Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (353)

Search Parameters:
Keywords = material extrusion-based 3D printing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5287 KB  
Article
Development and Characterization of Biodegradable Polymer Filaments for Additive Manufacturing
by Tomáš Balint, Jozef Živčák, Radovan Hudák, Marek Schnitzer, Miroslav Kohan, Maria Danko, Richard Staško, Peter Szedlák, Marek Jałbrzykowski, Katarzyna Leszczyńska, Pavol Alexy, Ivana Bírová, Zuzana Vanovčanová and Martina Culenová
Polymers 2025, 17(24), 3328; https://doi.org/10.3390/polym17243328 - 17 Dec 2025
Viewed by 219
Abstract
In this study, the authors focus on optimizing the processing parameters for the fabrication of biodegradable polymer filaments intended for subsequent 3D printing of biomedical structures and implants. Following extrusion and additive manufacturing, the produced materials underwent a comprehensive evaluation that included mechanical, [...] Read more.
In this study, the authors focus on optimizing the processing parameters for the fabrication of biodegradable polymer filaments intended for subsequent 3D printing of biomedical structures and implants. Following extrusion and additive manufacturing, the produced materials underwent a comprehensive evaluation that included mechanical, microbiological, biofilm formation, and electron microscopy analyses. The complexity of these tests aimed to determine the potential of the developed materials for biomedical applications, particularly in the field of scaffold fabrication. At the initial stage, three types of filaments (technical designations 111, 145, and 146) were produced using Fused Filament Fabrication (FFF) technology. These filaments were based on a PLA/PHB matrix with varying types and concentrations of plasticizers. Standardized destructive tensile and compressive mechanical tests were conducted using an MTS Insight 1 kN testing system equipped with an Instron 2620-601 extensometer. Among the tested samples, the filament labeled 111, composed of PLA/PHB thermoplastic starch and a plasticizer, exhibited the most favorable mechanical performance, with a Young’s modulus of elasticity of 4.63 MPa for 100% infill. The filament labeled 146 had a Young’s modulus of elasticity of 4.53 MPa for 100% infill and the material labeled 145 had a Young’s modulus of elasticity of 1.45 MPa for 100% infill. Microbiological assessments were performed to evaluate the capacity of bacteria and fungi to colonize the material surfaces. During bacterial activity assessment, we observed biofilm formation on the examined sample surfaces of each material from the smooth and rough sides. The colony-forming units (CFUs) increased directly with the exposure time. For all samples from each material, the Log10 (CFU) value reached above 9.41 during 72 h of incubation for the activity of each type of bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans). Scanning electron microscopy provided insight into the surface quality of the material and revealed its local quality and purity. Surface defects were eliminated by this method. Overall, the results indicate that the designed biodegradable filaments, especially formulation 111, have promising properties for the development of scaffolds intended for hard tissue replacement and could also be suitable for regenerative applications in the future after achieving the desired biological properties. Full article
Show Figures

Figure 1

8 pages, 1658 KB  
Proceeding Paper
Flexural Strength Investigation of Flat-Oriented PLA Filament 3D Printing Parts Under Different Infill Styles and Printing Conditions
by Nikolaos A. Fountas, John D. Kechagias, Stefanos Zaoutsos and Nikolaos M. Vaxevanidis
Eng. Proc. 2025, 119(1), 18; https://doi.org/10.3390/engproc2025119018 - 15 Dec 2025
Viewed by 179
Abstract
Fused filament fabrication (FFF) is a widely used material extrusion-based 3D printing process known for its cost-effectiveness, versatility, and ability to produce intricate components. However, the strength of interlayer bonding is significantly influenced by printing parameters, material characteristics, and the chosen printing paths. [...] Read more.
Fused filament fabrication (FFF) is a widely used material extrusion-based 3D printing process known for its cost-effectiveness, versatility, and ability to produce intricate components. However, the strength of interlayer bonding is significantly influenced by printing parameters, material characteristics, and the chosen printing paths. The present study employs a custom response surface design derived from an L9 orthogonal array to strictly investigate the impact of three distinct infill patterns under varying printing temperatures and printing speeds on the responses of flexural strength, σb, and elasticity modulus, E (MPa). Flat-oriented poly-lactic acid (PLA) specimens were subjected to three-point bending tests to evaluate flexural strength for 100% infill rates and a 0.2 mm layer height. Besides the experimental investigation and the statistical analysis, failure modes of the fractured samples were observed to correlate the independent printing parameters with the aforementioned response. The desirability function was employed to identify the set of optimal parameters for maximizing the flexural strength and elasticity modulus for the particular PLA material brand examined. The results indicated that infill pattern and printing speed have significant impact on both responses. The optimal parameters were identified as “centroid” for infill style, 203.03 °C for printing temperature and 25 mm/s for printing speed. Full article
Show Figures

Figure 1

22 pages, 7953 KB  
Article
Automated Evaluation of Layer Thickness Uniformity in 3D-Printed Cementitious Composites Using Deep Learning and Comparison with Manual Tracing Methods
by Jiseok Seo, Jun Lee and Bongchun Lee
Buildings 2025, 15(23), 4253; https://doi.org/10.3390/buildings15234253 - 25 Nov 2025
Viewed by 272
Abstract
Layer thickness uniformity critically influences the dimensional accuracy and mechanical performance of large-scale cementitious structures produced by material extrusion 3D printing. This study introduces a computer vision workflow that couples traditional preprocessing with a ResNet-50 convolutional neural network to automatically detect interlayer boundaries [...] Read more.
Layer thickness uniformity critically influences the dimensional accuracy and mechanical performance of large-scale cementitious structures produced by material extrusion 3D printing. This study introduces a computer vision workflow that couples traditional preprocessing with a ResNet-50 convolutional neural network to automatically detect interlayer boundaries and quantify thickness variation. Hollow 50 × 50 × 50 mm specimens, printed from mixes optimized by void ratio (0.6–0.7) for fluidity and stackability, supplied 25 labeled RGB images for training and validation. The network achieved 96% training and 95% validation accuracy, generating boundary maps that required minimal linear interpolation. Pixel-based analysis yielded uniformity indices of 0.857–0.924, closely matching those from manual tracing (0.819–0.919) but with smaller standard deviations, indicating higher measurement stability and reduced sensitivity to lighting artifacts. The proposed method therefore provides an objective, reproducible alternative to labor-intensive manual evaluation and supports real-time prediction and control of dimensional errors during construction-scale 3D printing, advancing the precision and industrial applicability of additive manufacturing with cementitious composites. However, since this study was conducted under limited variable conditions, such as a simplified and repetitive experimental environment, a larger number of images will be required for model training to enable application under more general conditions. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

20 pages, 3996 KB  
Article
Kinetics and Mechanical Performance of Bio-Based Polyurethane Wood Composites for Sustainable 3D-Printed Construction Materials
by Lucila M. Carias Duron, Jesus Granero Garcia, Chetna Mandurai, Jordon Hoyer, Japneet Kukal, Manish Sakhakarmy, Sushil Adhikari, Brian Via, Iris Beatriz Vega Erramuspe, Armando G. McDonald and Maria L. Auad
Sustainability 2025, 17(23), 10461; https://doi.org/10.3390/su172310461 - 21 Nov 2025
Viewed by 384
Abstract
Developing bio-based polyurethane (BPU) composites that incorporate bio-oil and wood dust as sources of hydroxyl groups (-OH) presents a compelling approach to advancing sustainable polymer systems. This study examines the impact of isocyanate-to-hydroxyl equivalent ratios and varying proportions of bio-oil and wood dust [...] Read more.
Developing bio-based polyurethane (BPU) composites that incorporate bio-oil and wood dust as sources of hydroxyl groups (-OH) presents a compelling approach to advancing sustainable polymer systems. This study examines the impact of isocyanate-to-hydroxyl equivalent ratios and varying proportions of bio-oil and wood dust on the processability and mechanical properties of molded composite panels. Formulations were systematically optimized based on equivalent ratio calculations to enhance extrusion behavior and final structural performance. Extrusion trials demonstrated that an -NCO/-OH ratio of 1.5:1, with 50% wood dust serving as an -OH donor, resulted in the most stable material flow, characterized by minimized surface defects and an ideal viscosity for processing. Compression molding and mechanical testing revealed that a balanced formulation with 50% bio-oil and 50% wood dust, with an equivalent ratio of -OH groups, achieved the best combination of Young’s modulus, stress, and strain performance, even under wet conditions. SEM confirmed improved filler dispersion and interfacial adhesion in these optimized systems. Although full 3D-printing trials were not conducted, the observed extrusion stability and controlled curing behavior indicate strong potential for application in extrusion-based additive manufacturing. These results highlight that precise resin–filler balancing enables continuous extrusion, structural resilience, and reduced activation energy, reinforcing the viability of BPUs as scalable, sustainable materials for construction and additive manufacturing. Full article
Show Figures

Graphical abstract

36 pages, 4270 KB  
Review
Advances in 3D Bioprinting and Microfluidics for Organ-on-a-Chip Platforms
by Natan Roberto de Barros, Samarah Vargas Harb, Cintia Delai da Silva Horinouchi, Larissa Bueno Tofani, Daniela Mayra dos Santos, Giovanna Blazutti Elias, Julia Carnelos Machado Velho, Ana Carolina de Aguiar, Monielle Sant’Ana and Ana Carolina Migliorini Figueira
Polymers 2025, 17(22), 3078; https://doi.org/10.3390/polym17223078 - 20 Nov 2025
Viewed by 2581
Abstract
The convergence of 3D bioprinting and microfluidics has revolutionized the development of organ-on-a-chip platforms, offering unprecedented opportunities in biomedical research and tissue engineering. This comprehensive review delves into the latest advancements in these technologies, highlighting their significance and transformative potential. The introduction provides [...] Read more.
The convergence of 3D bioprinting and microfluidics has revolutionized the development of organ-on-a-chip platforms, offering unprecedented opportunities in biomedical research and tissue engineering. This comprehensive review delves into the latest advancements in these technologies, highlighting their significance and transformative potential. The introduction provides an overview of 3D bioprinting, microfluidics, and organ-on-a-chip systems, emphasizing their critical roles in replicating physiological conditions and enhancing the precision of biomedical studies. The review aims to move beyond fundamental concepts, focusing on recent innovations and applications that have propelled these technologies to the forefront of research. In the realm of 3D bioprinting, the review explores the evolution of bioprinting techniques, including extrusion-based, inkjet, and laser-assisted methods and polymer-based biomaterials as matrices for in vitro tissue modeling. Technological breakthroughs such as high-resolution bioprinting, multi-material printing, and advanced bioink development are discussed, showcasing their impact on creating complex tissue structures. Innovations in bioinks, including printable polymer-based hydrogels and decellularized matrix bioinks, are highlighted for their ability to replicate tissue microenvironments more accurately. The review also covers microfluidic innovations, detailing advances in design and fabrication, including 3D printing and sensor integration. Key innovations in fluid dynamics and tissue integration are examined, demonstrating how these advancements enhance tissue modeling and mimic physiological perfusion. Developing multi-organ-on-a-chip systems and connecting multiple tissue types for systemic studies are also explored. Hence, integrating 3D bioprinting and microfluidics is a focal point, with discussions on how their convergence enhances organ-on-a-chip platforms. The review concludes by examining current challenges, such as scalability and regulatory hurdles, and future directions, including emerging technologies like 4D bioprinting and AI-driven tissue design. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

23 pages, 7124 KB  
Article
Design and Characterization of Yeast Protein–Polysaccharide Bioink Blends for 3D Printing
by Or Peleg-Evron, Noy Hen, Maya Davidovich-Pinhas, Shulamit Levenberg and Havazelet Bianco-Peled
Polysaccharides 2025, 6(4), 101; https://doi.org/10.3390/polysaccharides6040101 - 10 Nov 2025
Viewed by 736
Abstract
Yeast protein (YP) offers nutritional and sustainable benefits; however, its poor gelation properties limit its use in soft material formulations. This study investigates the rheological behavior and the formation of crosslinked networks using YP–polysaccharide mixtures for extrusion-based 3D printing. Binary bioink blends with [...] Read more.
Yeast protein (YP) offers nutritional and sustainable benefits; however, its poor gelation properties limit its use in soft material formulations. This study investigates the rheological behavior and the formation of crosslinked networks using YP–polysaccharide mixtures for extrusion-based 3D printing. Binary bioink blends with alginate (Alg) or xanthan gum (XG) showed enhanced viscosity and exhibited shear-thinning properties. However, a high concentration of Alg negatively affected the material’s thixotropic recovery. On the other hand, YP–XG bioink displayed more pronounced elastic behavior and demonstrated thixotropic recovery, though they lacked the capacity for ionic crosslinking. A triple bioink formulation consisting of 8% (w/v) YP, 2% (w/v) Alg, and 0.5% (w/v) XG effectively combined the advantages of both polysaccharides. Alg provided structural stability through calcium crosslinking, while XG offered rheological flexibility. These bioinks were successfully printed using embedded 3D printing and maintained their shape fidelity after printing. The crosslinked triple hydrogel exhibited good mechanical strength, volume retention after crosslinking, structural integrity under compression of up to 70%, and recovery after deformation that indicates high structural stability. This research presents an effective strategy to enhance the application of yeast-derived proteins in sustainable, animal-free 3D printed food products and other soft biomaterials. Full article
Show Figures

Graphical abstract

23 pages, 2139 KB  
Review
Recent Advances in Inks for 3D Food Printing: A Review
by Mena Ritota, Sahara Melloni, Giulia Cianfrini, Valentina Narducci, Stefania Ruggeri and Valeria Turfani
Appl. Sci. 2025, 15(22), 11891; https://doi.org/10.3390/app152211891 - 8 Nov 2025
Viewed by 1350
Abstract
The integration of 3D printers into food production represents an unprecedented innovation, envisaging applications from the industry to missions in space to home cooking, with no geographical or sectoral limits. Extrusion food 3D printers are designed to use ‘food inks’ that must be [...] Read more.
The integration of 3D printers into food production represents an unprecedented innovation, envisaging applications from the industry to missions in space to home cooking, with no geographical or sectoral limits. Extrusion food 3D printers are designed to use ‘food inks’ that must be produced from raw materials possessing a range of suitable characteristics (viscosity, elasticity, and others) that make them printable. Not all food matrices possess such characteristics, and additives are often needed to formulate food inks, which must also adapt to the complexity of the 3D model to be printed. Initially, mainly food matrices such as potatoes, chocolate, cereal, and legume flours and soluble-fiber-rich additives were tested with this new technology, with promising results. In recent years, alternative food matrices (e.g., based on insects, algae, cultured meat, and food waste) have begun to be experimented with, as 3D printing appears to be a suitable way to exploit their potential. This review aims to highlight recent studies that have investigated the development of innovative food ink formulations and trace a picture of the new food raw materials that are being tested for 3D food printing, the opportunities they represent, their nutritional properties, safety, and technological challenges. This review considered a total of 46 papers, selected from 330 papers published in the last 8 years (2018–2025) on the generic subject of 3D food printing. Full article
(This article belongs to the Special Issue Innovations in Natural Products and Functional Foods)
Show Figures

Figure 1

20 pages, 4301 KB  
Article
Chestnut Burr as a Multifunctional Filler for PLA-Based Bio-Composites: Processing, Characterization, and Antioxidant Functionality
by Tommaso Olmastroni, Simone Pepi, Milad Sarwari, Eugenio Paccagnini, Alfonso Trezza, Anna Visibelli, Pietro Lupetti, Agnese Magnani, Valter Travagli, Michela Geminiani and Annalisa Santucci
Appl. Sci. 2025, 15(21), 11743; https://doi.org/10.3390/app152111743 - 4 Nov 2025
Viewed by 575
Abstract
This study explores the valorization of chestnut burrs (Castanea sativa), an abundant agro-industrial residue, as a natural filler for polylactic acid (PLA)-based biocomposites with potential applications in additive manufacturing. PLA/chestnut burr composite filaments were prepared by melt extrusion with filler contents [...] Read more.
This study explores the valorization of chestnut burrs (Castanea sativa), an abundant agro-industrial residue, as a natural filler for polylactic acid (PLA)-based biocomposites with potential applications in additive manufacturing. PLA/chestnut burr composite filaments were prepared by melt extrusion with filler contents of 2.5%, 5%, 10%, and 15% w/w, and their chemical, thermal, morphological, and mechanical properties were systematically characterized. ATR-FTIR confirmed the absence of major chemical modifications of the PLA matrix. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), the latter performed on both the extruded filaments and the material after fused deposition modeling (FDM) 3D printing, revealed a slight decrease in thermal stability with increasing filler content, coupled with enhanced crystallinity. Mechanical properties analysis showed that the addition of chestnut burrs did not negatively impact the viscoelastic behavior of the filaments. Scanning electron microscopy (SEM) highlighted good filler dispersion up to 5% loading, while higher percentages led to increased surface roughness and microvoids. Importantly, antioxidant activity assays (DPPH, ABTS, FRAP, and Folin–Ciocâlteu) demonstrated that the incorporation of chestnut burr significantly enhanced the radical-scavenging capacity, reducing power, and total phenolic content (TPC) of PLA. These functionalities were preserved, and in some cases amplified, after FDM 3D printing, indicating that the processing conditions did not degrade the bioactive constituents. Overall, chestnut burrs are confirmed as an effective multifunctional filler for PLA, improving its antioxidant activity while maintaining structural and thermal performance, supporting the development of sustainable biocomposites for emerging applications. Full article
Show Figures

Figure 1

7 pages, 977 KB  
Proceeding Paper
Toward Sustainable 3D Printing: Tensile Mechanical Comparison of PLA/PBAT Biopolymer Blend and TPU in MEX Additive Manufacturing
by Sándor Kálmán Jakab and László Lendvai
Eng. Proc. 2025, 113(1), 22; https://doi.org/10.3390/engproc2025113022 - 29 Oct 2025
Viewed by 653
Abstract
A biopolymer blend of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephtalate) (PBAT) in a 60/40 weight ratio was investigated as a potential green alternative to thermoplastic polyurethane (TPU) for material extrusion (MEX)-based additive manufacturing. A comparison of the two materials was conducted [...] Read more.
A biopolymer blend of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephtalate) (PBAT) in a 60/40 weight ratio was investigated as a potential green alternative to thermoplastic polyurethane (TPU) for material extrusion (MEX)-based additive manufacturing. A comparison of the two materials was conducted based on their tensile mechanical properties, evaluated using 3D-printed specimens fabricated with three distinct infill raster orientations (0°, ±45°, and 90°). The results showed that the tensile strengths of the two materials were relatively similar, ranging from 14.7 to 34.8 MPa, depending on the raster angle. However, the stiffness of PLA/PBAT was considerably higher than that of TPU, as reflected by Young’s modulus values an order of magnitude greater. While the elongation at break was comparable at 0° infill orientation (214% for PLA/PBAT and 265% for TPU), TPU exhibited better tolerance to increasing raster angles, with elongation only decreasing to 134% at 90°. In contrast, PLA/PBAT dropped drastically to 2%. Full article
(This article belongs to the Proceedings of The Sustainable Mobility and Transportation Symposium 2025)
Show Figures

Figure 1

8 pages, 2831 KB  
Proceeding Paper
Effect of Printing Parameters on the Tensile Mechanical Properties of 3D-Printed Thermoplastic Polyurethane
by Sándor Kálmán Jakab and László Lendvai
Eng. Proc. 2025, 113(1), 19; https://doi.org/10.3390/engproc2025113019 - 29 Oct 2025
Viewed by 1027
Abstract
Thermoplastic polyurethane (TPU) filament was used to fabricate specimens through material extrusion (MEX)-based 3D printing technique with varying printing parameters. Nozzle diameters of 0.4 mm and 0.8 mm were used, while the printing infill orientation (also denoted as raster angle) was either parallel [...] Read more.
Thermoplastic polyurethane (TPU) filament was used to fabricate specimens through material extrusion (MEX)-based 3D printing technique with varying printing parameters. Nozzle diameters of 0.4 mm and 0.8 mm were used, while the printing infill orientation (also denoted as raster angle) was either parallel (0°) to the length of the specimens, perpendicular to it (90°), or at a 45° angle with alternating direction in each layer (±45°). Tensile tests were conducted to determine tensile strength, Young’s modulus, and elongation at break of the samples. The highest tensile strength was achieved using a 0.8 mm nozzle diameter and 0° raster angle, reaching 32.5 MPa, with a corresponding Young’s modulus of 145.8 MPa. Meanwhile, the sample with the lowest modulus (100.4 MPa) and tensile strength (17.8 MPa) was the one 3D-printed with a 0.4 mm nozzle and 90° raster angle. Full article
(This article belongs to the Proceedings of The Sustainable Mobility and Transportation Symposium 2025)
Show Figures

Figure 1

19 pages, 3492 KB  
Article
Physics-Based Predictive Modeling of Gravity-Induced Sagging in Support-Free Pellet Additive Manufacturing
by Alessio Pricci
Polymers 2025, 17(21), 2858; https://doi.org/10.3390/polym17212858 - 27 Oct 2025
Viewed by 570
Abstract
The fabrication of support-free structures in pellet additive manufacturing (PAM) is severely limited by gravity-induced sagging, a phenomenon lacking predictive, physics-based models. This study introduces and validates a numerical model for the thermofluid dynamics of sagging, aiming to correlate process parameters with filament [...] Read more.
The fabrication of support-free structures in pellet additive manufacturing (PAM) is severely limited by gravity-induced sagging, a phenomenon lacking predictive, physics-based models. This study introduces and validates a numerical model for the thermofluid dynamics of sagging, aiming to correlate process parameters with filament deflection. A predictive finite element (FE) model incorporating temperature-dependent non-Newtonian material properties and heat transfer dynamics has been developed. This was validated via a systematic experimental study on a desktop-scale PAM 3D printer investigating nozzle temperature, printhead speed, screw speed and fan cooling, using polylactic acid (PLA) as a printing material. Findings show that process parameter optimization can reduce bridge deflection by 64.91%, with active fan cooling being the most dominant factor due to accelerated solidification. Increased printhead speed reduced sagging, whereas higher screw speeds and extrusion temperature showed the opposite effect. The FE model accurately replicated these results and further revealed that sagging ceases once the filament cools below its minimum flow temperature (approximately 150–160 °C for PLA). This validated model provides a robust foundation for tuning process parameters, unlocking effective support-free 3D printing in PAM. Full article
(This article belongs to the Special Issue Latest Progress in the Additive Manufacturing of Polymeric Materials)
Show Figures

Graphical abstract

18 pages, 1957 KB  
Article
Optimisation of Interlayer Bond Strength in 3D-Printed Concrete Using Response Surface Methodology and Artificial Neural Networks
by Lenganji Simwanda, Abayomi B. David, Gatheeshgar Perampalam, Oladimeji B. Olalusi and Miroslav Sykora
Buildings 2025, 15(20), 3794; https://doi.org/10.3390/buildings15203794 - 21 Oct 2025
Viewed by 956
Abstract
Enhancing interlayer bond strength remains a critical challenge in the extrusion-based 3D printing of cementitious materials. This study investigates the optimisation of interlayer bond strength in extrusion-based 3D-printed cementitious materials through a combined application of Response Surface Methodology (RSM) and Artificial Neural Networks [...] Read more.
Enhancing interlayer bond strength remains a critical challenge in the extrusion-based 3D printing of cementitious materials. This study investigates the optimisation of interlayer bond strength in extrusion-based 3D-printed cementitious materials through a combined application of Response Surface Methodology (RSM) and Artificial Neural Networks (ANNs). Using a concise yet comprehensive dataset, RSM provided interpretable main effects, curvature, and interactions, while the ANN captured non-linearities beyond quadratic forms. Comparative analysis revealed that the RSM model achieved higher predictive accuracy (R2=0.95) compared to the ANN model (R2=0.87). Desirability-based optimisation confirmed the critical importance of minimising casting delays to mitigate interlayer weaknesses, with RSM suggesting a water-to-cement (W/C) ratio of approximately 0.45 and a minimal time gap of less than 5 min, while ANN predicted slightly lower optimal W/C values but with reduced reliability due to the limited dataset. Sensitivity analysis using partial dependence plots (PDPs) further highlighted that ordinary Portland cement (OPC) content and W/C ratio are the dominant factors, contributing approximately 2.0 and 1.8 MPa respectively to the variation in predicted bond strength, followed by superplasticiser dosage and silica content. Variables such as water content, viscosity-modifying agent, and time gap exhibited moderate influence, while sand and fibre content had marginal effects within the tested ranges. These results demonstrate that RSM provides robust predictive performance and interpretable optimisation guidance, while ANN offers flexible non-linear modelling but requires larger datasets to achieve stable generalisation. Integrating both methods offers a complementary pathway to advance mix design and process control strategies in 3D concrete printing. Full article
Show Figures

Figure 1

32 pages, 1046 KB  
Review
Solidification Materials and Technology for Solid Self-Emulsifying Drug Delivery Systems
by Kyungho Baek and Sung Giu Jin
Pharmaceuticals 2025, 18(10), 1550; https://doi.org/10.3390/ph18101550 - 15 Oct 2025
Cited by 1 | Viewed by 1460
Abstract
The low aqueous solubility of many new drug candidates, a key challenge in oral drug development, has been effectively addressed by liquid self-emulsifying drug delivery systems (SEDDS). However, the inherent instability and manufacturing limitations of liquid formulations have prompted significant research into solid [...] Read more.
The low aqueous solubility of many new drug candidates, a key challenge in oral drug development, has been effectively addressed by liquid self-emulsifying drug delivery systems (SEDDS). However, the inherent instability and manufacturing limitations of liquid formulations have prompted significant research into solid SEDDS. This review provides a comprehensive analysis of the recent advancements in solid SEDDS, focusing on the pivotal roles of solid carriers and solidification techniques. We examine a wide range of carrier materials, including mesoporous silica, polymers, mesoporous carbon, porous carbonate salts, and clay-based materials, highlighting how their physicochemical properties can be leveraged to control drug loading, release kinetics, and in vivo performance. We also detail the various solidification methods, such as spray drying, hot melt extrusion, adsorption, and 3D printing, and their impact on the final product’s quality and scalability. Furthermore, this review explores applications of solid SEDDS, including controlled release, mucoadhesive technology, and targeted drug delivery, as well as the key commercial challenges and future perspectives. By synthesizing these diverse aspects, this paper serves as a valuable resource for designing high-performance solid SEDDS with enhanced stability, bioavailability, and functional versatility. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Graphical abstract

17 pages, 3320 KB  
Article
Research on Optimizing Forming Accuracy in Food 3D Printing Based on Temperature–Pressure Dual Closed-Loop Control
by Junhua Wang, Hao Cao, Jianan Shen, Xu Duan, Yanwei Xu, Tancheng Xie and Ruijie Gu
Micromachines 2025, 16(10), 1156; https://doi.org/10.3390/mi16101156 - 12 Oct 2025
Viewed by 921
Abstract
In this paper, a new 3D printing system based on temperature–pressure double closed-loop collaborative control is proposed to solve the problem of 3D printing accuracy of starch food. The rapid and accurate adjustment of the nozzle temperature is realized by the hybrid control [...] Read more.
In this paper, a new 3D printing system based on temperature–pressure double closed-loop collaborative control is proposed to solve the problem of 3D printing accuracy of starch food. The rapid and accurate adjustment of the nozzle temperature is realized by the hybrid control of Bang-Bang and PID, and the extrusion pressure is optimized in real time by combining the adaptive fuzzy PID algorithm, which effectively reduces the influence from the change of material rheological properties and external interference. The experimental results show that the printing accuracy of the system is up to 98% at 40 °C, the pressure fluctuation is reduced by 80%, and the molding accuracy of complex structures is improved to 97%, which significantly improves the over-extrusion and under-extrusion, and provides an effective solution for stable and high-precision printing of high-viscosity food materials. Full article
(This article belongs to the Special Issue Advanced Micro- and Nano-Manufacturing Technologies, 2nd Edition)
Show Figures

Figure 1

26 pages, 21665 KB  
Article
Fabrication of PLA–Date Fiber Biocomposite via Extrusion Filament Maker for 3D Printing and Its Characterization for Eco-Friendly and Sustainable Applications
by Syed Hammad Mian, Abdulrahman bin Jumah, Mustafa Saleh and Jabair Ali Mohammed
Polymers 2025, 17(19), 2707; https://doi.org/10.3390/polym17192707 - 8 Oct 2025
Viewed by 1597
Abstract
Biocomposites incorporating bio-based polymers and natural fibers hold great promise due to their environmental and economic benefits, though their commercial use is still limited by production challenges. This study reports the development of polylactic acid (PLA) composite filament reinforced with 5 wt% date [...] Read more.
Biocomposites incorporating bio-based polymers and natural fibers hold great promise due to their environmental and economic benefits, though their commercial use is still limited by production challenges. This study reports the development of polylactic acid (PLA) composite filament reinforced with 5 wt% date palm fibers for fused deposition modeling (FDM)-based 3D Printing. The biocomposite is fabricated through extrusion and 3D Printing, and its mechanical, thermal, and water absorption properties are characterized in this work. Fiber dispersion is examined using a scanning electron microscope (SEM), while tensile testing evaluates yield strength, tensile strength, and elongation at break. Fracture behavior and failure mechanisms are further analyzed through optical microscopy and SEM. The biocomposite shows higher yield strength (36.75 MPa) and tensile strength (53.69 MPa), representing improvements of 10.12% and 6.53%, respectively, compared to in-house extruded pure PLA. However, it exhibits lower ductility, as indicated by reduced elongation at break. Water absorption is also higher in the biocomposite (0.58%) than in pure PLA (0.10%). Both materials display similar thermal behavior and brittle fracture characteristics. These results highlight the reinforcing effect of date palm fibers and the role of processing on the behavior/performance of the biocomposite. Reinforcing PLA with a small fraction of date palm fibers, an abundant natural resource, offers a cost-effective and eco-friendly material, particularly suited for single-use plastic products where biodegradability and sustainability are essential. This study also confirms the suitability of PLA/date palm fiber filament for FDM-based 3D Printing. Full article
(This article belongs to the Special Issue Latest Research on 3D Printing of Polymer and Polymer Composites)
Show Figures

Graphical abstract

Back to TopTop