Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,938)

Search Parameters:
Keywords = material constants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2150 KB  
Article
Liquid Metal Particles–Graphene Core–Shell Structure Enabled Hydrogel-Based Triboelectric Nanogenerators
by Sangkeun Oh, Yoonsu Lee, Jungin Yang, Yejin Lee, Seoyeon Won, Sang Sub Han, Jung Han Kim and Taehwan Lim
Gels 2026, 12(1), 86; https://doi.org/10.3390/gels12010086 (registering DOI) - 19 Jan 2026
Abstract
The development of flexible and self-powered electronic systems requires triboelectric materials that combine high charge retention, mechanical compliance, and stable dielectric properties. Here, we report a redox reaction approach to prepare liquid metal particle-reduced graphene oxide (LMP@rGO) core–shell structures and introduce into a [...] Read more.
The development of flexible and self-powered electronic systems requires triboelectric materials that combine high charge retention, mechanical compliance, and stable dielectric properties. Here, we report a redox reaction approach to prepare liquid metal particle-reduced graphene oxide (LMP@rGO) core–shell structures and introduce into a poly(acrylic acid) (PAA) hydrogel to create a high-performance triboelectric layer. The spontaneous interfacial reaction between gallium oxide of LMP and graphene oxide produces a conformal rGO shell while simultaneously removing the native insulating oxide layer onto the LMP surface, resulting in enhanced colloidal stability and a controllable semiconductive bandgap of 2.7 (0.01 wt%), 2.9 (0.005 wt%) and 3.2 eV (0.001 wt%). Increasing the GO content promotes more complete core–shell formation, leading to higher zeta potentials, stronger interfacial polarization, and higher electrical performance. After embedding in PAA, the LMP@rGO structures form hydrogen-bonding networks with the hydrogel nature, improving both dielectric constant and charge retention while notably preserving soft mechanical compliance. The resulting LMP@rGO/PAA hydrogels show enhanced triboelectric output, with the 2.0 wt/vol% composite generating sufficient power to illuminate more than half of 504 series-connected LEDs. All the results demonstrate the potential of LMP@rGO hydrogel composites as promising triboelectric layer materials for next-generation wearable and self-powered electronic systems. Full article
Show Figures

Figure 1

17 pages, 3205 KB  
Article
Graphene/Chalcogenide Heterojunctions for Enhanced Electric-Field-Sensitive Dielectric Performance: Combining DFT and Experimental Study
by Bo Li, Nanhui Zhang, Yuxing Lei, Mengmeng Zhu and Haitao Yang
Nanomaterials 2026, 16(2), 128; https://doi.org/10.3390/nano16020128 - 18 Jan 2026
Abstract
Electric-field-sensitive dielectrics play a crucial role in electric field induction sensing and related capacitive conversion, with interfacial polarization and charge accumulation largely determining the signal output. This paper introduces graphene/transition metal dichalcogenide (TMD) (MoSe2, MoS2, and WS2) [...] Read more.
Electric-field-sensitive dielectrics play a crucial role in electric field induction sensing and related capacitive conversion, with interfacial polarization and charge accumulation largely determining the signal output. This paper introduces graphene/transition metal dichalcogenide (TMD) (MoSe2, MoS2, and WS2) heterojunctions as functional fillers to enhance the dielectric response and electric-field-induced voltage output of flexible polydimethylsiloxane (PDMS) composites. Density functional theory (DFT) calculations were used to evaluate the stability of the heterojunctions and interfacial electronic modulation, including binding behavior, charge redistribution, and Fermi level-referenced band structure/total density of states (TDOS) characteristics. The calculations show that the graphene/TMD interface is primarily controlled by van der Waals forces, exhibiting negative binding energy and significant interfacial charge rearrangement. Based on these theoretical results, graphene/TMD heterojunction powders were synthesized and incorporated into polydimethylsiloxane (PDMS). Structural characterization confirmed the presence of face-to-face interfacial contacts and consistent elemental co-localization within the heterojunction filler. Dielectric spectroscopy analysis revealed an overall improvement in the dielectric constant of the composite materials while maintaining a stable loss trend within the studied frequency range. More importantly, calibrated electric field induction tests (based on pure PDMS) showed a significant enhancement in the voltage response of all heterojunction composite materials, with the WS2-G/PDMS system exhibiting the best performance, exhibiting an electric-field-induced voltage amplitude 7.607% higher than that of pure PDMS. This work establishes a microscopic-to-macroscopic correlation between interfacial electronic modulation and electric-field-sensitive dielectric properties, providing a feasible interface engineering strategy for high-performance flexible dielectric sensing materials. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
22 pages, 1803 KB  
Article
Optimizing Al2O3 Ceramic Membrane Heat Exchangers for Enhanced Waste Heat Recovery in MEA-Based CO2 Capture
by Qiufang Cui, Ziyan Ke, Jinman Zhu, Shuai Liu and Shuiping Yan
Membranes 2026, 16(1), 43; https://doi.org/10.3390/membranes16010043 - 16 Jan 2026
Viewed by 97
Abstract
High regeneration energy demand remains a critical barrier to the large-scale deployment of ethanolamine-based (MEA-based) CO2 capture. This study adopts an Al2O3 ceramic-membrane heat exchanger (CMHE) to recover both sensible and latent heat from the stripped gas. Experiments confirm [...] Read more.
High regeneration energy demand remains a critical barrier to the large-scale deployment of ethanolamine-based (MEA-based) CO2 capture. This study adopts an Al2O3 ceramic-membrane heat exchanger (CMHE) to recover both sensible and latent heat from the stripped gas. Experiments confirm that heat and mass transfer within the CMHE follow a coupled mechanism in which capillary condensation governs trans-membrane water transport, while heat conduction through the ceramic membrane dominates heat transfer, which accounts for more than 80%. Guided by this mechanism, systematic structural optimization was conducted. Alumina was identified as the optimal heat exchanger material due to its combined porosity, thermal conductivity, and corrosion resistance. Among the tested pore sizes, CMHE-4 produces the strongest capillary-condensation enhancement, yielding a heat recovery flux (q value) of up to 38.8 MJ/(m2 h), which is 4.3% and 304% higher than those of the stainless steel heat exchanger and plastic heat exchanger, respectively. In addition, Length-dependent analyses reveal an inherent trade-off: shorter modules achieved higher q (e.g., 14–42% greater for 200-mm vs. 300-mm CMHE-4), whereas longer modules provide greater total recovered heat (Q). Scale-up experiments demonstrated pronounced non-linear performance amplification, with a 4 times area increase boosting q by only 1.26 times under constant pressure. The techno-economic assessment indicates a simple payback period of ~2.5 months and a significant reduction in net capture cost. Overall, this work establishes key design parameters, validates the governing transport mechanism, and provides a practical, economically grounded framework for implementing high-efficiency CMHEs in MEA-based CO2 capture. Full article
Show Figures

Graphical abstract

15 pages, 4632 KB  
Article
Numerical Simulation and Experimental Investigation of Conductive Carbon Fiber-Reinforced Asphalt Concrete
by Yusong Yan, Lingjuan Huang, Pengzhe Xie, Bin Lei and Hanbing Zhao
Buildings 2026, 16(2), 369; https://doi.org/10.3390/buildings16020369 - 15 Jan 2026
Viewed by 58
Abstract
Numerical simulation of the electrical conductivity of carbon fiber-reinforced asphalt concrete is essential for understanding its electrical behavior, yet research in this area remains limited. This study prepared six groups of Marshall specimens with carbon fiber (CF) contents of 0.1 wt%, 0.2 wt%, [...] Read more.
Numerical simulation of the electrical conductivity of carbon fiber-reinforced asphalt concrete is essential for understanding its electrical behavior, yet research in this area remains limited. This study prepared six groups of Marshall specimens with carbon fiber (CF) contents of 0.1 wt%, 0.2 wt%, 0.3 wt%, 0.4 wt%, 0.5 wt%, and 0.6 wt%. The resistivity and asphalt concrete (AC) impedance spectra were measured to analyze the effect of fiber content on electrical performance. Nyquist diagrams were fitted to establish an equivalent circuit model, and a representative volume element (RVE) finite element model was developed. The Generalized Effective Medium (GEM) equation was employed to fit the resistivity data. The results show that the resistivity exhibits a two-stage characteristic—an abrupt decrease followed by stabilization, with an optimal CF content range of 0.2–0.4 wt%. Among the equivalent circuit parameters, the contact resistance (R1) and tunneling resistance (R2) significantly decreased, the growth of interface capacitance (C1) slowed, the constant phase element ZQ increased, and the non-monotonic change of volume resistance (R3) reflected the heterogeneity of the internal void distribution of the material. The finite element numerical solution for resistivity, derived from the GEM equation, aligns well with experimental values, validating the proposed simulation approach. Full article
Show Figures

Figure 1

24 pages, 3326 KB  
Article
Prototype Patent WO2025/109237 A1 for Measuring Diffusivity and Mass Transfer in Solid Biofuels
by Ignacio Gandía-Ventura, Borja Velázquez-Martí, Diego David Moposita-Vasquez and Isabel López-Cortés
Appl. Sci. 2026, 16(2), 895; https://doi.org/10.3390/app16020895 - 15 Jan 2026
Viewed by 53
Abstract
This work focuses on testing and validating a prototype device for measuring mass transfer phenomena in biomass drying processes, patented by the Universitat Politècnica de València (UPV) and Escuela Politécnica del Litoral (ESPOL), WO2025/109237 A1. The first step involved evaluating and calibrating the [...] Read more.
This work focuses on testing and validating a prototype device for measuring mass transfer phenomena in biomass drying processes, patented by the Universitat Politècnica de València (UPV) and Escuela Politécnica del Litoral (ESPOL), WO2025/109237 A1. The first step involved evaluating and calibrating the sensors of the measuring device to ensure accurate and consistent measurements. Subsequently, extensive tests were conducted to validate the prototype’s functionality for obtaining mass diffusivity and the mass transfer coefficient by convection at the solid-air interface. Finally, the results obtained were compared with those provided by existing predictive theoretical models in the literature. Areas for improvement in the theoretical models were identified, and adjustments were made to optimize prediction. The study highlights that the theoretical Sherwood method for estimating the mass transfer coefficient shows discrepancies with experimental data, mainly due to the assumption that the transfer coefficient remains constant during drying, whereas it actually varies with the material’s moisture content. This leads to inaccuracies that affect the efficiency of industrial drying systems. The prototype proved effective in measuring both diffusivity and mass transfer coefficient, validating the method. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

18 pages, 17892 KB  
Review
Review of Preparing Low-Dielectric Epoxy Resin Composites
by Jingwei Liu, Pingping Ming, Zijian Zhou, Tianyong Zhang, Qifeng Liu and Bing Du
Coatings 2026, 16(1), 118; https://doi.org/10.3390/coatings16010118 - 15 Jan 2026
Viewed by 95
Abstract
The rapid advancement of fifth-generation (5G) communication technologies has increased the demand for high-frequency circuits that offer high signal transmission rates and low latency. Traditional epoxy resin materials, characterized by their high dielectric constant (εr) and dielectric loss (tanδ), lead to significant signal [...] Read more.
The rapid advancement of fifth-generation (5G) communication technologies has increased the demand for high-frequency circuits that offer high signal transmission rates and low latency. Traditional epoxy resin materials, characterized by their high dielectric constant (εr) and dielectric loss (tanδ), lead to significant signal attenuation and reflection in high-frequency applications, thus limiting their suitability for modern communication devices. Accordingly, reducing the dielectric constant and dielectric loss of epoxy resins has become a prominent research focus in materials science. This paper reviews various methods for developing low-dielectric epoxy resin composites, emphasizing strategies to reduce polarization and material density. It subsequently provides a concise analysis of the advantages and current challenges associated with each technique and offers insights into potential future research directions. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

13 pages, 6116 KB  
Article
Effect of Silver Promoter on the H2 Gasochromic Recovery Behavior of Pt-Decorated WO3 Nanowires
by Dandan Liu, Ziheng Geng, Aiyan Han, Rongjiao Che, Ping Yu, Huan Liu and Yunqi Liu
Int. J. Mol. Sci. 2026, 27(2), 833; https://doi.org/10.3390/ijms27020833 - 14 Jan 2026
Viewed by 73
Abstract
The hydrogen gasochromic phenomenon offers a new strategy for real-time sensing technologies for hydrogen leakage to ensure hydrogen safety. However, the limited recovery kinetics impede the cycling and further practical applications. Herein, we designed a series of PtAg-decorated WO3 nanowires via the [...] Read more.
The hydrogen gasochromic phenomenon offers a new strategy for real-time sensing technologies for hydrogen leakage to ensure hydrogen safety. However, the limited recovery kinetics impede the cycling and further practical applications. Herein, we designed a series of PtAg-decorated WO3 nanowires via the chemical reduction deposition method, which could exhibit obvious and reversible color changes for H2 detection. With the assistance of Ag, the oxygen adsorption and dissociation were accelerated; then, the sample could exhibit a constant rapid recovery rate. The crystalline Pt-Ag/WO3 nanowires could attain a 50% recovery degree within 52 s, and the recovery time of the Pt-Ag/WO3 sample was reduced to one fifth that of Pt/WO3. This study provides a fundamental solution to the challenge of slow recovery kinetics in H2 gasochromic crystalline materials. Full article
Show Figures

Figure 1

38 pages, 3177 KB  
Review
Unveiling Scale-Dependent Statistical Physics: Connecting Finite-Size and Non-Equilibrium Systems for New Insights
by Agustín Pérez-Madrid and Iván Santamaría-Holek
Entropy 2026, 28(1), 99; https://doi.org/10.3390/e28010099 - 14 Jan 2026
Viewed by 250
Abstract
A scale-dependent effective temperature emerges as a unifying principle in the statistical physics of apparently different phenomena, namely quantum confinement in finite-size systems and non-equilibrium effects in thermodynamic systems. This concept effectively maps these inherently complex systems onto equilibrium states, thereby enabling the [...] Read more.
A scale-dependent effective temperature emerges as a unifying principle in the statistical physics of apparently different phenomena, namely quantum confinement in finite-size systems and non-equilibrium effects in thermodynamic systems. This concept effectively maps these inherently complex systems onto equilibrium states, thereby enabling the direct application of standard statistical physics methods. By offering a framework to analyze these systems as effectively at equilibrium, our approach provides powerful new tools that significantly expand the scope of the field. Just as the constant speed of light in Einstein’s theory of special relativity necessitates a relative understanding of space and time, our fixed ratio of energy to temperature suggests a fundamental rescaling of both quantities that allows us to recognize shared patterns across diverse materials and situations. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

24 pages, 11848 KB  
Article
Evaluation of the Biodegradability Potential of Antibacterial Poly(lactic acid)/Glycero-(9,10-trioxolane)-trialeate Films in Soil
by Olga V. Alexeeva, Yulia V. Tertyshnaya, Sergey S. Kozlov, Vyacheslav V. Podmasterev, Valentina Siracusa, Olga K. Karyagina, Sergey M. Lomakin, Tuyara V. Petrova, Levon Yu. Martirosyan, Anna B. Nikolskaia and Alexey L. Iordanskii
Polymers 2026, 18(2), 216; https://doi.org/10.3390/polym18020216 - 13 Jan 2026
Viewed by 231
Abstract
Glycerol-(9,10-trioxolane) trioleate (OTOA) is a promising material that combines good plasticizing properties for PLA with profound antimicrobial activity, which makes it suitable for application in state-of-the-art biomedical and packaging materials with added functionality. In this study, the biodegradation kinetics of PLA + OTOA [...] Read more.
Glycerol-(9,10-trioxolane) trioleate (OTOA) is a promising material that combines good plasticizing properties for PLA with profound antimicrobial activity, which makes it suitable for application in state-of-the-art biomedical and packaging materials with added functionality. In this study, the biodegradation kinetics of PLA + OTOA mixed films under soil conditions was assessed over 180 days. Structural and morphological changes that occurred on the surface and in the volume of the films during degradation were scrutinized using DSC, X-ray diffraction, IR, and UV spectroscopy. Morphological changes were assessed using optical and confocal microscopes. The different behavior of the PLA + OTOA blend films during decomposition in soil is explained by their structure and the rate of release of antibacterial OTOA from the PLA matrix. The decomposition rate constants were determined for all films, where kd for PLA samples is 28 µm·year−1, for samples containing 10% and 30% OTOA kd is 2 µm·year−1, and for PLA + 50% OTOA samples kd = 34 µm·year−1. This is explained by changes in the structure and degree of crystallinity of materials during the process of aging in the soil. These results clarify the biodegradation processes of biomaterials containing antibacterial agents in their structure. Full article
Show Figures

Figure 1

20 pages, 2326 KB  
Article
Stability of Composite Plates with a Dense System of Ribs in Two Directions
by Jakub Marczak, Martyna Rabenda and Bohdan Michalak
Materials 2026, 19(2), 322; https://doi.org/10.3390/ma19020322 - 13 Jan 2026
Viewed by 90
Abstract
This paper presents an easy-to-use analytical method for stability analysis of composite plates with dense bidirectional microstructure. The main characteristic feature of such a defined composite is that due to its periodic nature the obtainable governing partial differential equations are characterised by discontinuous, [...] Read more.
This paper presents an easy-to-use analytical method for stability analysis of composite plates with dense bidirectional microstructure. The main characteristic feature of such a defined composite is that due to its periodic nature the obtainable governing partial differential equations are characterised by discontinuous, strongly oscillating coefficients. Such cases bring many difficulties during derivation of their solution. In order to simplify calculations, the initial governing equations are transformed with the use of the tolerance averaging technique, so a system of partial differential equations with constant coefficients is obtained. The most important finding of the presented work is that the form of the mentioned equations is similar to the classic equations, which describe the stability issue of the thin homogeneous plate. Consequently, the analytical solution to such issues is easily obtainable. Moreover, when compared to, for example, finite element method (FEM) analysis, it requires substantially less computation resources, which can be perceived as its superior feature. Therefore, the proposed method is convenient for engineering applications. In this paper, a comparative analysis of the results obtained from the proposed analytical models with the results obtained from the FEM has been carried out. The impact of materials and dimensions of microstructure on the values of critical normal and shear forces has also been analysed. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

18 pages, 4204 KB  
Article
Effect of Silicon Crystal Size on Electrochemical Properties of Magnesium-Doped SiOx Anode Materials for Lithium-Ion Batteries
by Junli Li, Chaoke Bulin, Jinling Song, Bangwen Zhang and Xiaolan Li
Physchem 2026, 6(1), 4; https://doi.org/10.3390/physchem6010004 - 13 Jan 2026
Viewed by 81
Abstract
This study aims to fabricate magnesium-doped SiOx materials through the integrated application of physical vapor deposition and chemical vapor deposition techniques, with the objective of developing high-performance anode materials for lithium-ion batteries. With the macroscopic particle size held constant, this study endeavors to [...] Read more.
This study aims to fabricate magnesium-doped SiOx materials through the integrated application of physical vapor deposition and chemical vapor deposition techniques, with the objective of developing high-performance anode materials for lithium-ion batteries. With the macroscopic particle size held constant, this study endeavors to explore the impact of variations in the size of microscopic silicon crystals on the properties of the material. Under the effect of magnesium doping, the influence mechanism of different microscopic grain sizes on the reaction kinetics behavior and structural stability of the material was systematically studied. Based on the research findings, a reasonable control range for the size of silicon crystals will be proposed. The research findings indicate that both relatively small and large silicon crystals are disadvantageous for cycling performance. When the silicon crystal grain size is 5.79 nm, the composite material demonstrates a relatively high overall capacity of 1442 mAh/g and excellent cycling stability. After 100 cycles, the capacity retention rate reaches 83.82%. EIS analysis reveals that larger silicon crystals exhibit a higher lithium ion diffusion coefficient. As a result, the silicon electrodes show more remarkable rate performance. Even under a high current density of 1C, the capacity of the material can still be maintained at 1044 mAh/g. Full article
(This article belongs to the Collection Batteries Beyond Mainstream)
Show Figures

Figure 1

28 pages, 1597 KB  
Article
The Influence of Material and Process Parameters on Pressure Agglomeration and Properties of Pellets Produced from Torrefied Forest Logging Residues
by Arkadiusz Gendek, Monika Aniszewska, Paweł Tylek, Grzegorz Szewczyk, Jozef Krilek, Iveta Čabalová, Jan Malaťák, Jiří Bradna and Katalin Szakálos-Mátyás
Materials 2026, 19(2), 317; https://doi.org/10.3390/ma19020317 - 13 Jan 2026
Viewed by 144
Abstract
Pellets produced from raw or torrefied shredded logging residues have been investigated in the study. The research material came from pine and spruce stands in Poland, Slovakia, Czechia and Hungary. Torrefaction temperatures (Tt) of 250, 300, and 400 °C were [...] Read more.
Pellets produced from raw or torrefied shredded logging residues have been investigated in the study. The research material came from pine and spruce stands in Poland, Slovakia, Czechia and Hungary. Torrefaction temperatures (Tt) of 250, 300, and 400 °C were applied. Before pressure agglomeration, 3% wheat flour was added to the torrefaction material as a binding agent. Pellets with a diameter of 8 mm were produced at constant humidity, compaction pressure (P) of 140 or 180 MPa and agglomeration temperature (Ta) of 100, 120 or 140 °C. The produced pellets were assessed for their physicomechanical parameters (density, radial compressive strength, compression ratio, modulus of elasticity), chemical parameters (extractive compounds, cellulose, lignin) and energy parameters (ash content, elemental composition, calorific value). The results were subjected to basic statistical analysis and multi-way ANOVA. The produced pellets varied in physical, mechanical, chemical and energy properties. A significant effect of torrefaction temperature, agglomeration temperature and compaction pressure on the results was observed. In terms of physicomechanical parameters, the best pellets were produced from the raw material, while in terms of energy parameters, those produced from the torrefied material were superior. Pellets of satisfactory quality produced from torrefied logging residues could be obtained at Tt = 250 °C, Ta = 120 °C and P = 180 MPa. Pellets with specific density of approximately 1.1 g·cm−3, radial compressive strength of 3–3.5 MPa, modulus of elasticity of 60–80 MPa and calorific value of 20.3–23.8 MJ·kg−1 were produced in the process. Full article
(This article belongs to the Special Issue Catalysis for Biomass Materials Conversion)
Show Figures

Figure 1

12 pages, 2475 KB  
Proceeding Paper
Effect of Temperature Variations on Brake Squeal Characteristics in Disc Brake Systems
by Akif Yavuz, Osman Taha Sen, Mustafa Enes Kırmacı and Tolga Gündoğdu
Eng. Proc. 2026, 121(1), 11; https://doi.org/10.3390/engproc2025121011 - 13 Jan 2026
Viewed by 116
Abstract
Brake squeal is an undesirable high-frequency noise caused by vibrations induced by friction in disc brake systems. The noise is strongly affected by temperature, as this influences the material properties of the friction pair and the dynamic behaviour of the brake components. This [...] Read more.
Brake squeal is an undesirable high-frequency noise caused by vibrations induced by friction in disc brake systems. The noise is strongly affected by temperature, as this influences the material properties of the friction pair and the dynamic behaviour of the brake components. This study investigates the effect of temperature changes on the squeal characteristics of a disc brake system under different operating conditions. Experiments are carried out using a laboratory-scale test setup comprising a rotating disc, pneumatically actuated callipers, and precise measurement equipment. A series of test combinations is performed by systematically varying three parameters: disc surface temperature (40, 55, 70, 85, 100 °C), brake pressure (4.0 bar), and disc rotational speed (50, 100, 150, 200 rpm). Acceleration data are acquired using an accelerometer mounted directly on the calliper, while sound pressure data are measured with a fixed-position microphone located 0.5 m from the disc surface. The collected data are analyzed in the time and frequency domain to identify squeal events and their dominant frequencies. The effect of temperature on brake squeal noise and vibration varies with operating conditions, showing different patterns at low and high disc speed at constant brake pressure. This highlights the importance of considering both thermal and mechanical factors together when addressing brake squeal. Full article
Show Figures

Figure 1

18 pages, 2777 KB  
Article
Multi-Objective Dimension and Shape Optimization Design of the Cable-Driven Parallel Robot Based on the Response Surface
by Zhiwei Cui, Kemeng Du, Ligang Jin, Rui Song, Yibin Li and Fuchun Sun
Electronics 2026, 15(2), 315; https://doi.org/10.3390/electronics15020315 - 11 Jan 2026
Viewed by 201
Abstract
Cable-driven parallel robots (CDPRs) are increasingly favored in rehabilitation, medical devices, and material transportation due to their flexible structure and large transmission distance. The CDPRs with a highly modular and flexible structure are usually easy to be quickly reorganized. It is important to [...] Read more.
Cable-driven parallel robots (CDPRs) are increasingly favored in rehabilitation, medical devices, and material transportation due to their flexible structure and large transmission distance. The CDPRs with a highly modular and flexible structure are usually easy to be quickly reorganized. It is important to study the dimension and shape optimization of the basis and moving platforms for rapidly reconstructing a high-performance CDPR. The influence of each parameter of CDPRs’ dimension and shape on performance is mutually coupled. Therefore, obtaining the global optimal result by simply superimposing each optimum parameter is usually difficult. To this end, the concepts of a constant stiffness space (CSS) and a cable-tension-constrained workspace (CTCW) and their calculation methods are introduced, and the CDPRs’ dimension and shape are optimized with the maximum CSS and CTCW volume as the optimization indicators. First, the response surface optimization model between CDPRs’ performance and multi-objective optimization parameters is established, taking into account the coupling relationship of each CDPR optimization parameter and the effect on performance, and it is solved by using the Latin hypercube design method. Then, the effect of CDPRs’ dimension and shape on performance is analyzed by using the response surface optimization model, and the CDPRs’ optimization dimensions are provided. Full article
Show Figures

Figure 1

16 pages, 15928 KB  
Article
High-Temperature Tribological and Oxidation Performance of a Cr-Al-C Composite Coating on H13 Steel by Laser Cladding
by Shengshu Zuo, Shibo Li, Yixiong Zhang, Xuejin Zhang, Guoping Bei, Faqiang Chen and Dong Liu
Coatings 2026, 16(1), 88; https://doi.org/10.3390/coatings16010088 - 10 Jan 2026
Viewed by 130
Abstract
Laser cladding is an effective surface engineering technique to enhance the high-temperature performance of metallic materials. In this work, a Cr-Al-C composite coating was in situ fabricated on H13 steel by laser cladding to alleviate the performance degradation of H13 steel under severe [...] Read more.
Laser cladding is an effective surface engineering technique to enhance the high-temperature performance of metallic materials. In this work, a Cr-Al-C composite coating was in situ fabricated on H13 steel by laser cladding to alleviate the performance degradation of H13 steel under severe thermomechanical conditions, particularly in high-temperature piercing applications. The phase composition, microstructure, microhardness, high-temperature oxidation behavior, and tribological performance of the coating were systematically investigated. The coating is mainly composed of a B2-ordered Fe-Cr-Al phase reinforced by uniformly dispersed M3C2/M7C3-type carbides, which provides a synergistic combination of oxidation protection and mechanical strengthening, offering a microstructural design that differs from conventional Cr-Al or Cr3C2-based laser-clad coatings. Cyclic oxidation tests conducted at 800–1000 °C revealed that the oxidation behavior of the coating followed parabolic kinetics, with oxidation rate constants significantly lower than those of the H13 substrate, attributed to the formation of a dense and adherent Al2O3/Cr2O3 composite protective scale acting as an effective diffusion barrier. Benefiting from the stable oxide layer and the thermally stable carbide-reinforced microstructure, the wear rate of Cr-Al-C coating is significantly reduced compared to H13 steel. At room temperature, the wear rate of the coating is 6.563 × 10−6 mm3/(N·m), about two orders of magnitude lower than 8.175 × 10−4 mm3/(N·m) for the substrate. When the temperature was increased to 1000 °C, the wear rate of the coating remained as low as 5.202 × 10−6 mm3/(N·m), corresponding to only 1.9% of that of the substrate. This work demonstrates that the Cr-Al-C laser-cladded coating can effectively improve the high-temperature oxidation resistance and wear resistance of steel materials under extreme service conditions. Full article
Show Figures

Figure 1

Back to TopTop