Kinetics and Mechanical Performance of Bio-Based Polyurethane Wood Composites for Sustainable 3D-Printed Construction Materials
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of Bio-Based Polyurethanes (BPU)
2.3. Fourier-Transform Infrared Spectroscopy (FTIR-ATR)
2.4. Determination of Reaction Order and Rate Constant Using nth-Order Kinetics
2.5. Synthesis of Bio-Based Polyurethane Wood Composite Samples
2.6. Study of the Mechanical Properties of the Wood Composites
2.7. Scanning Electron Microscope (SEM)
3. Results
3.1. Kinetic Assessment of Polyurethane Cure via ATR-FTIR and nth-Order Reaction Modeling
3.2. Processing, Mechanical Evaluation, and Microstructure of Bio-Based Polyurethane Wood Composite Formulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chyr, G.; M. DeSimone, J. Review of High-Performance Sustainable Polymers in Additive Manufacturing. Green Chem. 2023, 25, 453–466. [Google Scholar] [CrossRef]
- Popescu, C.; Dissanayake, H.; Mansi, E.; Stancu, A. Eco Breakthroughs: Sustainable Materials Transforming the Future of Our Planet. Sustainability 2024, 16, 10790. [Google Scholar] [CrossRef]
- Saharudin, M.S.; Ullah, A.; Younas, M. Innovative and Sustainable Advances in Polymer Composites for Additive Manufacturing: Processing, Microstructure, and Mechanical Properties. J. Manuf. Mater. Process. 2025, 9, 51. [Google Scholar] [CrossRef]
- Su, J.; Ng, W.L.; An, J.; Yeong, W.Y.; Chua, C.K.; Sing, S.L. Achieving Sustainability by Additive Manufacturing: A State-of-the-Art Review and Perspectives. Virtual Phys. Prototyp. 2024, 19, e2438899. [Google Scholar] [CrossRef]
- Campana, F.; Brufani, G.; Mauriello, F.; Luque, R.; Vaccaro, L. Green Polyurethanes from Bio-Based Building Blocks: Recent Advances and Applications. Green Synth. Catal. 2024, 6, 217–238. [Google Scholar] [CrossRef]
- Isikgor, F.H.; Becer, C.R. Lignocellulosic Biomass: A Sustainable Platform for the Production of Bio-Based Chemicals and Polymers. Polym. Chem. 2015, 6, 4497–4559. [Google Scholar] [CrossRef]
- Huang, X. Bio-Based Polyurethane Foams Made from Microwave Liquefaction of Biomass; Louisiana State University: Baton Rouge, LA, USA, 2018; Available online: https://www.proquest.com/docview/2665132172?pq-origsite=gscholar&fromopenview=true&sourcetype=Dissertations%20&%20Theses (accessed on 17 April 2025).
- Kaur, R.; Singh, P.; Tanwar, S.; Varshney, G.; Yadav, S. Assessment of Bio-Based Polyurethanes: Perspective on Applications and Bio-Degradation. Macromol 2022, 2, 284–314. [Google Scholar] [CrossRef]
- Li, Y.; Luo, X.; Hu, S. Introduction to Bio-Based Polyols and Polyurethanes. In Bio-Based Polyols and Polyurethanes; Li, Y., Luo, X., Hu, S., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–13. [Google Scholar] [CrossRef]
- Miao, S.; Zhang, S.; Su, Z.; Wang, P. Synthesis of Bio-Based Polyurethanes from Epoxidized Soybean Oil and Isopropanolamine. J. Appl. Polym. Sci. 2013, 127, 1929–1936. [Google Scholar] [CrossRef]
- Mo, Y.; Huang, X.; Hu, C. Recent Advances in the Preparation and Application of Bio-Based Polyurethanes. Polymers 2024, 16, 2155. [Google Scholar] [CrossRef]
- Gama, N.V.; Soares, B.; Freire, C.S.R.; Silva, R.; Neto, C.P.; Barros-Timmons, A.; Ferreira, A. Bio-Based Polyurethane Foams toward Applications beyond Thermal Insulation. Mater. Des. 2015, 76, 77–85. [Google Scholar] [CrossRef]
- Noreen, A.; Zia, K.M.; Zuber, M.; Tabasum, S.; Zahoor, A.F. Bio-Based Polyurethane: An Efficient and Environment Friendly Coating Systems: A Review. Progr. Org. Coat. 2016, 91, 25–32. [Google Scholar] [CrossRef]
- Zhai, W.; Zhong, Y.; Xu, M.; Wei, X.; Cai, L.; Xia, C. Transforming Wastes into Functional Materials: Natural Cork-Based Physical Structural Components and Polymers. Green Chem. 2024, 26, 8615–8641. [Google Scholar] [CrossRef]
- Ali, S.; Deiab, I.; Pervaiz, S. State-of-the-Art Review on Fused Deposition Modeling (FDM) for 3D Printing of Polymer Blends and Composites: Innovations, Challenges, and Applications. Int. J. Adv. Manuf. Technol. 2024, 135, 5085–5113. [Google Scholar] [CrossRef]
- Cupkova, T. Bio-Based Polymers for Additive Manufacturing. Master’s Thesis, Politecnico di Torino, Torino, Italy, March 2021. [Google Scholar]
- Dananjaya, S.A.V.; Chevali, V.S.; Dear, J.P.; Potluri, P.; Abeykoon, C. 3D Printing of Biodegradable Polymers and Their Composites—Current State-of-the-Art, Properties, Applications, and Machine Learning for Potential Future Applications. Prog. Mater. Sci. 2024, 146, 101336. [Google Scholar] [CrossRef]
- Ikpe, A.E.; Bassey, M.O. 3D Printing Technology in Conventional Manufacturing: A Revolutionary Approach for Creating Complex and Intricate Designs. In Proceedings of the Asia Pacific 10th International Modern Sciences Congress, Penang, Malaysia, 14–16 June 2024. [Google Scholar]
- Lodhi, S.K.; Gill, A.Y.; Hussain, I. 3D Printing Techniques: Transforming Manufacturing with Precision and Sustainability. Int. J. Multidiscip. Sci. Arts 2024, 3, 129–138. [Google Scholar] [CrossRef]
- Van Do, P.; Prabhakar, M.N.; Jayaraman, K.; Song, J.-I. Biomass Pinecone Powder Inclusion for Mitigating Mechanical Degradation in Recycled Polypropylene Extrusions. Ind. Crops Prod. 2024, 222, 119998. [Google Scholar] [CrossRef]
- Zarmehr, S.P.; Kazemi, M.; Madasu, N.G.A.; Lamanna, A.J.; Fini, E.H. Application of Bio-Based Polyurethanes in Construction: A State-of-the-Art Review. Resour. Conserv. Recycl. 2025, 212, 107906. [Google Scholar] [CrossRef]
- Muravyev, N.V.; Monogarov, K.A.; Schaller, U.; Fomenkov, I.V.; Pivkina, A.N. Progress in Additive Manufacturing of Energetic Materials: Creating the Reactive Microstructures with High Potential of Applications. Propellants Explos. Pyrotech. 2019, 44, 941–969. [Google Scholar] [CrossRef]
- Lindahl, J.; Hassen, A.; Romberg, S.; Hedger, B.; Hedger, P., Jr.; Walch, M.; DeLuca, T.; Morrison, W.; Kim, P.; Roschli, A.; et al. Large-Scale Additive Manufacturing with Reactive Polymers; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2018. Available online: https://www.osti.gov/biblio/1511953 (accessed on 25 June 2025).
- Fleck, T.J.; Murray, A.K.; Gunduz, I.E.; Son, S.F.; Chiu, G.T.-C.; Rhoads, J.F. Additive Manufacturing of Multifunctional Reactive Materials. Addit. Manuf. 2017, 17, 176–182. [Google Scholar] [CrossRef]
- Mathur, V.; Dsouza, V.; Srinivasan, V.; Vasanthan, K.S. Volumetric Additive Manufacturing for Cell Printing: Bridging Industry Adaptation and Regulatory Frontiers. ACS Biomater. Sci. Eng. 2025, 11, 156–181. [Google Scholar] [CrossRef]
- Saleh Alghamdi, S.; John, S.; Roy Choudhury, N.; Dutta, N.K. Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers 2021, 13, 753. [Google Scholar] [CrossRef]
- Singh, S.; Chunglok, W. Biopolymers Towards Green and Sustainable Development; Bentham Science Publishers: Sharjah, United Arab Emirates, 2022. [Google Scholar] [CrossRef]
- Xie, D.; Pu, Y.; Bryant, N.D.; Harper, D.P.; Wang, W.; Ragauskas, A.J.; Li, M. Synthesis of Bio-Based Repairable Polyimines with Tailored Properties by Lignin Fractionation. ACS Sustain. Chem. Eng. 2024, 12, 6606–6618. [Google Scholar] [CrossRef]
- Guo, A.; Zhang, W.; Petrovic, Z.S. Structure–Property Relationships in Polyurethanes Derived from Soybean Oil. J. Mater. Sci. 2006, 41, 4914–4920. [Google Scholar] [CrossRef]
- Narine, S.S.; Kong, X.; Bouzidi, L.; Sporns, P. Physical Properties of Polyurethanes Produced from Polyols from Seed Oils: II. Foams. J. Am. Oil Chem. Soc. 2007, 84, 65–72. [Google Scholar] [CrossRef]
- Rodrigues, J.; Pereira, M.; de Souza, A.; Carvalho, M.L.; Neto, A.A.D.; Dantas, T.N.C.; Fonseca, J.L.C. DSC Monitoring of the Cure Kinetics of a Castor Oil-Based Polyurethane. Thermochim. Acta 2005, 427, 31–36. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. Building a Resilient Biomass Supply: A Plan to Enable the Bioeconomy in America; U.S. Department of Agriculture: Washington, DC, USA, 2024. [Google Scholar]
- Alhanish, A.; Abu Ghalia, M. Biobased Thermoplastic Polyurethanes and Their Capability to Biodegradation. In Eco-Friendly Adhesives for Wood and Natural Fiber Composites: Characterization, Fabrication and Applications; Jawaid, M., Khan, T.A., Nasir, M., Asim, M., Eds.; Springer: Singapore, 2021; pp. 85–104. [Google Scholar] [CrossRef]
- Cywar, R.M.; Rorrer, N.A.; Hoyt, C.B.; Beckham, G.T.; Chen, E.Y.-X. Bio-Based Polymers with Performance-Advantaged Properties. Nat. Rev. Mater. 2022, 7, 83–103. [Google Scholar] [CrossRef]
- Garrison, T.F.; Murawski, A.; Quirino, R.L. Bio-Based Polymers with Potential for Biodegradability. Polymers 2016, 8, 262. [Google Scholar] [CrossRef]
- Singh, S.; Kumar Paswan, K.; Kumar, A.; Gupta, V.; Sonker, M.; Ashhar Khan, M.; Kumar, A.; Shreyash, N. Recent Advancements in Polyurethane-Based Tissue Engineering. ACS Appl. Bio Mater. 2023, 6, 327–348. [Google Scholar] [CrossRef]
- Zhao, X.; Shou, T.; Liang, R.; Hu, S.; Yu, P.; Zhang, L. Bio-Based Thermoplastic Polyurethane Derived from Polylactic Acid with High-Damping Performance. Ind. Crops Prod. 2020, 154, 112619. [Google Scholar] [CrossRef]
- Gkartzou, E.; Koumoulos, E.P.; Charitidis, C.A. Production and 3D Printing Processing of Bio-Based Thermoplastic Filament. Manuf. Rev. 2017, 4, 1. [Google Scholar] [CrossRef]
- Vieira, F.R.; Magina, S.; Evtuguin, D.V.; Barros-Timmons, A. Lignin as a Renewable Building Block for Sustainable Polyurethanes. Materials 2022, 15, 6182. [Google Scholar] [CrossRef]
- Horizon—Grand View Research. The United States Bio Based Polyurethane Market Size & Outlook, 2030. U.S. Bio Based Polyurethane Market Size & Outlook. Available online: https://www.grandviewresearch.com/horizon/outlook/bio-based-polyurethane-market/united-states (accessed on 12 March 2024).
- Prescient & Strategic Intelligence. Bio-Based Polyurethane Market Size Forecast Report, 2022–2030. Bio-Based Polyurethane Market. Available online: https://www.psmarketresearch.com/market-analysis/bio-based-polyurethane-market (accessed on 12 March 2024).
- Straits Research. Bio-Based Polyurethane Market Analysis, Share to 2031. Available online: https://straitsresearch.com/report/bio-based-polyurethane-market (accessed on 12 March 2024).
- Reshmy, R.; Thomas, D.; Philip, E.; Paul, S.A.; Madhavan, A.; Sindhu, R.; Sirohi, R.; Varjani, S.; Pugazhendhi, A.; Pandey, A.; et al. Bioplastic Production from Renewable Lignocellulosic Feedstocks: A Review. Rev. Environ. Sci. Biotechnol. 2021, 20, 167–187. [Google Scholar] [CrossRef]
- Cateto, C.A.; Barreiro, M.F.; Rodrigues, A.E. Monitoring of Lignin-Based Polyurethane Synthesis by FTIR-ATR. Ind. Crops Prod. 2008, 27, 168–174. [Google Scholar] [CrossRef]
- Cateto, C.A.; Barreiro, M.F.; Rodrigues, A.E.; Belgacem, M.N. Kinetic Study of the Formation of Lignin-Based Polyurethanes in Bulk. React. Funct. Polym. 2011, 71, 863–869. [Google Scholar] [CrossRef]
- Chern, C.-S. Curing Kinetics of Polyurethane Reactions. J. Appl. Polym. Sci. 1990, 40, 2189–2205. [Google Scholar] [CrossRef]
- Cimavilla-Román, P.; Santiago-Calvo, M.; Rodríguez-Pérez, M.Á. Dynamic Mechanical Analysis during Polyurethane Foaming: Relationship between Modulus Build-up and Reaction Kinetics. Polym. Test. 2021, 103, 107336. [Google Scholar] [CrossRef]
- Malani, R.S.; Malshe, V.C.; Thorat, B.N. Polyols and Polyurethanes from Renewable Sources: Past, Present and Future—Part 1: Vegetable Oils and Lignocellulosic Biomass. J. Coat. Technol. Res. 2022, 19, 201–222. [Google Scholar] [CrossRef]
- Sahoo, S.; Kalita, H.; Mohanty, S.; Nayak, S.K. Synthesis of Vegetable Oil-Based Polyurethane: A Study on Curing Kinetics Behavior. Int. J. Chem. Kinet. 2016, 48, 622–634. [Google Scholar] [CrossRef]
- Tran, M.H.; Lee, E.Y. Production of Polyols and Polyurethane from Biomass: A Review. Environ. Chem. Lett. 2023, 21, 2199–2223. [Google Scholar] [CrossRef]
- Sakhakarmy, M.; Kemp, A.; Biswas, B.; Kafle, S.; Adhikari, S. A Comparative Analysis of Bio-Oil Collected Using an Electrostatic Precipitator from the Pyrolysis of Douglas Fir, Eucalyptus, and Poplar Biomass. Energies 2024, 17, 2800. [Google Scholar] [CrossRef]
- Alinejad, M.; Henry, C.; Nikafshar, S.; Gondaliya, A.; Bagheri, S.; Chen, N.; Singh, S.K.; Hodge, D.B.; Nejad, M. Lignin-Based Polyurethanes: Opportunities for Bio-Based Foams, Elastomers, Coatings and Adhesives. Polymers 2019, 11, 1202. [Google Scholar] [CrossRef] [PubMed]
- Gharib, J.; Pang, S.; Holland, D. Synthesis and Characterisation of Polyurethane Made from Pyrolysis Bio-Oil of Pine Wood. Eur. Polym. J. 2020, 133, 109725. [Google Scholar] [CrossRef]
- Sawpan, M.A. Polyurethanes from Vegetable Oils and Applications: A Review. J. Polym. Res. 2018, 25, 184. [Google Scholar] [CrossRef]
- Tenorio-Alfonso, A.; Sánchez, M.C.; Franco, J.M. A Review of the Sustainable Approaches in the Production of Bio-Based Polyurethanes and Their Applications in the Adhesive Field. J. Polym. Environ. 2020, 28, 749–774. [Google Scholar] [CrossRef]
- de Lima, V.; da Silva Pelissoli, N.; Dullius, J.; Ligabue, R.; Einloft, S. Kinetic Study of Polyurethane Synthesis Using Different Catalytic Systems of Fe, Cu, Sn, and Cr. J. Appl. Polym. Sci. 2010, 115, 1797–1802. [Google Scholar] [CrossRef]
- Dimier, F.; Sbirrazzuoli, N.; Vergnes, B.; Vincent, M. Curing Kinetics and Chemorheological Analysis of Polyurethane Formation. Polym. Eng. Sci. 2004, 44, 518–527. [Google Scholar] [CrossRef]
- Lipshitz, S.D.; Macosko, C.W. Kinetics and Energetics of a Fast Polyurethane Cure. J. Appl. Polym. Sci. 1977, 21, 2029–2039. [Google Scholar] [CrossRef]
- Lucio, B.; de la Fuente, J.L. Kinetic and Thermodynamic Analysis of the Polymerization of Polyurethanes by a Rheological Method. Thermochim. Acta 2016, 625, 28–35. [Google Scholar] [CrossRef]
- Macosko, C.W.; Miller, D.R. A New Derivation of Average Molecular Weights of Nonlinear Polymers. Macromolecules 1976, 9, 199–206. [Google Scholar] [CrossRef]
- Auad, M.L.; Nutt, S.R.; Stefani, P.M.; Aranguren, M.I. Rheological Study of the Curing Kinetics of Epoxy–Phenol Novolac Resin. J. Appl. Polym. Sci. 2006, 102, 4430–4439. [Google Scholar] [CrossRef]
- Zhang, C.; Binienda, W.K.; Zeng, L.; Ye, X.; Chen, S. Kinetic Study of the Novolac Resin Curing Process Using Model Fitting and Model-Free Methods. Thermochim. Acta 2011, 523, 63–69. [Google Scholar] [CrossRef]
- Jomaa, G.; Goblet, P.; Coquelet, C.; Morlot, V. Kinetic Modeling of Polyurethane Pyrolysis Using Non-Isothermal Thermogravimetric Analysis. Thermochim. Acta 2015, 612, 10–18. [Google Scholar] [CrossRef]
- Olejnik, A.; Gosz, K.; Piszczyk, Ł. Kinetics of Cross-Linking Processes of Fast-Curing Polyurethane System. Thermochim. Acta 2020, 683, 178435. [Google Scholar] [CrossRef]
- Zhao, Y.; Gordon, M.J.; Tekeei, A.; Hsieh, F.-H.; Suppes, G.J. Modeling Reaction Kinetics of Rigid Polyurethane Foaming Process. J. Appl. Polym. Sci. 2013, 130, 1131–1138. [Google Scholar] [CrossRef]
- Chambon, F.; Petrovic, Z.S.; MacKnight, W.J.; Winter, H.H. Rheology of Model Polyurethanes at the Gel Point. Macromolecules 1986, 19, 2146–2149. [Google Scholar] [CrossRef]
- Whitcomb, K.; Terri Chen, T. Gelation Kinetics from Rheological Experiments; TA Instruments: New Castle, DE, USA, 2012. [Google Scholar]
- Winter, H.H.; Morganelli, P.; Chambon, F. Stoichiometry Effects on Rheology of Model Polyurethanes at the Gel Point. Macromolecules 1988, 21, 532–535. [Google Scholar] [CrossRef]
- Liu, Y.; Via, B.; Pan, Y.; Cheng, Q.; Guo, H.; Auad, M.; Taylor, S. Preparation and Characterization of Epoxy Resin Cross-Linked with High Wood Pyrolysis Bio-Oil Substitution by Acetone Pretreatment. Polymers 2017, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Mihai, M.; Ton-That, M.-T. Novel Polylactide/Triticale Straw Biocomposites: Processing, Formulation, and Properties. Polym. Eng. Sci. 2014, 54, 446–458. [Google Scholar] [CrossRef]
- Sikhosana, S.T. Preparation and Characterisation of Polylactic Acid Composites/Nanocellulose Extracted from Eucomis Autumnalis for Various Applications; Central University of Technology: Bloemfontein, South Africa, 2022. [Google Scholar]
- Thakur, V.K.; Thakur, M.K.; Kessler, M.R. Handbook of Composites from Renewable Materials, Structure and Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Daniel, L.; Loukili, A. Behavior of High Strength Fiber-Reinforced Concrete Beams under Cyclic Loading. Struct. J. 2002, 99, 248–256. [Google Scholar] [CrossRef][Green Version]
- Kuan, H.T.N.; Tan, M.Y.; Shen, Y.; Yahya, M.Y. Mechanical Properties of Particulate Organic Natural Filler-Reinforced Polymer Composite: A Review. Compos. Adv. Mater. 2021, 30, 26349833211007502. [Google Scholar] [CrossRef]
- Sankaran, S.; Palani, G.; Yang, Y.-L.; Trilaksana, H. Enhancing Natural Fiber-Based Polymeric Composites with Biochar Filler Particles Derived from Groundnut Shell Biomass Waste. Biomass Convers. Biorefinery 2024, 15, 14399–14410. [Google Scholar] [CrossRef]
- Sharma, A.; Joshi, S.C. Effect of Methods for Micro-Fillers Dispersion in-between Plies on Fatigue Performance of Thermoplastic Composites. Compos. Part A Appl. Sci. Manuf. 2025, 193, 108859. [Google Scholar] [CrossRef]
- Jiang, Z.; Diggle, B.; Tan, M.L.; Viktorova, J.; Bennett, C.W.; Connal, L.A. Extrusion 3D Printing of Polymeric Materials with Advanced Properties. Adv. Sci. 2020, 7, 2001379. [Google Scholar] [CrossRef]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef]
- Marnot, A.; Koube, K.; Jang, S.; Thadhani, N.; Kacher, J.; Brettmann, B. Material Extrusion Additive Manufacturing of High Particle Loaded Suspensions: A Review of Materials, Processes and Challenges. Virtual Phys. Prototyp. 2023, 18, e2279149. [Google Scholar] [CrossRef]
- Paritala, S.; Singaram, K.K.; Bathina, I.; Khan, M.A.; Jyosyula, S.K.R. Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing—A Review. Constr. Build. Mater. 2023, 402, 132962. [Google Scholar] [CrossRef]
- Rahman, M.; Rawat, S.; Yang, R.C.; Mahil, A.; Zhang, Y.X. A Comprehensive Review on Fresh and Rheological Properties of 3D Printable Cementitious Composites. J. Build. Eng. 2024, 91, 109719. [Google Scholar] [CrossRef]
- Sadaf, M.; Bragaglia, M.; Slemenik Perše, L.; Nanni, F. Advancements in Metal Additive Manufacturing: A Comprehensive Review of Material Extrusion with Highly Filled Polymers. J. Manuf. Mater. Process. 2024, 8, 14. [Google Scholar] [CrossRef]
- Yuan, S.; Li, S.; Zhu, J.; Tang, Y. Additive Manufacturing of Polymeric Composites from Material Processing to Structural Design. Compos. Part B Eng. 2021, 219, 108903. [Google Scholar] [CrossRef]
- Jeffri, N.I.; Mohammad Rawi, N.F.; Mohamad Kassim, M.H.; Abdullah, C.K. Unlocking the Potential: Evolving Role of Technical Lignin in Diverse Applications and Overcoming Challenges. Int. J. Biol. Macromol. 2024, 274, 133506. [Google Scholar] [CrossRef]
- Su, T.Y.T. Investigation of Material-Process-Structure-Property Relationships for Lignocellulosic Nanofibril Reinforced Polylactic Acid Composites—ProQuest. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 2023. Available online: https://www.proquest.com/docview/2889524803?pq-origsite=gscholar&fromopenview=true&sourcetype=Dissertations%20&%20Theses (accessed on 21 April 2025).
- ASTM International. ASTM D1037-12 (2020) Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials. 2020. Available online: https://compass.astm.org/content-access?contentCode=ASTM%7CD1037-12R20%7Cen-US (accessed on 17 November 2025).
- ASTM International. ASTM D695-23 Standard Test Method for Compressive Properties of Rigid Plastics. 2023. Available online: https://compass.astm.org/content-access?contentCode=ASTM%7CD0695-23%7Cen-US (accessed on 17 November 2025).
- Agustiany, E.A.; Rasyidur Ridho, M.; Muslimatul Rahmi, D.N.; Madyaratri, E.W.; Falah, F.; Lubis, M.A.R.; Solihat, N.N.; Syamani, F.A.; Karungamye, P.; Sohail, A.; et al. Recent Developments in Lignin Modification and Its Application in Lignin-Based Green Composites: A Review. Polym. Compos. 2022, 43, 4848–4865. [Google Scholar] [CrossRef]
- Chen, X.; Cai, D.; Yang, Y.; Sun, Y.; Wang, B.; Yao, Z.; Jin, M.; Liu, J.; Reinmöller, M.; Badshah, S.L.; et al. Pyrolysis Kinetics of Bio-Based Polyurethane: Evaluating the Kinetic Parameters, Thermodynamic Parameters, and Complementary Product Gas Analysis Using TG/FTIR and TG/GC-MS. Renew. Energy 2023, 205, 490–498. [Google Scholar] [CrossRef]
- Cho, S.T.; So, J.I.; Jung, J.-Y.; Hwang, S.; Baeck, S.-H.; Shim, S.E. Polymerization Kinetics and Physical Properties of Polyurethanes Synthesized by Bio-Based Monomers. Macromol. Res. 2019, 27, 153–163. [Google Scholar] [CrossRef]
- Fulcrand, H.; Rouméas, L.; Billerach, G.; Aouf, C.; Dubreucq, E. Advances in Bio-Based Thermosetting Polymers. In Recent Advances in Polyphenol Research; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 285–334. [Google Scholar] [CrossRef]
- Garrione, L. Environmental and Process Implications of Lignin-Based Rigid Polyurethane Foams for Thermal Insulation: A Comparative Life Cycle Assessment. Ph.D. Thesis, Politecnico di Torino, Torino, Italy, December 2024. Available online: https://webthesis.biblio.polito.it/33484/ (accessed on 22 April 2025).
- Nikafshar, S. Developing Lignin-Based Epoxy and Polyurethane Resins. Ph.D. Thesis, Michigan State University, East Lansing, MI, USA, 2022. Available online: https://www.proquest.com/docview/2622813820?pq-origsite=gscholar&fromopenview=true&sourcetype=Dissertations%20&%20Theses (accessed on 22 April 2025).
- Peyrton, J.; Chambaretaud, C.; Avérous, L. New Insight on the Study of the Kinetic of Biobased Polyurethanes Synthesis Based on Oleo-Chemistry. Molecules 2019, 24, 4332. [Google Scholar] [CrossRef]
- Sen, S.; Patil, S.; Argyropoulos, D.S. Thermal Properties of Lignin in Copolymers, Blends, and Composites: A Review. Green Chem. 2015, 17, 4862–4887. [Google Scholar] [CrossRef]
- Shafiq, A.; Ahmad Bhatti, I.; Amjed, N.; Zeshan, M.; Zaheer, A.; Kamal, A.; Naz, S.; Rasheed, T. Lignin Derived Polyurethanes: Current Advances and Future Prospects in Synthesis and Applications. Eur. Polym. J. 2024, 209, 112899. [Google Scholar] [CrossRef]
- Sun, Y.; Cai, D.; Yang, Y.; Chen, X.; Wang, B.; Yao, Z.; Jin, M.; Liu, J.; Reinmöller, M.; Alves, J.L.F. Investigation of the Thermal Conversion Behavior and Reaction Kinetics of the Pyrolysis of Bio-Based Polyurethane: A Reference Study. Biomass Bioenergy 2023, 169, 106681. [Google Scholar] [CrossRef]
- Ionescu, M. Polyols for Polyurethanes: Chemistry and Technology, 3rd ed.; De Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Sahu, P.; Gupta, M. Water Absorption Behavior of Cellulosic Fibres Polymer Composites: A Review on Its Effects and Remedies. J. Ind. Text. 2022, 51 (Suppl. S5), 7480S–7512S. [Google Scholar] [CrossRef]
- Yu, Y.-J.; Hearon, K.; Wilson, T.S.; Maitland, D.J. The Effect of Moisture Absorption on the Physical Properties of Polyurethane Shape Memory Polymer Foams. Smart Mater. Struct. 2011, 20, 085010. [Google Scholar] [CrossRef]





| Sample Name | Equivalence Ratio -NCO: -OH | % -OH Equivalence Ratio PEG(400): BO |
|---|---|---|
| p-MDI1:1PEG(400) | 1:1 | 100–0% |
| p-MDI1:0.5PEG(400):0.5BO | 50–50% | |
| p-MDI1:1BO | 0–100% |
| Sample Name | Equivalent Ratio -NCO: -OH | % -OH Equivalent Ratio Bio-Oil: Wood Dust |
|---|---|---|
| Panel|p-MDI1.5:1(30BO-70WD) | 1.5:1 | 30–70% |
| Panel|p-MDI1.5:1(50BO-50WD) | 50–50% | |
| Panel|p-MDI2:1(30BO-70WD) | 2:1 | 30–70% |
| Sample Name | Equivalent Ratio -NCO: -OH | % -OH Equivalent Ratio Bio-Oil: Wood Dust |
|---|---|---|
| Ext|p-MDI1:1(30BO-70WD) | 1:1 | 30–70% |
| Ext|p-MDI1:1(50BO-50WD) | 50–50% | |
| Ext|p-MDI1:1(60BO-40WD) | 60–40% | |
| Ext|p-MDI1.5:1(30BO-70WD) | 1.5:1 | 30–70% |
| Ext|p-MDI1.5:1(50BO-50WD) | 50–50% | |
| Ext|p-MDI1.5:1(60BO-40WD) | 60–40% |
| Temperature | p-MDI1:1PEG(400) 1:1 | p-MDI1:0.5PEG (400):0.5BO 1:0.5:0.5 | p-MDI1:1BO 1:1 | |||
|---|---|---|---|---|---|---|
| °C | n | K [s−1] | n | K [s−1] | n | K [s−1] |
| 25 | 2.024 | 4.74 × 10−4 | 3.133 | 8.12 × 10−4 | 1.638 | 1.13 × 10−3 |
| 40 | 2.139 | 7.90 × 10−4 | 2.957 | 2.06 × 10−3 | 1.010 | 1.41 × 10−3 |
| 60 | 2.268 | 1.17 × 10−3 | 2.386 | 3.48 × 10−3 | 1.010 | 2.45 × 10−3 |
| 80 | 2.767 | 2.98 × 10−3 | 1.682 | 4.16 × 10−3 | - | - |
| Average | 2.30 ± 0.33 | 1.35 × 10−3 ± 1.12 × 10−3 | 2.54 ± 0.65 | 2.63 × 10−3 ± 1.49 × 10−3 | 1.22 ± 0.36 | 1.66 × 10−3 ± 6.96 × 10−4 |
| R2 | 0.87 | 0.82 | 0.94 | 0.98 | 0.75 | 0.90 |
| Composition | Equivalent Ratio | Activation Energy (KJ/mol) | Pre-Exponential Factor |
|---|---|---|---|
| p-MDI:PEG(400) | 1:1 | 27.86 | 34.14 |
| p-MDI:PEG(400):BO | 1:0.5:0.5 | 25.52 | 29.64 |
| p-MDI:BO | 1:1 | 18.44 | 1.83 |
| Condition | Sample Name | Strain [%] | Stress [MPa] | Modulus [MPa] |
|---|---|---|---|---|
| Dry | Panel|p-MDI1.5:1(30BO-70WD) | 0.91 ± 0.3 | 6.83 ± 4.8 | 799.17 ± 312 |
| Panel|p-MDI1.5:1(50BO-50WD) | 0.93 ± 0.1 | 13.10 ± 2.7 | 1542.41 ± 196 | |
| Panel|p-MDI2:1(30BO-70WD) | 1.35 ± 0.5 | 11.50 ± 4.3 | 1142.01 ± 303 | |
| Wet | Panel|p-MDI1.5:1(30BO-70WD) | 1.36 ± 0.3 | 7.22 ± 4.8 | 599.42 ± 313 |
| Panel|p-MDI1.5:1(50BO-50WD) | 1.87 ± 0.3 | 14.26 ± 4.3 | 1048.51 ± 225 | |
| Panel|p-MDI2:1(30BO-70WD) | 1.62 ± 0.5 | 8.42 ± 2.9 | 699.26 ± 223 |
| Sample Name | Compressed Screw | Non-Compressed Screw | Strain [%] | Stress [MPa] | Modulus [MPa] |
|---|---|---|---|---|---|
| Ext|p-MDI1:1(30BO-70WD) | Yes | No | 6.3 ± 1.1 | 11.3 ± 1.7 | 311 ± 22 |
| Ext|p-MDI1:1(50BO-50WD) | Yes | No | 4.2 ± 0.7 | 6.7 ± 0.5 | 292 ± 38 |
| Ext|p-MDI1:1(60BO-40WD) | Yes | No | 3.5 ± 0.9 | 10.5 ± 4.1 | 431 ± 118 |
| Ext|p-MDI1.5:1(30BO-70WD) | No | No | - | - | - |
| Ext|p-MDI1.5:1(50BO-50WD) | No | Yes | 5.8 ± 0.9 | 32.2 ± 1.5 | 875 ± 126 |
| Ext|p-MDI1.5:1(60BO-40WD) | No | No | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carias Duron, L.M.; Granero Garcia, J.; Mandurai, C.; Hoyer, J.; Kukal, J.; Sakhakarmy, M.; Adhikari, S.; Via, B.; Vega Erramuspe, I.B.; McDonald, A.G.; et al. Kinetics and Mechanical Performance of Bio-Based Polyurethane Wood Composites for Sustainable 3D-Printed Construction Materials. Sustainability 2025, 17, 10461. https://doi.org/10.3390/su172310461
Carias Duron LM, Granero Garcia J, Mandurai C, Hoyer J, Kukal J, Sakhakarmy M, Adhikari S, Via B, Vega Erramuspe IB, McDonald AG, et al. Kinetics and Mechanical Performance of Bio-Based Polyurethane Wood Composites for Sustainable 3D-Printed Construction Materials. Sustainability. 2025; 17(23):10461. https://doi.org/10.3390/su172310461
Chicago/Turabian StyleCarias Duron, Lucila M., Jesus Granero Garcia, Chetna Mandurai, Jordon Hoyer, Japneet Kukal, Manish Sakhakarmy, Sushil Adhikari, Brian Via, Iris Beatriz Vega Erramuspe, Armando G. McDonald, and et al. 2025. "Kinetics and Mechanical Performance of Bio-Based Polyurethane Wood Composites for Sustainable 3D-Printed Construction Materials" Sustainability 17, no. 23: 10461. https://doi.org/10.3390/su172310461
APA StyleCarias Duron, L. M., Granero Garcia, J., Mandurai, C., Hoyer, J., Kukal, J., Sakhakarmy, M., Adhikari, S., Via, B., Vega Erramuspe, I. B., McDonald, A. G., & Auad, M. L. (2025). Kinetics and Mechanical Performance of Bio-Based Polyurethane Wood Composites for Sustainable 3D-Printed Construction Materials. Sustainability, 17(23), 10461. https://doi.org/10.3390/su172310461

