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Abstract: We report on a comparative in vitro study of selective cytotoxicity against MCF7 tumor
cells and normal VERO cells tested on silver-based nanocoatings synthesized by the matrix-assisted
pulsed laser evaporation (MAPLE) technique. Silver nanoparticles (AgNPs) were loaded with
five representative cytostatic drugs (i.e., doxorubicin, fludarabine, paclitaxel, gemcitabine, and
carboplatin) and with five essential oils (EOs) (i.e., oregano, rosemary, ginger, basil, and thyme).
The as-obtained coatings were characterized by X-ray diffraction, thermogravimetry coupled with
differential scanning calorimetry, Fourier-transform IR spectroscopy, IR mapping, and scanning
electron microscopy. A screening of the impact of the prepared nanocoatings on the MCF7 tumor
and normal VERO cell lines was achieved by means of cell viability MTT and cytotoxicity LDH
assays. While all nanocoatings loaded with antitumor drugs exhibited powerful cytotoxic activity
against both the tumor and the normal cells, those embedded with AgNPs loaded with rosemary
and thyme EOs showed remarkable and statistically significant selective cytotoxicity against the
tested cancercells. The EO-loaded nanocoatings were tested for antimicrobial and antibiofilm activity
against Staphylococcus aureus, Escherichia coli, and Candida albicans. For all studied pathogens, the cell
viability, assessed by counting the colony-forming units after 2 and 24 h, was significantly decreased
by all EO-based nanocoatings, while the best antibiofilm activity was evidenced by the nanocoatings
containing ginger and thyme EOs.
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1. Introduction

Behind cardiovascular diseases (CVDs), cancer is the second leading cause of death,
accounting for nearly 10 million deaths worldwide in 2020 [1]. Moreover, an epidemiolog-
ical study published in The Lancet claimed that despite CVDs remaining the main cause
of death globally, in some high-income countries (HICs), it has been overtaken by cancer.
More specifically, the ratio of cardiovascular to cancer deaths was 0.4 in HICs, 1.3 in middle-
income countries (MICs), and 3.0 in low-income countries (LICs) [2]. These results mark an
epidemiological transition that can be partly explained by the successful implementation of
specific long-term programs and strategies aimed at preventing and treating CVDs in HICs.
It should be mentioned that achieving an effective therapy of the various types of cancer is
severely hampered by a series of major drawbacks of the conventional chemotherapeutic
agents, such as reduced cell membrane permeability, low accumulation into the tumor
tissues, lack of targeted delivery, reduced solubility, and dose-dependent toxicity. All these
could generate serious harmful side effects [3].

All the above drawbacks could be mitigated or avoided with the aid of nanotechnology.
Due to their dimensions in the nano range, nanoparticles used as drug carriers can penetrate
biological barriers and interact with their biological targets much more effectively than
bulk materials. Proper surface functionalization can improve both the solubility and
stability of the nanocarrier in biological fluids, while its conjugation with active targeting
ligands guides the nanovehicle to the diseased tissue through specific cell receptors—ligand
supramolecular interactions [4–9]. The antitumor chemotherapeutic agent can be either
embedded into the nanoparticle or attached to the surface through physical interactions
or covalent conjugation [10,11]. The nanocarrier structure can be designed to release its
therapeutic payload in a sharp response to either internal (pH, temperature, redox potential,
or enzyme activity) or external (light of specific wavelength, ultrasounds, or magnetic or
electric field) stimuli [12–19]. The controlled release process can be triggered either by
altering the nanocarrier structural integrity or by the cleavage of the covalent bond. Several
therapeutic strategies, such as photodynamic therapy (PDT) [20], sonodynamic therapy
(SDT) [21], magnetic hyperthermia [22,23], and chemodynamic therapy (CDT) [24,25],
have been developed to reduce significantly the severe side effects associated with the
conventional systemic delivery of chemotherapeutics.

Silver nanoparticles (AgNPs) exhibit intrinsic antimicrobial and anti-tumoral activity
due to an enhanced generation of reactive oxygen species (ROS) as a consequence of
their increased chemical reactivity. Enhanced ROS production induces DNA damage,
apoptosis, and cell cycle arrest and inhibits cell proliferation [26–28]. Remarkable effects
of AgNPs against different cancer cell lines, such as cervical adenocarcinoma cell line
(HeLa), colorectal cancer (HCT-116), breast cancer (MCF7), and liver cancer (HepG2), were
reported [29].

Studies showed successful combinations between AgNPs and chemotherapeutic
drugs [30–32]. One example of an anti-cancer drug is paclitaxel, which has a cytotoxic effect
on the osteosarcoma cell line by targeting specific cancer cells without causing cytotoxicity
on the normal ones [33].

Although cytostatic drugs, such as doxorubicin, carboplatin, paclitaxel, gemcitabine,
or fludarabine, show an important clinical response during treatment, current cancer
therapies present a series of important disadvantages, such as cancer recurrence, drug
resistance, and lack of selective cytotoxicity, which damage healthy tissues and cause
numerous harmful side effects [34]. Therefore, natural substances presenting an increased
biological activity can be an alternative solution. EOs found in aromatic plants present
many remarkable properties—antioxidant, antimutagenic, and antiproliferative—and can
be a suitable solution to conventional cancer treatment [35]. Due to the many functional
groups in their chemical structure, one can assume that EOs can work as an adjuvant and
increase the sensitivity of cancerous cells to chemotherapy by reducing metastasis and
angiogenesis [36]. It was also shown that components of thyme and origanum EOs showed
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good pharmacological and anti-tumoral effects, acting as a good controller of pain for
cancer patients [37,38].

The aim of the present study was to comparatively assess the cytotoxic activity against
MCF7 tumor and healthy VERO cell lines of classic cytostatic/natural-EO-loaded AgNPs
embedded in a biodegradable and biocompatible polymeric matrix obtained by MAPLE
for anti-tumoral applications. In addition, the antimicrobial and antibiofilm activity of the
prepared nanocoatings against representative model bacterial and fungal strains, namely
Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Candida albicans (C. albicans),
was also tested.

2. Materials and Methods
2.1. Materials

Chemical substances used to synthesize AgNPs were purchased from Sigma-Aldrich
(Merck Group, Darmstadt, Germany): Silver Nitrate (AgNO3), D-Glucose, Sodium Hydrox-
ide (NaOH), Paclitaxel, Doxorubicin, Fludarabine, Gemcitabine, Carboplatin, Chloroform
(CHCl3), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) natural origin, PHBV content
8 mol % (PHBV). EOs—oregano, rosemary, ginger, basil, and thyme—were purchased from
Solaris. All reagents were of analytical purity and used without further purification.

2.2. Chemical Synthesis of AgNPs Loaded with Cytostatic and Essential Oils

AgNPs were prepared by the bottom-up chemical reduction method. In brief, solution 1
(Sn1) was prepared by dissolving 0.5 g AgNO3 in 100 mL of distilled water. Solution 2
(Sn2) consisted of 1 g D-glucose and 4 g NaOH dissolved in 400 mL distilled water at the
temperature of 80 ◦C under magnetic stirring. In the next step, Sn1 was added dropwise
using a pressure-equalizing dropping funnel into Sn2 under magnetic stirring. In the
case of AgNPs functionalized with cytostatic agents, 100 mg of doxorubicin, fludarabine,
carboplatin, gemcitabine, and paclitaxel were added to Sn2, and in the case of AgNPs
functionalized with EOs, 200 µL of rosemary, basil, thyme, oregano, and ginger were added
to Sn2. At this step, the obtained precipitate was collected, and after decantation of the
liquid phase, the resulting powder was washed three times with demineralized water
and dried at room temperature (RT). Nanoparticles were characterized by X-ray powder
diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA),
and Fourier-transform infrared (FTIR) spectroscopy.

Table 1 introduces the sample codes of all the materials used in this paper.

Table 1. Sample codes of all the materials utilized and their description.

Sample Code Description Sample Code Description

AgNPs@doc
silver nanoparticles

functionalized
with doxorubicin

AgNPs@ros
silver nanoparticles

functionalized
with rosemary

ANPs@car
silver nanoparticles

functionalized
with carboplatin

AgNPs@bas
silver nanoparticles

functionalized
with basil

AgNPs@flu
silver nanoparticles

functionalized
with fludarabine

AgNPs@thy
silver nanoparticles

functionalized
with thyme

AgNPs@gem
silver nanoparticles

functionalized
with gemcitabine

AgNPs@ore
silver nanoparticles

functionalized
with oregano

AgNPs@pac
silver nanoparticles

functionalized
with paclitaxel

AgNPs@gin
silver nanoparticles

functionalized
with ginger
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2.3. MAPLE Deposition of the PHBV/AgNPs Nanocoatings

For the MAPLE experiments, a KrF* excimer laser source (λ = 248 nm, τFWHM ≤ 25 ns),
operated at a repetition rate of 15 Hz, was used. For the synthesis of multifunctional
coatings, the composite targets were fabricated by freezing in liquid-nitrogen-blended
solutions with a concentration of 2 wt.%. The organic–inorganic blends were obtained by
mixing the PHBV/AgNPs pristine (used as control) and PHBV/AgNPs with five types of
anti-tumoral and five types of EOs, in a 3:1 ratio, followed by their suspension in chloroform.
The composite coatings were grown onto glass and 100 silicon wafers, with dimensions of
10 × 10 mm2.

The experiments were performed at a residual pressure of 1 Pa, at RT, and a target-
to-substrate separation distance of 5 cm. For each coating, 35,000 consecutive laser pulses
were applied. To identify the optimal parameters to preserve the chemical structure and
to diminish the absorption of laser wavelength by the concerned materials, a fluence
parametric study (i.e., 200, 300, 400, 500, and 600 mJ/cm2) was performed. To obtain
uniform coatings and avoid drilling, both target and substrates were rotated during the
deposition process. Moreover, to accurately control the energy distribution onto the target
surface, a laser beam homogenizer was used. The as-obtained coatings were subjected to
physical–chemical characterization and biological assays.

2.4. Physical-Chemical Characterization

AgNPs were investigated to determine their crystallinity by XRD analysis using
a diffractometer Shimadzu XRD 6000. The patterns of X-ray diffraction were recorded
using CuKα radiation (λ = 1.54056 Å at 15 mA and 30 kV) at room temperature, with
a Bragg diffraction angle 2θ between a range of 10 to 80◦.

The nanometric details, size, and shape of the surface of functionalized AgNPs probes
were investigated by SEM analyses using a FEI electron microscope with 30 keV energy of
secondary electron beams.

IR Mapping (IRM) was recorded using a Nicolet iN10 MX FT-IR Microscope with
MCT liquid nitrogen cooled detector, ranging between 4000 and 1000 cm−1. The spectral
collection was made at 4 cm−1 resolution in reflection mode. Using OmincPicta software
(Thermo Scientific, Waltham, MA, USA), 32 scans were added and converted to absorbance.
For each probe, approximately 250 spectra were analyzed.

Thermal analyses were performed using a Netzsch STA 449C F3 instrument, the
temperature ranging between RT and 900 ◦C with a heating rate of 10 K min−1, under
dried synthetic air with a flow of 50 mL min−1 (80% N2 and 20% O2).

2.5. Biological Evaluation
2.5.1. In Vitro Cell Culture Models

To investigate the cytotoxic potential of the original PHBV/AgNPs coatings embedded
with anticancer drugs or natural compounds, one normal and one tumor cell line were
employed. VERO (ATCC CCL-81™) and MC7 cell lines (ATCC HTB-22™) were cultured in
Eagle’s Minimum Essential Media (EMEM, Sigma Aldrich, Merck Group, Darmstadt, Ger-
many), supplemented with 10% fetal bovine serum (FBS, Life Technologies, Foster City, CA,
USA) and 1% penicillin/streptomycin mixture (10,000 units/mL penicillin and 10 mg/mL
streptomycin) and maintained in standard cell culture conditions (37 ◦C, 5% CO2) through-
out the experiments. Additionally, as recommended by ATCC, the culture media of MCF7
cells was enriched before use with 0.01 mg/mL human recombinant insulin.

Before cell seeding, all experimental samples were subjected to UV light sterilization
before transfer to 12-well cell culture plates in aseptic conditions. Both normal and tumor
cells were seeded in drops on each sample surface at an initial density of 3 × 104 cells/cm2

and left for 2 h to adhere before immersing samples in complete culture media. All samples
were maintained in a 5% CO2 humidified atmosphere at 37 ◦C for 5 days. During each day,
various cell health parameters were investigated to screen the cytotoxic potential of the
original PHBV/AgNPs coatings.
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2.5.2. In Vitro Cytotoxicity Screening

After 2 and 5 days of culture, the metabolic cell health of both normal and tumor cells
was investigated using the MTT assay to highlight the impact of drug/natural-compound-
loaded PHBV/AgNPs compounds on cell survival rates. Briefly, at each time point, the
cell culture media was discarded, and the samples were immersed for 4 h at 37 ◦C in
a freshly prepared solution of MTT (1 g/mL) in the dark. The resulting formazan crystals
were solubilized by DMSO (Sigma Aldrich), and the optical density (OD) of the resulting
solutions was determined at 550 nm with the microplate reader FlexStation III (Molecular
Devices, San Jose, CA, USA). The percentage of the surviving cells was calculated with
the following formula: % viability = (100 × (A550nm control − A550nm sample)), using the
corrected absorbances obtained after subtracting the culture media background.

LDH assay was performed using the “In vitro toxicology assay kit lactate dehydroge-
nase based TOX—7” kit (Sigma Aldrich) that measures the amount of enzyme released in
the culture media by damaged cells in response to material contact. In this view, culture
media was collected from all samples and mixed with the kit’s components according to
the manufacturer’s recommendations. The OD of the resulting solution was determined
at 490 nm at the microplate reader FlexStation III. The percentage of cytotoxicity was
calculated as the ratio (A490nm) of treated cells to control ones.

All the final data obtained during the cytotoxicity screening represented the mean
± standard deviation (SD) of three independent experiments. For statistical analyses,
GraphPad Prism software (San Diego, CA, USA) was employed, with significant level
p < 0.05.

2.5.3. Cell Morphology Investigation

To evaluate the impact of normal and tumor cells’ contact with drug-loaded
PHBV/AgNPs coatings on cell morphology, fluorescence microscopy was employed.
In this view, cell culture media was discarded, and samples were immersed in a 4%
paraformaldehyde solution (PFA, Sigma Aldrich) for 20 min for cell fixation. Subsequently,
for permeabilization, the PFA solution was replaced with a 2% BSA solution enriched with
0.1% Triton X100. Then, samples were stained with fluorescein isothiocyanate (FITC) conju-
gated phalloidin for 1 h at 37 ◦C and 20 min with 4,6-diamidino-2-phenylindole (DAPI).
After staining, samples were analyzed using the Olympus IX73 fluorescent microscope
(Olympus Life Science, Waltham, MA, USA), and images were captured and processed
with CellSense F software (version 1.11).

2.5.4. Antimicrobial Efficiency

In order to evaluate the in vitro antimicrobial activity of the obtained coatings, we
analyzed the growth and viability of planktonic cultures and biofilms. One Gram-positive
(i.e., S. aureus ATCC 23235) model, one Gram-negative (i.e., E. coli ATCC 25922) model, and
one yeast (i.e., C. albicans ATCC 10231) strain were used in this study.

Bacterial Viability

Overnight bacterial cultures of the microbial strains were used to prepare micro-
bial suspensions of 0.5 McFarland (approximately 1.5 × 108 CFU/mL) density in sterile
phosphate-buffered saline (PBS). The prepared coatings were sterilized by UV irradiation
for 20 min before analysis. Then, they were added into sterile 24 multi-well plates con-
taining 1 mL of nutritive broth, and 10 µL of the obtained suspension was seeded in each
sample. The plates were incubated for 2 h and 24 h at 37 ◦C in a moist atmosphere. For
the viability cell assay, after the incubation time, the coating sample was resuspended
in 1 mL PBS into an Eppendorf tube to recover the viable microbial cells. Tubes were
vigorously vortexed for 20 s to release the microbial cells into the suspension. Then, 30 µL
of the obtained suspensions were transferred to 96-well plates containing 270 µL of PBS.
Serial dilutions were obtained from each sample and then cultured in triplicate on nutrient
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agar plates for 24 h at 37 ◦C. The obtained colonies were then counted, and the CFU/mL
(colony-forming units/mL) was achieved [39].

Biofilm Development

To evaluate the formation of bacterial biofilm, the obtained coatings based on AgNPs
were equally distributed on 24-well plates in 1 mL nutritive broth, each being experimen-
tally inoculated with 10 µL of the 0.5 McFarland standard density of microbial suspension.
After this, the samples were incubated for 24 h at 37 ◦C to allow biofilm development. After
incubation, the samples were washed with PBS to remove unattached cells and transferred
in 1 mL PBS in a sterile tube. Then, the tubes containing the 24 h biofilms developed on the
coatings were vigorously vortexed for 20 s and subjected to ultrasound treatment to detach
the biofilm cells. The suspensions containing detached biofilm cells were subjected to serial
10-fold dilutions, and each dilution was inoculated on nutritive agar in triplicate for viable
count analysis, expressed as CFU/mL (colony-forming units/mL).

The statistical significance (* p ≤ 0.05, ** p < 0.001) was determined using the non-
parametric two-way ANOVA algorithm and Bonferroni test.

3. Results
3.1. Physical-Chemical Characterization of AgNPs

The XRD patterns of the AgNPs can be observed in Figure 1. Four diffracted intensities
in the range 20◦–80◦ were measured. The XRD patterns confirm the cubic crystal structure
of the AgNPs. Specific peaks were identified at 2θ values of 38.45◦, 46.35◦, 64.75◦, and
78.05◦, which correspond to the (1 1 1), (2 0 0), (2 2 0), and (3 1 1) diffraction plans of the
AgNP crystals (JCPDS (00-001-1167) [40].

Pharmaceutics 2023, 15, x FOR PEER REVIEW 6 of 22 
 

 

The plates were incubated for 2 h and 24 h at 37 °C in a moist atmosphere. For the viability 
cell assay, after the incubation time, the coating sample was resuspended in 1 mL PBS into 
an Eppendorf tube to recover the viable microbial cells. Tubes were vigorously vortexed 
for 20 s to release the microbial cells into the suspension. Then, 30 µL of the obtained 
suspensions were transferred to 96-well plates containing 270 µL of PBS. Serial dilutions 
were obtained from each sample and then cultured in triplicate on nutrient agar plates for 
24 h at 37 °C. The obtained colonies were then counted, and the CFU/mL (colony-forming 
units/mL) was achieved [39]. 

Biofilm Development 
To evaluate the formation of bacterial biofilm, the obtained coatings based on AgNPs 

were equally distributed on 24-well plates in 1 mL nutritive broth, each being experimen-
tally inoculated with 10 µL of the 0.5 McFarland standard density of microbial suspension. 
After this, the samples were incubated for 24 h at 37 °C to allow biofilm development. 
After incubation, the samples were washed with PBS to remove unattached cells and 
transferred in 1 mL PBS in a sterile tube. Then, the tubes containing the 24 h biofilms de-
veloped on the coatings were vigorously vortexed for 20 s and subjected to ultrasound 
treatment to detach the biofilm cells. The suspensions containing detached biofilm cells 
were subjected to serial 10-fold dilutions, and each dilution was inoculated on nutritive 
agar in triplicate for viable count analysis, expressed as CFU/mL (colony-forming 
units/mL). 

The statistical significance (* p ≤ 0.05, ** p < 0.001) was determined using the non-
parametric two-way ANOVA algorithm and Bonferroni test. 

3. Results 
3.1. Physical-Chemical Characterization of AgNPs 

The XRD patterns of the AgNPs can be observed in Figure 1. Four diffracted intensi-
ties in the range 20°–80° were measured. The XRD patterns confirm the cubic crystal struc-
ture of the AgNPs. Specific peaks were identified at 2θ values of 38.45°, 46.35°, 64.75°, and 
78.05°, which correspond to the (1 1 1), (2 0 0), (2 2 0), and (3 1 1) diffraction plans of the 
AgNP crystals (JCPDS (00-001-1167) [40]. 

 
Figure 1. XRD patterns of AgNP powders. 

The SEM micrographs (Figure 2) show the nanometric size of the AgNPs. The parti-
cles have a quasi-spherical shape, with diameters varying from 20 to 60 nm. In addition, 
it can be observed that the AgNPs functionalized with EOs have higher diameters than 
those functionalized with cytostatic drugs. Most likely, this phenomenon is due to the 

Figure 1. XRD patterns of AgNP powders.

The SEM micrographs (Figure 2) show the nanometric size of the AgNPs. The particles
have a quasi-spherical shape, with diameters varying from 20 to 60 nm. In addition, it can
be observed that the AgNPs functionalized with EOs have higher diameters than those
functionalized with cytostatic drugs. Most likely, this phenomenon is due to the complexity
of the EOs that contain hundreds of compounds, while cytotstatic drugs are composed of
single molecules.
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Figure 2. SEM images of AgNPs functionalized with different cytostatic drugs and essential oils.

The AgNP sample presents two small exothermic peaks—at 164 ◦C due to oxidation
of the D-glucose and at 442 ◦C due to the burning of carbonaceous residual mass—the
sample at 900 ◦C being formed only from white silver powder. The samples loaded with
cytostatic drugs present a similar thermal behavior, depicted in Figure 3. The principal
numeric data are presented in Table 2. The organic parts from Ag@gem and Ag@flu contain
a pentose cycle and are oxidized at 226–229 ◦C, as indicated by the strong, sharp exothermic
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effect on the DSC curve. For the other three samples, the oxidation process is slower, with
the exothermic peak being broader and having a much lower intensity. In the case of the
Ag@car sample, a different TG curve can be observed due to the platinum presence; this
will remain in the sample, unlike the purely organic drugs.
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Table 2. DSC-TG data related to AgNPs loaded with cytostatic drugs.

Sample Exothermic Effects Residual Mass (%) Estimated Load (%)

AgNPs@gem 226/284 ◦C 97.97% 0.13%
ANPs@flu 229/310 ◦C 97.44% 0.25%

AgNPs@dox 304 ◦C 97.01% 0.69%
AgNPs@car 139/378 ◦C 97.95% 0.21%
AgNPs@pac 163/340 ◦C 97.86% 0.11%

As many components are similar in the EOs, their thermal behaviors are also sim-
ilar (Figure 4). The AgNPs loaded with EOs present a mass loss step at approximately
190–210 ◦C for Ag@bas, Ag@gin, and Ag@ore; between 170 and 210 ◦C for Ag@ros; and
between 210 and 360 ◦C for Ag@thy. These mass loss steps correspond to the oxidation of
the most susceptible components from the EOs. For the Ag@bas, Ag@gin, and Ag@ore sam-
ples, the exothermic effect is consistent at ~202 ◦C, indicating the same class of compounds
that are oxidized. The burning of the residual carbonaceous mass takes place at higher
temperatures. The silver-white residual mass values are presented in Table 3, together with
the estimated EOs loads.

Table 3. DSC-TG data related to AgNPs loaded with EOs.

Sample Main Exothermic
Effect (◦C) Residual Mass (%) Estimated Load (%)

AgNPs@bas 202.2 96.97% 0.73%
ANPs@gin 201.6 97.35% 0.34%
AgNPs@ros 180.0 98.11% 0.28%
AgNPs@ore 202.6 97.62% 0.34%
AgNPs@thy 324.9 95.68% 2.05%
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Figure 4. The TG-DSC curves for the samples of AgNPs loaded with EOs.

3.2. Physical-Chemical Characterization of Multifunctional Coatings
3.2.1. Characterization of Control Sample Coatings

To investigate the compositional integrity of the control materials, comparative in-
frared studies (Figures 5 and 6) were conducted between the drop-cast (DC) sample and the
coatings obtained by MAPLE. Figure 5 presents the IR maps obtained based on the intensity
absorbance of the C-H group characteristic of the PHBV. As a general remark regarding
the IR microscopy analysis, the absorbance intensity of the collected infrared spectra is
directly related to the color changes within the resulting IR maps, ranging from blue to
red (corresponding to the lowest and highest intensities, respectively). The IR analysis
(Figure 6a) shows that the DC sample with absorption bands characteristic of PHBV (C-H,
C=O, and C-O) is confirmed. Compared with the IR spectra of 200 and 300 mJ/cm2, the
C-H group has a low intensity, or it is missing, and it begins to be available at 400, 500, and
600 mJ/cm2. The peak intensity is similar to that of the DC sample, only at 400 mJ/cm2.
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(f) 600 mJ/cm2.
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Figure 6. IR spectra of PHBV/AgNPs for (a) drop-cast and coatings at laser fluences of (b) 200 mJ/cm2;
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Figure 7 presents micrographs of surface nanocoatings fabricated at laser fluences
ranging from 200 to 600 mJ/cm2 (Figure 7a–e). According to Figure 7, the surfaces are well-
covered with PHBV/AgNPs. In all samples, the surfaces present agglomerates consisting
of embedded materials well dispersed in the polymer matrix. An increased uniformity of
the surface could be observed in the case of the nanocoatings obtained at a laser fluence of
400 mJ/cm2 (Figure 7c).
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Figure 7. SEM images of PHVB/AgNPs coatings at 1000× (a–e), obtained at laser fluences of
(a) 200 mJ/cm2; (b) 300 mJ/cm2; (c) 400 mJ/cm2; (d) 500 mJ/cm2; and (e) 600 mJ/cm2.

Figure 8 depicts the thickness of the nanostructured coatings obtained at 200, 300, 400,
500, and 600 mJ/cm2 laser fluences. As can be seen, the thickness varies between 30 and
150 nm, which delineates the small agglomeration tendency.
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3.2.2. Characterization of Optimized Composite Coatings

Taking into consideration the physical–chemical results obtained for the control coat-
ings, the laser fluence of 400 mJ/cm2 was considered the optimum value to continue our
investigations. Thus, Figure 9 presents the IR spectra of all composite coatings. One can
observe, as already stated, that there is no degradation of the C-H group. All samples have
the complete absorbance characteristics of this group.
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The morphological characteristics of all composite coatings can be observed in Figure 10.
The coatings had a uniform deposition, and some agglomerates were present on the surface.
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3.3. Biological Evaluation of Multifunctional Bio-Coatings Based on Silver Nanoparticles
3.3.1. In Vitro Cytotoxicity Screening of PHBV/AgNPs Coatings Embedded with
Anticancer Drugs or Natural Compounds

To investigate the effect of PHBV/AgNP coatings loaded with natural compounds
and anticancer drugs on the cell viability of both normal and tumor cells, the metabolic cell
health was quantified by the MTT assay after 48 h and 5 days of cell-coating contact. The ob-
tained results (Figure 11) showed that after 48 h of contact, all loaded samples impacted the
cell survival of both normal and tumor cells, the cell viability being statistically significantly
decreased by all coatings, independent of the drug load. Among anticancer drug-loaded
coatings, PHBV/AgNPs@gem, PHBV/AgNPs@carb, and PHBV/AgNPs@dox showed the
strongest potential to suppress the cell viability of the MC7 cells, while PHBV/AgNPs@pac
and PHBV/AgNPs@flu exhibited a lower, but the still powerful, cytotoxic effect—reducing
the cell viability by ~25% and ~33%, respectively, as compared with the untreated control.
Concerning the normal cells, the anticancer-drug-loaded PHBV/AgNP coatings showed
a similar cytotoxic potential, all samples triggering a statistically significant decrease of up
to ~60% in the cell viability compared with the untreated control. In contrast, although there
were samples loaded with natural compounds—which had effects similar to those loaded
with chemotherapy compounds—PHBV/AgNPs@ros and PHBV/AgNPs@thy showed
a more moderate impact on the normal cell survival, decreasing the cell viability only by
~30% compared with the untreated control. After 5 days of culture, all samples independent
of the drug-loading showed a similar effect on the MCF7 cell survival rates, a dramatic
decrease in the cell viability compared with the untreated control being observed in all
experimental conditions. While the same pattern of cytotoxicity was maintained for most
drug-loaded samples also on the normal cells, PHBV/AgNPs@ros and PHBV/AgNPs@thy
did not follow this pattern. More than 70% of the cells that were in contact with the
PHBV/AgNPs@ros and PHBV/AgNPs@thy coatings were viable, with lower cytotoxicity
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noticed in the PHBV/AgNPs@ros samples, with a significant increase in the cell viability
being noticed as compared with the PHBV/AgNPs@thy coatings (**** p < 0.0001).
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for all samples. Comparing the LDH levels in all the drug-loaded PHBV/AgNP samples, 
the lowest LDH levels were observed in the culture media harvested from the 
PHBV/AgNPs@flu samples. As fludarabine (an anticancer agent administrated to treat 
chronic lymphocytic leukemia) is not part of the traditional therapeutic regimen for breast 
cancer, the prolonged exposure of breast cancer cells to the drug could be necessary to 
achieve cytotoxic effects similar to those triggered by breast-cancer-specific drugs. The 
potential of the drug-loaded PHBV/AgNP coatings to induce MCF7 cell damage and trig-
ger LDH release was maintained after 5 days, where all samples exhibited an increased 
yield in enhancing the LDH leakage. After contact with the normal cells, all drug-loaded 
PHBV/AgNP coatings exhibited a significant increase in the LDH levels compared with 
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Figure 11. Graphical representation of cell viability of (A) MCF7 tumor cells and
(B) VERO cells after 48 h and 5 days of contact with uncoated samples (control) and
PHBV, PHBV/AgNPs, PHBV/AgNPs@dox, PHBV/AgNPs@flu, PHBV/AgNPs@pac,
PHBV/AgNPs@gem, PHBV/AgNPs@car, PHBV/AgNPs@gin, PHBV/AgNPs@ros,
PHBV/AgNPs@ore, PHBV/AgNPs@bas, and PHBV/AgNPs@thy coatings as revealed by
the MTT assay. The represented data are the mean values of three independent experiments ± S.D.
Statistical significance: **** p < 0.0001 sample vs. control.

The cytotoxic profiles revealed by the LDH assay (Figure 12) confirmed the results
obtained by the MTT assay. After 48 h, in the media samples harvested from the MCF7 cell
cultures in contact with the drug-loaded PHBV/AgNPs coatings, a statistically significant
increase in the LDH levels compared with the experimental reference was noticed for all
samples. Comparing the LDH levels in all the drug-loaded PHBV/AgNP samples, the low-
est LDH levels were observed in the culture media harvested from the PHBV/AgNPs@flu
samples. As fludarabine (an anticancer agent administrated to treat chronic lymphocytic
leukemia) is not part of the traditional therapeutic regimen for breast cancer, the pro-
longed exposure of breast cancer cells to the drug could be necessary to achieve cytotoxic
effects similar to those triggered by breast-cancer-specific drugs. The potential of the
drug-loaded PHBV/AgNP coatings to induce MCF7 cell damage and trigger LDH release
was maintained after 5 days, where all samples exhibited an increased yield in enhanc-
ing the LDH leakage. After contact with the normal cells, all drug-loaded PHBV/AgNP
coatings exhibited a significant increase in the LDH levels compared with the reference,
48 h and 5 days after initiating cell–material contact. However, at both experimental times,
PHBV/AgNPs@ros and PHBV/AgNPs@thy exhibited a smaller increase in the LDH levels
compared with the other drug-loaded coatings, highlighting a significantly lower cytotoxic
potential of these samples.
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when compared with the experimental reference. While the all-natural-compound-loaded 
PHBV/AgNP coatings significantly decreased the cell viability of the tumor cells, most of 
these samples showed a strong cytotoxic effect on the normal cells. However, rosemary 
and thyme, although they triggered a decrease in the cell viability of the normal cells, were 
shown to be significantly less cytotoxic compared with the other samples while still pre-
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Figure 12. Graphical representation of uncoated samples (control) and PHBV, PHBV/AgNPs,
PHBV/AgNPs@dox, PHBV/AgNPs@flu, PHBV/AgNPs@pac, AgNP PHBV/AgNPs@gem,
PHBV/AgNPs@car, PHBV/AgNPs@gin, PHBV/AgNPs@ros, PHBV/AgNPs@ore,
PHBV/AgNPs@bas, and PHBV/AgNPs@thy coating cytotoxicity as revealed by the LDH
leakage levels quantified in culture media samples harvested from (A) MCF7 tumor cells and
(B) VERO cells after 48 h and 5 days with the experimental samples. The represented data are the
mean values of three independent experiments ± S.D. Statistical significance: * p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < 0.0001 sample vs. control.

The obtained results showed that the natural-compound-loaded PHBV/AgNP coat-
ings induced cytotoxic effects in both the tumor and the normal cells, similar to those
induced by the anticancer-drug-loaded PHBV/AgNPs. Both MTT and LDH assays re-
vealed that the cytotoxic effects were mediated by the drug payload of the PHBV/AgNP
coatings, as pristine samples (PHBV and PHBV/AgNPs) did not negatively affect cell
viability and cytotoxicity. Furthermore, the PHBV/AgNPs showed excellent biocompati-
bility with both the normal and the tumor cells, with a significant increase in cell viability
being noticed when compared with the experimental reference. While the all-natural-
compound-loaded PHBV/AgNP coatings significantly decreased the cell viability of the
tumor cells, most of these samples showed a strong cytotoxic effect on the normal cells.
However, rosemary and thyme, although they triggered a decrease in the cell viability of
the normal cells, were shown to be significantly less cytotoxic compared with the other
samples while still presenting the same cytotoxic effect of traditional anticancer drugs on
the tumor cell viability.

3.3.2. Evaluation of the Impact of Drug-Loaded PHBV/AgNPs on Cell Morphology

To evaluate the impact of drug-loaded PHBV/AgNPs on the normal and tumor cell
morphologies, as well as the cell distribution on the material surfaces, the samples were
analyzed by fluorescence microscopy after actin filaments and nuclei staining (Figure 13).
The obtained results revealed that, in the absence of a drug load, all samples allowed the
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normal cell development of both the normal and the tumor cells, with both cell types
adopting and exhibiting their typical epithelial morphologies on the surface of the coatings.
Moreover, a greater proportion of cells was present on the PHBV/AgNP sample surfaces,
highlighting that the coating strategy endorsed the control surface with superior biocom-
patibility, facilitating cell adhesion and proliferation. On this surface, both the normal and
the tumor cells presented a more developed cytoskeleton as compared with the control,
with a more well-defined actin expression, forming compact 3D intercellular networks,
which almost covered the entire surface of the materials. The addition of either anticancer
drugs or natural compounds in the PHV-AgNPs structure trigged severe alterations of the
cellular architecture on both the normal and the tumor cells, except for PHBV/AgNPs@ros
and PHBV/AgNPs@thy, which altered with greater affinity the tumor cells morphology.
To depict these observations, an anticancer drug (doxorubicin) and a natural compound
(rosemary) are selectively presented in Figure 13. The PHV-AgNPs@dox coatings induced
distinct asymmetric conformational changes of actin filaments and their condensations,
with both the normal and the tumor cells showing severe shrinkage after 5 days of contact
with this material. Regarding the PHBV/AgNPs@ros coatings, the tumor cells exhibited
a poorly developed cytoskeleton after 5 days, with a few cells scattered across the material
surface. In contrast, the normal cells maintained their typical morphology in contact with
the PHBV/AgNPs@ros coatings, characterized by short but well-defined actin filaments.
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Figure 13. Fluorescence micrographs revealing (A) MCF7 cells and (B) VERO cells cytoskeleton af-
ter 5 days of contact with a reference sample, pristine PHBV/AgNPs, PHBV/AgNPs@dox, and
PHBV/AgNPs@ros. Scale bare: 100 µm (green—actin filaments labeled with FITC-phalloidin;
blue—cell nuclei stained with DAPI).

3.3.3. Antimicrobial Activity

In order to analyze the antimicrobial effect of the tested coatings, several growth
and viability tests in PBS were performed. Viability in PBS was assessed at two time
points, i.e., 2 h and 24 h, in order to establish the bacteria-killing intrinsic potential of the
nanocoated samples. It was indicated that the microbial viability was impaired in a time-
and bioactive-agent-dependent manner. Significant viability loss was observed in the pres-
ence of the coatings containing the Eos, especially PHBV/AgNPs@gin, PHBV/AgNPs@ros,
PHBV/AgNPs@bas, and PHBV/AgNPs@thy. The viability of these coatings was signifi-
cantly impaired at both tested time points (Figure 14). Although less significant, a decreased
microbial viability in the presence of the cytostatic drugs containing the coatings, especially
on the PHBV/AgNPs@flu and PHBV/AgNPs@pac materials, was also observed.

Regarding the biofilm development, no significant inhibition was observed in the case
of the cytostatic-containing drug coatings in the tested conditions. However, a significant
biofilm inhibition was observed in all coatings containing AgNPs and EOs. Ginger and
thyme EOs proved to have the highest anti-biofilm effects in all analyzed microbial strains,
as revealed by Figure 15.
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4. Discussion

The chemical composition of EOs differs significantly depending on several fac-
tors, namely the particular cultivars, the geographic area of provenience, the ecological
and climate environmental conditions, the period of plant collection, and the extractive
method employed.

Despite this inherent variability, the main components of the rosemary EO belong to
the class of monoterpene hydrocarbons, oxygenated monoterpenes, along with sesquiter-
penes and other minor compounds. According to their composition, the rosemary EOs can
be divided into several chemotypes, such as α-pinene-type (α-pinene content > 20%), 1,8-
cineole-type (high content of 1,8-cineole), camphor-type (camphor > 20%), and verbenone-
type (verbenone > 15%) [41,42]. For instance, the GC-MS analysis of the EO extracted by
hydrodistillation from a sample of the Rosmarinus officinalis plant material originating in
the region of Shax, Tunisia, revealed 1,8-cineole as the main chemical component (23.56%)
of the oil [43]. This monoterpene cyclic ether is known for its strong antimicrobial activity
against several bacteria [44], which is synergistically enhanced by other minor compo-
nents of the rosemary EO, such as Germacrene-D, caryophyllene, caryophyllene oxide,
and terpinene-4-ol. Moreover, the main components, including 1,8-cineole as well as other
components, such as camphor, α-pinene [45,46], and β-caryophyllene [47], were reported
to exhibit anticancer activity. A recent extensive screening study employing rosemary EOs
from six different cultivars assessed comparatively the antiproliferative effects on six cancer
cell lines. All the studied rosemary EOs showed high antiproliferative ability against the
human pancreatic cancer cell line SW1990 and the gastric epithelial cell line NCI-N87 [48].
The authors noticed that the same EO had different antiproliferative effects on different
cancer cell lines and that different EOs with different compositions of phytochemicals
had different effects on the same cancer cell line. Using a Spearman’s correlation matrix
analysis, the authors of the above-cited study identified the key components responsible
for the differences in antiproliferative and cytotoxic activities. It was found that camphor
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exhibited the highest correlation with abilities to inhibit multiple tumor cells, although it
is not the most abundant component in the EOs that manifest the best antiproliferative
activity. Therefore, we believe that the complex polyvalent phytochemical composition of
the rosemary EO used in the present study is responsible for its observed ability to inhibit
the proliferation of MCF7 breast adenocarcinoma cells. Other studies demonstrated the
DNA-protective and proapoptotic effects of rosemary EO [49,50].

The antiproliferative activity of thyme EO on the MCF7 breast adenocarcinoma cell
line has also been reported [51]. There are at least six chemotypes of Thymus vulgaris L.,
with different compositions of the EOs [52]. The GC-MS analysis of a sample of thyme
EO isolated by hydrodistillation from a plant material native to Bosnia and Herzegovina
identified the presence of 32 compounds, the most abundant among them being thymol
(36.7%), p-cymene (30.9%), γ-terpinene (9.0%), and carvacrol (3.6%) [51]. Thymol was
previously reported to exert anticarcinogenic activity on both cancer and normal cells but
through different mechanisms of action. Thymol induces oxidative-stress-linked cell death,
apoptotic cell death, and antiproliferative effects on cancer cells [53,54]. On the other hand,
the anticarcinogenic activity of thymol in normal cells was explained by its antioxidant
activity [55] and by its protective [56], antiapoptotic [55], anti-inflammatory, immunomodu-
latory [57], and antigenotoxic effects [58]. Thus, these literature data are in good agreement
with our results regarding the selective cytotoxicity of the PHBV/AgNPs@thy nanocoatings.
Regarding the other main component of the thyme EO, namely p-cymene, it was shown
that the ruthenium (II)-p-cymene organometallic complex suppressed triple-negative breast
cancer growth by inhibiting the tumor infiltration of regulatory T cells [59]. Furthermore,
encapsulation in AgNPs increased the chemical stability and solubility, helped mitigate
the intrinsic volatility, minimized the degradation of active components, enhanced the
bioavailability, and supported the controlled and sustained release of the EOs. Subsequent
embedment of the EO/cytostatic-drug-loaded AgNPs in the polymeric matrix of PHBV
rendered our MAPLE-deposited nanocoatings highly biocompatible and biodegradable.

The antimicrobial and antibiofilm activities of the EOs have been intensively studied as
an alternative to antibiotic treatment since EOs have been proven to be efficient modulators
of antimicrobial resistance in various bacterial species [60,61], and their anti-adhesive effect
in the early stage of the biofilm life cycle was also demonstrated [62]. In previous work,
we reported on the antimicrobial and antibiofilm activities of some EOs encapsulated in
microporous silica nanostructures [63]. Herein, we envisaged a synergistic effect manifested
between the antimicrobial and antibiofilm properties of EO complex plant metabolite
content and the intrinsic antimicrobial effect of the AgNPs, which was indeed demonstrated
by the experimental data shown in Figures 14 and 15.

5. Conclusions

We report on a comparative assessment of the cytotoxic activity against MCF7 tumor
versus healthy VERO cell lines of classic cytostatic/natural essential oil (EO)-loaded silver
nanoparticles (AgNPs) embedded in a biodegradable and biocompatible polymeric matrix
of PHBV. AgNPs loaded with five of the most used cytostatic drugs and five EOs were first
fabricated by bottom-up chemical synthesis. Subsequently, the AgNPs were embedded in
the PHBV matrix, and nanocoatings of each prepared sample were deposited on Si sub-
strates by MAPLE at a laser fluence of 400 mJ/cm2. The biological impact of the obtained
nanocoatings on the cancer MCF7 and normal VERO cell lines was assessed by MTT and
LDH assays after 2 and 5 days, respectively. The MTT assays revealed similar cytotoxicity
against the MCF7 tumor cells for both PHBV/AgNPs@EOs and PHBV/AgNPs@cytostatic
drugs, indicating that all EOs containing nanocoatings exhibited significant anticancer
activity. One should note that PHBV/AgNPs@ros and PHBV/AgNPs@thy evidenced
selective cytotoxicity on the tumor cells, while the effect on the viability of the normal cells
showed a moderate impact, decreasing the cell viability by only ~30% as compared with
the control, at 48 h. Moreover, after 5 days, the normal VERO cells in contact with the
PHBV/Ag@ros nanocoatings showed a remarkable increase in the cell viability. Similar
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trends were noticed in the LDH cytotoxicity tests. Rosemary and thyme EOs containing
nanocoatings showed significantly less cytotoxicity against the normal cells while maintain-
ing a high cytotoxic effect on the cancer cells. It was observed that after 5 days of exposure
to the PHBV/AgNPs@ros nanocoating, the MCF7 tumor cells exhibited a poorly developed
cytoskeleton, while the healthy VERO cells preserved their normal morphology.

In addition, the antimicrobial and antibiofilm activity of PHBV/AgNPs@EOs against
S. aureus, E. coli, and C. albicans pathogens was tested. A significant decrease in the pathogen
cell viability after 2 and 24 h of exposure was observed for all tested pathogenic agents. The
most efficient antimicrobial activity was demonstrated in the cases of PHBV/AgNPs@gin,
PHBV/AgNPs@ros, PHBV/AgNPs@bas, and PHBV/AgNPs@thy. It is important to men-
tion that the thyme and ginger EOs proved to have the highest anti-biofilm effects in all
analyzed microbial strains.

To conclude, it was evidenced that the natural-compound-loaded PHBV/AgNP
nanocoatings (i.e., PHBV/AgNPs@ros and PHBV/AgNPs@thy) preserved the same cy-
totoxic activity of traditional cytostatic drugs against the tumoral cells. Nevertheless,
although they also triggered a decrease in the cell viability of the normal cells, this decrease
was inferior to that provoked by the cytostatic drugs. The as-revealed selective cytotox-
icity is a remarkable outcome of the present study and strongly recommends the newly
developed nanocoatings as a valuable alternative for the treatment of breast cancer.
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60. Kovač, J.; Šimunović, K.; Wu, Z.; Klančnik, A.; Bucar, F.; Zhang, Q.; Možina, S.S. Antibiotic Resistance Modulation and Modes of
Action of (−)-α-Pinene in Campylobacter jejuni. PLoS ONE 2015, 10, e0122871. [CrossRef]

61. Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives.
Medicines 2017, 4, 58. [CrossRef]

https://doi.org/10.1016/j.jddst.2022.103133
https://doi.org/10.3390/ma14113084
https://doi.org/10.1038/s41598-023-29412-3
https://doi.org/10.1016/j.indcrop.2019.05.068
https://doi.org/10.17660/ActaHortic.2006.723.23
https://doi.org/10.1186/s12944-017-0580-9
https://www.ncbi.nlm.nih.gov/pubmed/28969677
https://doi.org/10.1002/ffj.2082
https://doi.org/10.3892/or.9.4.757
https://www.ncbi.nlm.nih.gov/pubmed/12066204
https://doi.org/10.1080/14786419.2011.585988
https://www.ncbi.nlm.nih.gov/pubmed/22124231
https://doi.org/10.3390/molecules28020586
https://www.ncbi.nlm.nih.gov/pubmed/36677644
https://doi.org/10.4149/neo_2014_084
https://doi.org/10.3897/pharmacia.68.e60685
https://doi.org/10.1038/s41598-021-92679-x
https://doi.org/10.1023/A:1022927615442
https://www.ncbi.nlm.nih.gov/pubmed/12775148
https://doi.org/10.1002/iub.1935
https://doi.org/10.1021/jf204525b
https://www.ncbi.nlm.nih.gov/pubmed/22352891
https://doi.org/10.5455/oams.170416.or.095
https://doi.org/10.1016/j.ejphar.2011.08.017
https://doi.org/10.15171/apb.2015.089
https://doi.org/10.1016/j.phrs.2016.03.032
https://doi.org/10.1371/journal.pone.0122871
https://doi.org/10.3390/medicines4030058


Pharmaceutics 2023, 15, 1882 22 of 22

62. Nostro, A.; Roccaro, A.S.; Bisignano, G.; Marino, A.; Cannatelli, M.A.; Pizzimenti, F.C.; Cioni, P.L.; Procopio, F.; Blanco, A.R.
Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J. Med. Microbiol. 2007,
56, 519–523. [CrossRef] [PubMed]

63. Balaure, P.C.; Boarca, B.; Popescu, R.C.; Savu, D.; Trusca, R.; Vasile, B.; Grumezescu, A.M.; Holban, A.M.; Bolocan, A.; Andronescu,
E. Bioactive mesoporous silica nanostructures with antimicrobial and anti-biofilm properties. Int. J. Pharm. 2017, 531, 35–46.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1099/jmm.0.46804-0
https://www.ncbi.nlm.nih.gov/pubmed/17374894
https://doi.org/10.1016/j.ijpharm.2017.08.062
https://www.ncbi.nlm.nih.gov/pubmed/28797969

	Introduction 
	Materials and Methods 
	Materials 
	Chemical Synthesis of AgNPs Loaded with Cytostatic and Essential Oils 
	MAPLE Deposition of the PHBV/AgNPs Nanocoatings 
	Physical-Chemical Characterization 
	Biological Evaluation 
	In Vitro Cell Culture Models 
	In Vitro Cytotoxicity Screening 
	Cell Morphology Investigation 
	Antimicrobial Efficiency 


	Results 
	Physical-Chemical Characterization of AgNPs 
	Physical-Chemical Characterization of Multifunctional Coatings 
	Characterization of Control Sample Coatings 
	Characterization of Optimized Composite Coatings 

	Biological Evaluation of Multifunctional Bio-Coatings Based on Silver Nanoparticles 
	In Vitro Cytotoxicity Screening of PHBV/AgNPs Coatings Embedded with Anticancer Drugs or Natural Compounds 
	Evaluation of the Impact of Drug-Loaded PHBV/AgNPs on Cell Morphology 
	Antimicrobial Activity 


	Discussion 
	Conclusions 
	References

