium-doped calcium phosphate/chitosan films were synthetized on silicon substrates using the radio-frequency magnetron sputtering technique and the matrix-assisted pulsed laser evaporation technique. The deposition conditions associated with the radio-frequency magnetron sputtering discharge, in particular, include the high temperature at the substrate, which promotes the formation of strontium-doped tetra calcium phosphate layers. The physical and chemical processes associated with the deposition of chitosan on strontium-doped calcium phosphate layers were investigated using Fourier Transform Infrared Spectroscopy, Energy Dispersive X-ray Spectroscopy, and Scanning Electron Microscopy. Mass spectrometry coupled with laser induced ablation of the composite films proved to be a useful tool in the detection of the molecular ions characteristic to chitosan chemical structure. Full article
(This article belongs to the Special Issue Physicochemical Properties of Polymer Composites)
Show Figures

Figure 1

28 pages, 6516 KB  
Article
Colloidal TiO2 Nanorod Films Deposited Using the MAPLE Technique: Role of the Organic Capping and Absence of Characteristic Surface Patterns
by Maura Cesaria, Antonietta Taurino, Pantaleo Davide Cozzoli, Valentina Arima and Anna Paola Caricato
Processes 2023, 11(9), 2591; https://doi.org/10.3390/pr11092591 - 29 Aug 2023
Cited by 3 | Viewed by 1572
Abstract
Thin films of titanium dioxide (TiO2) nanocrystals, widely acknowledged for their unique physical-chemical properties and functionalities, are used in disparate technological fields, including photovoltaics, sensing, environmental remediation and energy storage. In this paper, the preparation of thin films consisting of anatase-phase [...] Read more.
Thin films of titanium dioxide (TiO2) nanocrystals, widely acknowledged for their unique physical-chemical properties and functionalities, are used in disparate technological fields, including photovoltaics, sensing, environmental remediation and energy storage. In this paper, the preparation of thin films consisting of anatase-phase TiO2 nanorods deposited using the matrix-assisted pulsed laser evaporation (MAPLE) technique and their characterization in terms of morphology, elemental composition and wettability are presented and discussed. Particular attention is paid to the effects of the laser fluence, varied over a broad range (F = 25, 50, 100 mJ/cm2), and to the role of the capping surfactants bound to the surface of the nanorod precursors. Whereas increasing fluence favored a partial removal of the surface-bound surfactants, a post-growth UV-light-driven photocatalytic treatment of the films was found to be necessary to reduce the incorporated fraction of organics to a further substantial extent. It was noteworthy that, under our experimental conditions, the distinctive surface patterns and roughness that commonly degrade the morphology of films deposited using the MAPLE technique were not observable. This previously unreported experimental evidence was rationalized on the basis of the interaction dynamics between solvent/solute droplets ejected from the laser-irradiated target and the rough surfaces of the growing film. Full article
(This article belongs to the Special Issue Developments in Laser-Assisted Manufacturing and Processing)
Show Figures

Figure 1

22 pages, 6315 KB  
Article
Multifunctional Polymeric Biodegradable and Biocompatible Coatings Based on Silver Nanoparticles: A Comparative In Vitro Study on Their Cytotoxicity towards Cancer and Normal Cell Lines of Cytostatic Drugs versus Essential-Oil-Loaded Nanoparticles and on Their Antimicrobial and Antibiofilm Activities
by Rebecca Alexandra Puiu, Alexandra Cătălina Bîrcă, Valentina Grumezescu, Liviu Duta, Ovidiu Cristian Oprea, Alina Maria Holban, Ariana Hudiță, Bianca Gălățeanu, Paul Cătălin Balaure, Alexandru Mihai Grumezescu and Ecaterina Andronescu
Pharmaceutics 2023, 15(7), 1882; https://doi.org/10.3390/pharmaceutics15071882 - 4 Jul 2023
Cited by 15 | Viewed by 2670
Abstract
We report on a comparative in vitro study of selective cytotoxicity against MCF7 tumor cells and normal VERO cells tested on silver-based nanocoatings synthesized by the matrix-assisted pulsed laser evaporation (MAPLE) technique. Silver nanoparticles (AgNPs) were loaded with five representative cytostatic drugs (i.e., [...] Read more.
We report on a comparative in vitro study of selective cytotoxicity against MCF7 tumor cells and normal VERO cells tested on silver-based nanocoatings synthesized by the matrix-assisted pulsed laser evaporation (MAPLE) technique. Silver nanoparticles (AgNPs) were loaded with five representative cytostatic drugs (i.e., doxorubicin, fludarabine, paclitaxel, gemcitabine, and carboplatin) and with five essential oils (EOs) (i.e., oregano, rosemary, ginger, basil, and thyme). The as-obtained coatings were characterized by X-ray diffraction, thermogravimetry coupled with differential scanning calorimetry, Fourier-transform IR spectroscopy, IR mapping, and scanning electron microscopy. A screening of the impact of the prepared nanocoatings on the MCF7 tumor and normal VERO cell lines was achieved by means of cell viability MTT and cytotoxicity LDH assays. While all nanocoatings loaded with antitumor drugs exhibited powerful cytotoxic activity against both the tumor and the normal cells, those embedded with AgNPs loaded with rosemary and thyme EOs showed remarkable and statistically significant selective cytotoxicity against the tested cancercells. The EO-loaded nanocoatings were tested for antimicrobial and antibiofilm activity against Staphylococcus aureus, Escherichia coli, and Candida albicans. For all studied pathogens, the cell viability, assessed by counting the colony-forming units after 2 and 24 h, was significantly decreased by all EO-based nanocoatings, while the best antibiofilm activity was evidenced by the nanocoatings containing ginger and thyme EOs. Full article
(This article belongs to the Special Issue Novel Anticancer Strategies, 3rd Edition)
Show Figures

Figure 1

Back to TopTop