Recent Advances in Inks for 3D Food Printing: A Review
Abstract
1. Introduction
2. Methodology
3. Food 3D Printing Process
3.1. Steps of Food 3D Printing
3.2. Available 3D-Printing Technologies
3.3. Printability of Foods
4. Innovative Raw Materials for 3D Food Printing
4.1. Insect Powder
4.2. Algae Biomass and Algal Extracts
4.3. Cultured Cells
4.4. Food Waste
5. Discussion and Perspectives
5.1. Safety and UE Regulation
| Physical Hazards | Allergens | Chemical Contaminants | Microbiological Contaminants * | |
|---|---|---|---|---|
| Algae | Rzymski et al., 2015 [124] | Al Dhabi, 2013 [123] | Hadi and Brightwell, 2021 [125] | |
| Insects | De Gier and Verhoeckx, 2018 [119] He et al., 2021 [120] | Ribeiro et al., 2018 [117] | Kooh et al., 2020 [116] | |
| Food waste | O’Connor et al., 2022 [128] | O’Connor et al., 2022 [128] | O’Connor et al., 2022 [128] | |
| Cultured meat | Hadi and Brightwell, 2021 [125] Singh et al., 2022 [42] |
5.2. Consumer Acceptance of 3D-Printed Foods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pereira, T.; Barroso, S.; Gil, M.M. Food Texture Design by 3D Printing: A Review. Foods 2021, 10, 320. [Google Scholar] [CrossRef] [PubMed]
- Godoi, F.C.; Bhandari, B.R.; Prakash, S.; Zhang, M. Chapter 1—An Introduction to the Principles of 3D Food Printing. In Fundamentals of 3D Food Printing and Applications; Godoi, F.C., Bhandari, B.R., Prakash, S., Zhang, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 1–18. ISBN 978-0-12-814564-7. [Google Scholar]
- Pérez, B.; Nykvist, H.; Brøgger, A.F.; Larsen, M.B.; Falkeborg, M.F. Impact of Macronutrients Printability and 3D-Printer Parameters on 3D-Food Printing: A Review. Food Chem. 2019, 287, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhou, W.; Huang, D.; Yan, L. 3D Food Printing: Perspectives. In Polymers for Food Applications; Gutiérrez, T.J., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 725–755. ISBN 978-3-319-94625-2. [Google Scholar]
- Jeltema, M.; Beckley, J.; Vahalik, J. Food Texture Measurement and Consumer Choice. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-08-100596-5. [Google Scholar]
- Stokes, J.R.; Boehm, M.W.; Baier, S.K. Oral Processing, Texture and Mouthfeel: From Rheology to Tribology and Beyond. Curr. Opin. Colloid Interface Sci. 2013, 18, 349–359. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, W.; Yan, L.; Huang, D.; Lin, L. Extrusion-Based Food Printing for Digitalized Food Design and Nutrition Control. J. Food Eng. 2018, 220, 1–11. [Google Scholar] [CrossRef]
- Lanaro, M.; Desselle, M.R.; Woodruff, M.A. Chapter 6—3D Printing Chocolate: Properties of Formulations for Extrusion, Sintering, Binding and Ink Jetting. In Fundamentals of 3D Food Printing and Applications; Godoi, F.C., Bhandari, B.R., Prakash, S., Zhang, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 151–173. ISBN 978-0-12-814564-7. [Google Scholar]
- Rabadán, A.; Nieto, R.; Bernabéu, R. Food Innovation as a Means of Developing Healthier and More Sustainable Foods. Foods 2021, 10, 2069. [Google Scholar] [CrossRef]
- Hassoun, A.; Boukid, F.; Pasqualone, A.; Bryant, C.J.; García, G.G.; Parra-López, C.; Jagtap, S.; Trollman, H.; Cropotova, J.; Barba, F.J. Emerging Trends in the Agri-Food Sector: Digitalisation and Shift to Plant-Based Diets. Curr. Res. Food Sci. 2022, 5, 2261–2269. [Google Scholar] [CrossRef]
- Barbosa, W.; Correia, P.; Vieira, J.; Leal, I.; Rodrigues, L.; Nery, T.; Barbosa, J.; Soares, M. Trends and Technological Challenges of 3D Bioprinting in Cultured Meat: Technological Prospection. Appl. Sci. 2023, 13, 12158. [Google Scholar] [CrossRef]
- Alexander, P.; Brown, C.; Arneth, A.; Dias, C.; Finnigan, J.; Moran, D.; Rounsevell, M.D.A. Could Consumption of Insects, Cultured Meat or Imitation Meat Reduce Global Agricultural Land Use? Glob. Food Secur. 2017, 15, 22–32. [Google Scholar] [CrossRef]
- Attarin, S.; Attaran, M. Food Printing: Evolving Technologies, Challenges, Opportunities, and Best Adoption Strategies. J. Int. Technol. Inf. Manag. 2020, 29, 25–55. [Google Scholar] [CrossRef]
- Varvara, R.-A.; Szabo, K.; Vodnar, D.C. 3D Food Printing: Principles of Obtaining Digitally-Designed Nourishment. Nutrients 2021, 13, 3617. [Google Scholar] [CrossRef]
- Bose, S.; Vahabzadeh, S.; Bandyopadhyay, A. Bone Tissue Engineering Using 3D Printing. Mater. Today 2013, 16, 496–504. [Google Scholar] [CrossRef]
- Dankar, I.; Haddarah, A.; Omar, F.E.L.; Sepulcre, F.; Pujolà, M. 3D Printing Technology: The New Era for Food Customization and Elaboration. Trends Food Sci. Technol. 2018, 75, 231–242. [Google Scholar] [CrossRef]
- Godoi, F.C.; Prakash, S.; Bhandari, B.R. 3d Printing Technologies Applied for Food Design: Status and Prospects. J. Food Eng. 2016, 179, 44–54. [Google Scholar] [CrossRef]
- Yan, Q.; Dong, H.; Su, J.; Han, J.; Song, B.; Wei, Q.; Shi, Y. A Review of 3D Printing Technology for Medical Applications. Engineering 2018, 4, 729–742. [Google Scholar] [CrossRef]
- Yuan, S.; Shen, F.; Chua, C.K.; Zhou, K. Polymeric Composites for Powder-Based Additive Manufacturing: Materials and Applications. Prog. Polym. Sci. 2019, 91, 141–168. [Google Scholar] [CrossRef]
- Flowers, P.F.; Reyes, C.; Ye, S.; Kim, M.J.; Wiley, B.J. 3D Printing Electronic Components and Circuits with Conductive Thermoplastic Filament. Addit. Manuf. 2017, 18, 156–163. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, W.; Huang, D.; Fuh, J.Y.H.; Hong, G.S. An Overview of 3D Printing Technologies for Food Fabrication. Food Bioprocess Technol. 2015, 8, 1605–1615. [Google Scholar] [CrossRef]
- Ventola, C.L. Medical Applications for 3D Printing: Current and Projected Uses. Pharm. Ther. 2014, 39, 704–711. [Google Scholar]
- Derossi, A. 3D Food Printing: Opportunities, Principles, Limitations, and New Ways in Food Production. IUFoST Sci. Inf. Bull. SIBs 2021. Available online: https://iufost.org/news/3d-food-printing-new-sib (accessed on 5 November 2025).
- Voon, S.L.; An, J.; Wong, G.; Zhang, Y.; Chua, C.K. 3D Food Printing: A Categorised Review of Inks and Their Development. Virtual Phys. Prototyp. 2019, 14, 203–218. [Google Scholar] [CrossRef]
- Singh, H.; Bhattacharjee, S. Fundamentals of Food Printing. In Food Printing: 3D Printing in Food Industry; Sandhu, K., Singh, S., Eds.; Springer: Singapore, 2022; pp. 19–34. ISBN 978-981-16-8121-9. [Google Scholar]
- Derossi, A.; Corradini, M.G.; Caporizzi, R.; Oral, M.O.; Severini, C. Accelerating the Process Development of Innovative Food Products by Prototyping through 3D Printing Technology. Food Biosci. 2023, 52, 102417. [Google Scholar] [CrossRef]
- Morya, S.; Kumari, J.; Kumar, D.; Syed, A.; Awuchi, C.G. Three-Dimensional (3D) Printing Technology: 3D Printers, Technologies, and Application Insights in the Food Diligence. In Food Printing: 3D Printing in Food Industry; Sandhu, K., Singh, S., Eds.; Springer: Singapore, 2022; pp. 81–100. ISBN 978-981-16-8121-9. [Google Scholar]
- Derossi, A.; Caporizzi, R.; Ricci, I.; Severini, C. Chapter 3—Critical Variables in 3D Food Printing. In Fundamentals of 3D Food Printing and Applications; Godoi, F.C., Bhandari, B.R., Prakash, S., Zhang, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 41–91. ISBN 978-0-12-814564-7. [Google Scholar]
- Waseem, M.; Tahir, A.U.; Majeed, Y. Printing the Future of Food: The Physics Perspective on 3D Food Printing. Food Phys. 2024, 1, 100003. [Google Scholar] [CrossRef]
- Pitayachaval, P.; Sanklong, N.; Thongrak, A. A Review of 3D Food Printing Technology. MATEC Web Conf. 2018, 213, 01012. [Google Scholar] [CrossRef]
- Kour, R.; Singh, H. Food Printing: Unfolding a New Paradigm for Designer and User. In Food Printing: 3D Printing in Food Industry; Sandhu, K., Singh, S., Eds.; Springer: Singapore, 2022; pp. 47–63. ISBN 978-981-16-8121-9. [Google Scholar]
- Holland, S.; Foster, T.; Tuck, C. Chapter 9—Creation of Food Structures Through Binder Jetting. In Fundamentals of 3D Food Printing and Applications; Godoi, F.C., Bhandari, B.R., Prakash, S., Zhang, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 257–288. ISBN 978-0-12-814564-7. [Google Scholar]
- Gunjal, M.; Rasane, P.; Singh, J.; Kaur, S.; Kaur, J. Three-Dimensional (3D) Food Printing: Methods, Processing and Nutritional Aspects. In Food Printing: 3D Printing in Food Industry; Sandhu, K., Singh, S., Eds.; Springer: Singapore, 2022; pp. 65–80. ISBN 978-981-16-8121-9. [Google Scholar]
- Liu, Z.; Zhang, M. Chapter 2—3D Food Printing Technologies and Factors Affecting Printing Precision. In Fundamentals of 3D Food Printing and Applications; Godoi, F.C., Bhandari, B.R., Prakash, S., Zhang, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 19–40. ISBN 978-0-12-814564-7. [Google Scholar]
- Jonkers, N.; van Dijk, W.J.; Vonk, N.H.; van Dommelen, J.A.W.; Geers, M.G.D. Anisotropic Mechanical Properties of Selective Laser Sintered Starch-Based Food. J. Food Eng. 2022, 318, 110890. [Google Scholar] [CrossRef]
- Thangalakshmi, S.; Arora, V.K. Three-Dimensional (3D) Food Printing and Its Process Parameters. In Food Printing: 3D Printing in Food Industry; Sandhu, K., Singh, S., Eds.; Springer: Singapore, 2022; pp. 35–45. ISBN 978-981-16-8121-9. [Google Scholar]
- Liu, Z.; Zhang, M.; Yang, C. Dual Extrusion 3D Printing of Mashed Potatoes/Strawberry Juice Gel. LWT 2018, 96, 589–596. [Google Scholar] [CrossRef]
- Cheng, Y.; Fu, Y.; Ma, L.; Yap, P.L.; Losic, D.; Wang, H.; Zhang, Y. Rheology of Edible Food Inks from 2D/3D/4D Printing, and Its Role in Future 5D/6D Printing. Food Hydrocoll. 2022, 132, 107855. [Google Scholar] [CrossRef]
- Tejada-Ortigoza, V.; Cuan-Urquizo, E. Towards the Development of 3D-Printed Food: A Rheological and Mechanical Approach. Foods 2022, 11, 1191. [Google Scholar] [CrossRef] [PubMed]
- Drozdov, A.D.; deClaville Christiansen, J. Rheology of Plant Protein–Polysaccharide Gel Inks for 3D Food Printing: Modeling and Structure–Property Relations. J. Food Eng. 2024, 380, 112150. [Google Scholar] [CrossRef]
- Bugday, Z.Y.; Venkatachalam, A.; Anderson, P.D.; van der Sman, R.G.M. Rheology of Paste-like Food Inks for 3D Printing: Effects of Nutrient and Water Content. Curr. Res. Food Sci. 2024, 9, 100847. [Google Scholar] [CrossRef]
- Singh, D.; Ramniwas, S.; Kumar, R. Development of Cost-Effective and Sustainable Alternative Protein from Drosophila and Consumer Acceptability of Drosophila Protein Using 3D Printing. In Food Printing: 3D Printing in Food Industry; Sandhu, K., Singh, S., Eds.; Springer: Singapore, 2022; pp. 141–154. ISBN 978-981-16-8121-9. [Google Scholar]
- van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects. Future Prospects for Food and Feed Security; FAO Forestry Paper; FAO: Rome, Italy, 2013; ISBN 978-92-5-107595-1. [Google Scholar]
- Caporizzi, R.; Derossi, A.; Severini, C. Chapter 4—Cereal-Based and Insect-Enriched Printable Food: From Formulation to Postprocessing Treatments. Status and Perspectives. In Fundamentals of 3D Food Printing and Applications; Godoi, F.C., Bhandari, B.R., Prakash, S., Zhang, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 93–116. ISBN 978-0-12-814564-7. [Google Scholar]
- Orkusz, A. Edible Insects versus Meat—Nutritional Comparison: Knowledge of Their Composition Is the Key to Good Health. Nutrients 2021, 13, 1207. [Google Scholar] [CrossRef]
- Caparros Megido, R.; Sablon, L.; Geuens, M.; Brostaux, Y.; Alabi, T.; Blecker, C.; Drugmand, D.; Haubruge, É.; Francis, F. Edible Insects Acceptance by Belgian Consumers: Promising Attitude for Entomophagy Development. J. Sens. Stud. 2014, 29, 14–20. [Google Scholar] [CrossRef]
- Hartmann, C.; Siegrist, M. Becoming an Insectivore: Results of an Experiment. Food Qual. Prefer. 2016, 51, 118–122. [Google Scholar] [CrossRef]
- Carcea, M.; Narducci, V.; Turfani, V. Consumer Attitudes towards Insects as Food. In Edible Insects Processing for Food and Feed; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Soares, S.; Forkes, A. Insects Au Gratin—An Investigation into the Experiences of Developing a 3D Printer That Uses Insect Protein Based Flour as a Building Medium for the Production of Sustainable Food. In Proceedings of the 16th International conference on Engineering and Product Design Education (E&PDE14), Design Education and Human Technology Relations, Enschede, The Netherlands, 4–5 September 2014; pp. 426–431. [Google Scholar]
- Eswaran, H.; Ponnuswamy, R.D.; Kannapan, R.P. Perspective Approaches of 3D Printed Stuffs for Personalized Nutrition: A Comprehensive Review. Ann. 3D Print. Med. 2023, 12, 100125. [Google Scholar] [CrossRef]
- Susana Soares: Insects Au Gratin/Project. Available online: http://www.susanasoares.com/index.php?id=82 (accessed on 23 October 2025).
- Azzollini, D.; Derossi, A.; Fogliano, V.; Lakemond, C.M.M.; Severini, C. Effects of Formulation and Process Conditions on Microstructure, Texture and Digestibility of Extruded Insect-Riched Snacks. Innov. Food Sci. Emerg. Technol. 2018, 45, 344–353. [Google Scholar] [CrossRef]
- Severini, C.; Azzollini, D.; Albenzio, M.; Derossi, A. On Printability, Quality and Nutritional Properties of 3D Printed Cereal Based Snacks Enriched with Edible Insects. Food Res. Int. 2018, 106, 666–676. [Google Scholar] [CrossRef]
- Herdeiro, F.M.; Carvalho, M.O.; Nunes, M.C.; Raymundo, A. Development of Healthy Snacks Incorporating Meal from Tenebrio Molitor and Alphitobius Diaperinus Using 3D Printing Technology. Foods 2024, 13, 179. [Google Scholar] [CrossRef]
- Adedeji, O.E.; Lee, H.E.; Kim, Y.; Kang, H.J.; Kang, M.D.; Kim, J.Y.; Kim, J.S.; Ezekiel, O.O.; Kim, W.-C.; Lee, S.-J.; et al. Three-Dimensional Printing of Wheat Flour and Acheta Domesticus Powder Blends. Int. J. Food Sci. Technol. 2022, 57, 6279–6285. [Google Scholar] [CrossRef]
- García-Gutiérrez, N.; Salvador, A.; Sanz, T.; Ferrando, M.; Güell, C.; Méndez, C.; de Lamo-Castellví, S. Rheological and Textural Characterisation of Chickpea Dough and Baked 3D-Printed Snacks Enriched with Alphitobius Diaperinus and Locusta Migratoria Powders. Food Bioprocess Technol. 2024, 17, 5199–5207. [Google Scholar] [CrossRef]
- Sundarsingh, A.; Zhang, M.; Mujumdar, A.S.; Li, J. Research Progress in Printing Formulation for 3D Printing of Healthy Future Foods. Food Bioprocess Technol. 2024, 17, 3408–3439. [Google Scholar] [CrossRef]
- Donn, P.; Prieto, M.A.; Mejuto, J.C.; Cao, H.; Simal-Gandara, J. Functional Foods Based on the Recovery of Bioactive Ingredients from Food and Algae By-Products by Emerging Extraction Technologies and 3D Printing. Food Biosci. 2022, 49, 101853. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, H.; Li, C. Potential Sources of Novel Proteins Suitable for Use as Ingredients in 3D Food Printing, along with Some of the Food Safety Challenges. Int. J. Gastron. Food Sci. 2024, 37, 100983. [Google Scholar] [CrossRef]
- Koyande, A.K.; Chew, K.W.; Rambabu, K.; Tao, Y.; Chu, D.-T.; Show, P.-L. Microalgae: A Potential Alternative to Health Supplementation for Humans. Food Sci. Hum. Wellness 2019, 8, 16–24. [Google Scholar] [CrossRef]
- Becker, E.W. Microalgae for Human and Animal Nutrition. In Handbook of Microalgal Culture; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 461–503. ISBN 978-1-118-56716-6. [Google Scholar]
- Seyidoglu, N.; Inan, S.; Aydin, C.; Seyidoglu, N.; Inan, S.; Aydin, C. A Prominent Superfood: Spirulina Platensis. In Superfood and Functional Food—The Development of Superfoods and Their Roles as Medicine; IntechOpen: London, UK, 2017; ISBN 978-953-51-2942-4. [Google Scholar]
- Chen, C.-Y.; Lee, P.-J.; Tan, C.H.; Lo, Y.-C.; Huang, C.-C.; Show, P.L.; Lin, C.-H.; Chang, J.-S. Improving Protein Production of Indigenous Microalga Chlorella Vulgaris FSP-E by Photobioreactor Design and Cultivation Strategies. Biotechnol. J. 2015, 10, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Saeed, F.; Tul Zohra, K.; Naveed, K.; Zia, A.; Khaliq, M.; Noor, Z.; Khaliq, K.; Ali, M.A. Algal Proteins for Sustainable Nutrition and Functional Food Innovation. Appl. Food Res. 2025, 5, 100752. [Google Scholar] [CrossRef]
- Bleakley, S.; Hayes, M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods 2017, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.M.; Gruppi, A.; Vieira, M.V.; Matos, G.S.; Vicente, A.A.; Teixeira, J.A.C.; Fuciños, P.; Spigno, G.; Pastrana, L.M. How Additive Manufacturing Can Boost the Bioactivity of Baked Functional Foods. J. Food Eng. 2021, 294, 110394. [Google Scholar] [CrossRef]
- Vieira, M.V.; Oliveira, S.M.; Amado, I.R.; Fasolin, L.H.; Vicente, A.A.; Pastrana, L.M.; Fuciños, P. 3D Printed Functional Cookies Fortified with Arthrospira Platensis: Evaluation of Its Antioxidant Potential and Physical-Chemical Characterization. Food Hydrocoll. 2020, 107, 105893. [Google Scholar] [CrossRef]
- Uribe-Wandurraga, Z.N.; Igual, M.; Reino-Moyón, J.; García-Segovia, P.; Martínez-Monzó, J. Effect of Microalgae (Arthrospira Platensis and Chlorella Vulgaris) Addition on 3D Printed Cookies. Food Biophys. 2021, 16, 27–39. [Google Scholar] [CrossRef]
- An, Y.-J.; Guo, C.-F.; Zhang, M.; Zhong, Z.-P. Investigation on Characteristics of 3D Printing Using Nostoc Sphaeroides Biomass. J. Sci. Food Agric. 2019, 99, 639–646. [Google Scholar] [CrossRef]
- Zhong, C.; Feng, Y.; Xu, Y. Production of Fish Analogues from Plant Proteins: Potential Strategies, Challenges, and Outlook. Foods 2023, 12, 614. [Google Scholar] [CrossRef]
- Marwaha, N.; Beveridge, M.C.M.; Phillips, M.J. Fad, Food, or Feed: Alternative Seafood and Its Contribution to Food Systems. Front. Sustain. Food Syst. 2022, 6, 750253. [Google Scholar] [CrossRef]
- BettaFish—The Best Fish Alternatives from Seaweed. Available online: https://bettafish.co (accessed on 22 October 2025).
- Hooked Foods—Enkelt, Gott & Näringsrikt. 100% Veganskt Såklart, För Allas Bästa! Available online: https://www.hookedfoods.com (accessed on 22 October 2025).
- Mimic Seafood|Plant-Based Seafood That Saves Oceans. Available online: https://mimicseafood.com/ (accessed on 7 November 2025).
- Accueil. Available online: https://www.odontella.com/ (accessed on 22 October 2025).
- Global Production Gracilaria. Seaweed Insights. Available online: https://seaweedinsights.com/global-production-gracilaria/ (accessed on 7 November 2025).
- Alasibi, S.; Kazir, M.; Israel, Á.; Livney, Y.D. Algal Protein-Based 3D-Printed Fish-Analogs as a New Approach for Sustainable Seafood. Curr. Res. Food Sci. 2024, 9, 100905. [Google Scholar] [CrossRef] [PubMed]
- Bisht, B.; Begum, J.P.S.; Dmitriev, A.A.; Kurbatova, A.; Singh, N.; Nishinari, K.; Nanda, M.; Kumar, S.; Vlaskin, M.S.; Kumar, V. Unlocking the Potential of Future Version 3D Food Products with next Generation Microalgae Blue Protein Integration: A Review. Trends Food Sci. Technol. 2024, 147, 104471. [Google Scholar] [CrossRef]
- Ho, S. Digital Food Revolution: Japanese Startup Open Meals Is 3D-Printing Sustainable Sushi; Green Queen: Hong Kong, China, 2019. [Google Scholar]
- Open Meals. Available online: http://www.open-meals.com/ (accessed on 23 October 2025).
- Mirzapour-Kouhdasht, A.; Biparva, P.; McClements, D.J.; Garavand, F.; Garcia-Vaquero, M. Formulation of Inks for 3D Printing of Microalgae-Based Meat Analogues and the Role of Modified Starch: A Review. Int. J. Food Sci. Technol. 2024, 59, 8618–8629. [Google Scholar] [CrossRef]
- Chen, C.; Tang, T.; Shi, Q.; Zhou, Z.; Fan, J. The Potential and Challenge of Microalgae as Promising Future Food Sources. Trends Food Sci. Technol. 2022, 126, 99–112. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, M.; Bhandari, B. Materials Properties of Printable Edible Inks and Printing Parameters Optimization during 3D Printing: A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3074–3081. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Kumar, S.; Bhat, H.F.; Aadil, R.M.; Bekhit, A.E.-D.A. 3D Printing: Development of Animal Products and Special Foods. Trends Food Sci. Technol. 2021, 118, 87–105. [Google Scholar] [CrossRef]
- Ong, S.; Choudhury, D.; Naing, M.W. Cell-Based Meat: Current Ambiguities with Nomenclature. Trends Food Sci. Technol. 2020, 102, 223–231. [Google Scholar] [CrossRef]
- Guo, X.; Wang, D.; He, B.; Hu, L.; Jiang, G. 3D Bioprinting of Cultured Meat: A Promising Avenue of Meat Production. Food Bioprocess Technol. 2024, 17, 1659–1680. [Google Scholar] [CrossRef]
- Bomkamp, C.; Skaalure, S.C.; Fernando, G.F.; Ben-Arye, T.; Swartz, E.W.; Specht, E.A. Scaffolding Biomaterials for 3D Cultivated Meat: Prospects and Challenges. Adv. Sci. 2022, 9, 2102908. [Google Scholar] [CrossRef]
- Ianovici, I.; Zagury, Y.; Redenski, I.; Lavon, N.; Levenberg, S. 3D-Printable Plant Protein-Enriched Scaffolds for Cultivated Meat Development. Biomaterials 2022, 284, 121487. [Google Scholar] [CrossRef]
- Handral, H.K.; Hua Tay, S.; Wan Chan, W.; Choudhury, D. 3D Printing of Cultured Meat Products. Crit. Rev. Food Sci. Nutr. 2022, 62, 272–281. [Google Scholar] [CrossRef]
- Gurel, M.; Rathod, N.; Cabrera, L.Y.; Voyton, S.; Yeo, M.; Ozogul, F.; Ozbolat, I.T. A Narrative Review: 3D Bioprinting of Cultured Muscle Meat and Seafood Products and Its Potential for the Food Industry. Trends Food Sci. Technol. 2024, 152, 104670. [Google Scholar] [CrossRef]
- Jeong, D.; Seo, J.W.; Lee, H.-G.; Jung, W.K.; Park, Y.H.; Bae, H. Efficient Myogenic/Adipogenic Transdifferentiation of Bovine Fibroblasts in a 3D Bioprinting System for Steak-Type Cultured Meat Production. Adv. Sci. 2022, 9, 2202877. [Google Scholar] [CrossRef]
- Jo, B.; Nie, M.; Takeuchi, S. Manufacturing of Animal Products by the Assembly of Microfabricated Tissues. Essays Biochem. 2021, 65, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Carlota, V. Aleph Farms and 3D Bioprinting Solutions Collaborate to Create Slaughter-Free Meat; 3Dnatives: Paris, France, 2019. [Google Scholar]
- GOOD Meat|GOOD Meat Partners with ADM to Build the World’s First Large-Scale Cultivated Meat Facility. Available online: https://www.goodmeat.co/all-news/good-meat-partners-with-industry-leader-to-build-first-large-scale-cultivated-meat-facility (accessed on 5 November 2025).
- Zhang, Y.S.; Oklu, R.; Dokmeci, M.R.; Khademhosseini, A. Three-Dimensional Bioprinting Strategies for Tissue Engineering. Cold Spring Harb. Perspect. Med. 2018, 8, a025718. [Google Scholar] [CrossRef]
- Soleymani, S.; Naghib, S.M.; Mozafari, M.R. An Overview of Cultured Meat and Stem Cell Bioprinting: How to Make It, Challenges and Prospects, Environmental Effects, Society’s Culture and the Influence of Religions. J. Agric. Food Res. 2024, 18, 101307. [Google Scholar] [CrossRef]
- Zheng, Y.-Y.; Hu, Z.-N.; Zhou, G.-H. A Review: Analysis of Technical Challenges in Cultured Meat Production and Its Commercialization. Crit. Rev. Food Sci. Nutr. 2025, 65, 1911–1928. [Google Scholar] [CrossRef] [PubMed]
- Lanz, M.; Hartmann, C.; Egan, P.; Siegrist, M. Consumer Acceptance of Cultured, Plant-Based, 3D-Printed Meat and Fish Alternatives. Future Foods 2024, 9, 100297. [Google Scholar] [CrossRef]
- Searchinger, T.; Waite, R.; Hanson, C.; Ranganathan, J.; Matthews, E. Creating a Sustainable Food Future; World Resources Institute (WRI): Washington, DC, USA, 2019; ISBN 978-1-56973-963-1. [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2022. Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; The State of Food Security and Nutrition in the World (SOFI); FAO: Rome, Italy, 2022; ISBN 978-92-5-136499-4. [Google Scholar] [CrossRef]
- Aureli, V.; Nardi, A.; Palmieri, N.; Peluso, D.; Di Veroli, J.N.; Scognamiglio, U.; Rossi, L. Sustainability Perception of Italian Consumers: Is It Possible to Replace Meat, and What Is the Best Alternative? Nutrients 2023, 15, 3861. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Iskandar, M.M.; Baeghbali, V.; Kubow, S. Three-Dimensional Printing of Foods: A Critical Review of the Present State in Healthcare Applications, and Potential Risks and Benefits. Foods 2023, 12, 3287. [Google Scholar] [CrossRef]
- Yoha, K.S.; Moses, J.A. 3D Printing Approach to Valorization of Agri-Food Processing Waste Streams. Foods 2023, 12, 212. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef]
- Slavin, J.L.; Lloyd, B. Health Benefits of Fruits and Vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, M.; Bhandari, B.; Ye, Y. Use of Potato Processing By-Product: Effects on the 3D Printing Characteristics of the Yam and the Texture of Air-Fried Yam Snacks. LWT 2020, 125, 109265. [Google Scholar] [CrossRef]
- Tan, J.D.; Lee, C.P.; Foo, S.Y.; Tan, J.C.W.; Tan, S.S.Y.; Ong, E.S.; Leo, C.H.; Hashimoto, M. 3D Printability and Biochemical Analysis of Revalorized Orange Peel Waste. Int. J. Bioprinting 2023, 9, 776. [Google Scholar] [CrossRef] [PubMed]
- Molina-Montero, C.; Vicente-Jurado, D.; Igual, M.; Martínez-Monzó, J.; García-Segovia, P. Fiber Enrichment of 3D Printed Apricot Gel Snacks with Orange By-Products. Gels 2023, 9, 569. [Google Scholar] [CrossRef]
- Tan, J.D.; Lee, C.P.; Leo, C.H.; Hashimoto, M. Enhancing Three-Dimensional (3D) Printablity of Durian Husk Inks. Mater. Today Proc. 2022, 70, 698–702. [Google Scholar] [CrossRef]
- Pant, A.; Ni Leam, P.X.; Chua, C.K.; Tan, U.-X. Valorisation of Vegetable Food Waste Utilising Three-Dimensional Food Printing. Virtual Phys. Prototyp. 2023, 18, e2146593. [Google Scholar] [CrossRef]
- Jagadiswaran, B.; Alagarasan, V.; Palanivelu, P.; Theagarajan, R.; Moses, J.A.; Anandharamakrishnan, C. Valorization of Food Industry Waste and By-Products Using 3D Printing: A Study on the Development of Value-Added Functional Cookies. Future Foods 2021, 4, 100036. [Google Scholar] [CrossRef]
- Ahmadzadeh, S.; Clary, T.; Rosales, A.; Ubeyitogullari, A. Upcycling Imperfect Broccoli and Carrots into Healthy Snacks Using an Innovative 3D Food Printing Approach. Food Sci. Nutr. 2024, 12, 84–93. [Google Scholar] [CrossRef]
- Dong, H.; Wang, P.; Yang, Z.; Xu, X. 3D Printing Based on Meat Materials: Challenges and Opportunities. Curr. Res. Food Sci. 2023, 6, 100423. [Google Scholar] [CrossRef]
- Carvajal-Mena, N.; Tabilo-Munizaga, G.; Pérez-Won, M.; Lemus-Mondaca, R. Valorization of Salmon Industry By-Products: Evaluation of Salmon Skin Gelatin as a Biomaterial Suitable for 3D Food Printing. LWT 2022, 155, 112931. [Google Scholar] [CrossRef]
- Wang, M.; Lu, X.; Zheng, X.; Li, W.; Wang, L.; Qian, Y.; Zeng, M. Rheological and Physicochemical Properties of Spirulina Platensis Residues-Based Inks for Extrusion 3D Food Printing. Food Res. Int. 2023, 169, 112823. [Google Scholar] [CrossRef]
- Kooh, P.; Jury, V.; Laurent, S.; Audiat-Perrin, F.; Sanaa, M.; Tesson, V.; Federighi, M.; Boué, G. Control of Biological Hazards in Insect Processing: Application of HACCP Method for Yellow Mealworm (Tenebrio Molitor) Powders. Foods 2020, 9, 1528. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Cunha, L.M.; Sousa-Pinto, B.; Fonseca, J. Allergic Risks of Consuming Edible Insects: A Systematic Review. Mol. Nutr. Food Res. 2018, 62, 1700030. [Google Scholar] [CrossRef] [PubMed]
- Francis, F.; Doyen, V.; Debaugnies, F.; Mazzucchelli, G.; Caparros, R.; Alabi, T.; Blecker, C.; Haubruge, E.; Corazza, F. Limited Cross Reactivity among Arginine Kinase Allergens from Mealworm and Cricket Edible Insects. Food Chem. 2019, 276, 714–718. [Google Scholar] [CrossRef]
- de Gier, S.; Verhoeckx, K. Insect (Food) Allergy and Allergens. Mol. Immunol. 2018, 100, 82–106. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Li, S.; He, K.; Sun, F.; Mu, L.; Li, Q.; Yi, J.; He, Z.; Liu, Z.; Wu, X. Identification of Potential Allergens in Larva, Pupa, Moth, Silk, Slough and Feces of Domestic Silkworm (Bombyx Mori). Food Chem. 2021, 362, 130231. [Google Scholar] [CrossRef]
- Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on Novel Foods, Amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and Repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001 (Text with EEA Relevance); 2015; Volume 327. Available online: https://eur-lex.europa.eu/eli/reg/2015/2283/oj/eng (accessed on 5 November 2025).
- Committee, E.S. Risk Profile Related to Production and Consumption of Insects as Food and Feed. EFSA J. 2015, 13, 4257. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A. Heavy Metal Analysis in Commercial Spirulina Products for Human Consumption. Saudi J. Biol. Sci. 2013, 20, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Rzymski, P.; Niedzielski, P.; Kaczmarek, N.; Jurczak, T.; Klimaszyk, P. The Multidisciplinary Approach to Safety and Toxicity Assessment of Microalgae-Based Food Supplements Following Clinical Cases of Poisoning. Harmful Algae 2015, 46, 34–42. [Google Scholar] [CrossRef]
- Hadi, J.; Brightwell, G. Safety of Alternative Proteins: Technological, Environmental and Regulatory Aspects of Cultured Meat, Plant-Based Meat, Insect Protein and Single-Cell Protein. Foods 2021, 10, 1226. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Recommendation (EU) 2018/464 of 19 March 2018 on the Monitoring of Metals and Iodine in Seaweed, Halophytes and Products Based on Seaweed (Text with EEA Relevance.). Off. J. Eur. Union 2018, L 078, 16–18. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018H0464 (accessed on 5 November 2025).
- Li, Z.; Li, Q.; Li, R.; Zhao, Y.; Geng, J.; Wang, G. Physiological Responses of Lettuce (Lactuca Sativa L.) to Microplastic Pollution. Environ. Sci. Pollut. Res. 2020, 27, 30306–30314. [Google Scholar] [CrossRef]
- O’Connor, J.; Mickan, B.S.; Siddique, K.H.M.; Rinklebe, J.; Kirkham, M.B.; Bolan, N.S. Physical, Chemical, and Microbial Contaminants in Food Waste Management for Soil Application: A Review. Environ. Pollut. 2022, 300, 118860. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Pandya, J.K.; McClements, D.J.; Lu, J.; Kinchla, A.J. Advancements in 3D Food Printing: A Comprehensive Overview of Properties and Opportunities. Crit. Rev. Food Sci. Nutr. 2022, 62, 4752–4768. [Google Scholar] [CrossRef]
- Severini, C.; Derossi, A.; Azzollini, D. Variables Affecting the Printability of Foods: Preliminary Tests on Cereal-Based Products. Innov. Food Sci. Emerg. Technol. 2016, 38, 281–291. [Google Scholar] [CrossRef]
- Zeleny, P.; Ruzicka, V. The Design of the 3D Printer for Use in Gastronomy. MM Sci. J. 2017, 2017, 1744–1747. [Google Scholar] [CrossRef]
- Sun, J.; Peng, Z.; Zhou, W.; Fuh, J.Y.H.; Hong, G.S.; Chiu, A. A Review on 3D Printing for Customized Food Fabrication. Procedia Manuf. 2015, 1, 308–319. [Google Scholar] [CrossRef]
- Bégin-Drolet, A.; Dussault, M.-A.; Fernandez, S.A.; Larose-Dutil, J.; Leask, R.L.; Hoesli, C.A.; Ruel, J. Design of a 3D Printer Head for Additive Manufacturing of Sugar Glass for Tissue Engineering Applications. Addit. Manuf. 2017, 15, 29–39. [Google Scholar] [CrossRef]
- Baiano, A. 3D Printed Foods: A Comprehensive Review on Technologies, Nutritional Value, Safety, Consumer Attitude, Regulatory Framework, and Economic and Sustainability Issues. Food Rev. Int. 2022, 38, 986–1016. [Google Scholar] [CrossRef]
- Hamilton, A.N.; Gibson, K.E. Efficacy of Manufacturer Recommendations for the Control of Salmonella Typhimurium and Listeria monocytogenes in Food Ink Capsules Utilized in 3D Food Printing Systems. J. Food Prot. 2023, 86, 100030. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, A.N.; Gibson, K.E. Transfer Rates of Salmonella Typhimurium, Listeria monocytogenes, and a Human Norovirus Surrogate Impacted by Macronutrient Composition of Food Inks in 3D Food Printing Systems. Food Microbiol. 2023, 113, 104268. [Google Scholar] [CrossRef]
- Siegrist, M.; Hartmann, C. Consumer Acceptance of Novel Food Technologies. Nat. Food 2020, 1, 343–350. [Google Scholar] [CrossRef]
- Blutinger, J.D.; Tsai, A.; Storvick, E.; Seymour, G.; Liu, E.; Samarelli, N.; Karthik, S.; Meijers, Y.; Lipson, H. Precision Cooking for Printed Foods via Multiwavelength Lasers. Npj Sci. Food 2021, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Hellali, W.; Korai, B. Understanding Consumer’s Acceptability of the Technology behind Upcycled Foods: An Application of the Technology Acceptance Model. Food Qual. Prefer. 2023, 110, 104943. [Google Scholar] [CrossRef]
- Silva, F.; Pereira, T.; Mendes, S.; Gordo, L.; Gil, M.M. Consumer’s Perceptions and Motivations on the Consumption of Fortified Foods and 3D Food Printing. Future Foods 2024, 10, 100423. [Google Scholar] [CrossRef]
- Yang, M.; Gao, J.; Yang, Q.; Al Mamun, A.; Masukujjaman, M.; Hoque, M.E. Modeling the Intention to Consume and Willingness to Pay Premium Price for 3D-Printed Food in an Emerging Economy. Humanit. Soc. Sci. Commun. 2024, 11, 274. [Google Scholar] [CrossRef]
- Ross, M.M.; Collins, A.M.; McCarthy, M.B.; Kelly, A.L. Overcoming Barriers to Consumer Acceptance of 3D-Printed Foods in the Food Service Sector. Food Qual. Prefer. 2022, 100, 104615. [Google Scholar] [CrossRef]
- Davies, F.T.; Garrett, B. Technology for Sustainable Urban Food Ecosystems in the Developing World: Strengthening the Nexus of Food–Water–Energy–Nutrition. Front. Sustain. Food Syst. 2018, 2, 84. [Google Scholar] [CrossRef]
- Blutinger, J.D.; Cooper, C.C.; Karthik, S.; Tsai, A.; Samarelli, N.; Storvick, E.; Seymour, G.; Liu, E.; Meijers, Y.; Lipson, H. The Future of Software-Controlled Cooking. Npj Sci. Food 2023, 7, 6. [Google Scholar] [CrossRef] [PubMed]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ritota, M.; Melloni, S.; Cianfrini, G.; Narducci, V.; Ruggeri, S.; Turfani, V. Recent Advances in Inks for 3D Food Printing: A Review. Appl. Sci. 2025, 15, 11891. https://doi.org/10.3390/app152211891
Ritota M, Melloni S, Cianfrini G, Narducci V, Ruggeri S, Turfani V. Recent Advances in Inks for 3D Food Printing: A Review. Applied Sciences. 2025; 15(22):11891. https://doi.org/10.3390/app152211891
Chicago/Turabian StyleRitota, Mena, Sahara Melloni, Giulia Cianfrini, Valentina Narducci, Stefania Ruggeri, and Valeria Turfani. 2025. "Recent Advances in Inks for 3D Food Printing: A Review" Applied Sciences 15, no. 22: 11891. https://doi.org/10.3390/app152211891
APA StyleRitota, M., Melloni, S., Cianfrini, G., Narducci, V., Ruggeri, S., & Turfani, V. (2025). Recent Advances in Inks for 3D Food Printing: A Review. Applied Sciences, 15(22), 11891. https://doi.org/10.3390/app152211891

