Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = marine spatial association pattern

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3029 KB  
Article
Spatiotemporal Dynamics of Microbial and Fish Communities in the Thracian Sea Revealed by eDNA Metabarcoding
by Maria Tokamani, Panagiotis Liakopoulos, Konstantinos Tegopoulos, Aristea-Marina Zigkou, George Triantaphyllidis, Nikolaos Kamidis, Maria E. Grigoriou, Raphael Sandaltzopoulos and Petros Kolovos
Microorganisms 2025, 13(10), 2373; https://doi.org/10.3390/microorganisms13102373 - 15 Oct 2025
Viewed by 316
Abstract
The Thracian Sea, a semi-enclosed coastal basin in the northeastern Aegean Sea, represents a dynamic marine environment influenced by freshwater inputs, stratification, and seasonal variability. Here, we investigated the spatiotemporal dynamics of microbial and ichthyofaunal communities using environmental DNA (eDNA) and high-throughput sequencing [...] Read more.
The Thracian Sea, a semi-enclosed coastal basin in the northeastern Aegean Sea, represents a dynamic marine environment influenced by freshwater inputs, stratification, and seasonal variability. Here, we investigated the spatiotemporal dynamics of microbial and ichthyofaunal communities using environmental DNA (eDNA) and high-throughput sequencing across various stations in the vicinity of the Thracian Sea, in consecutive months (through spring and summer). Seawater samples were collected from the surface and thermocline layers, and environmental parameters were recorded to examine their influence on biodiversity patterns. Microbial communities exhibited strong seasonal and depth-related structuring. Alpha diversity was highest in spring and declined during summer, while beta diversity analyses revealed clear clustering by month and depth. Dominant taxa included Alphaproteobacteria (SAR11), Cyanobacteria (Synechococcus, Prochlorococcus), with distinct core microbiomes. Fish communities, identified via CytB metabarcoding, displayed marked temporal turnover but limited spatial segregation. While alpha diversity metrics did not differ significantly, beta diversity analyses showed seasonal shifts with dominant taxa such as Raja spp., Engraulis spp., and Diplodus sargus. Multivariate and co-structure analyses (Mantel, Procrustes) revealed moderate but significant concordance between microbial and fish communities and support the existence of similar biodiversity responses to environmental parameters across temporal and spatial variability. Co-occurrence networks further present depth-specific associations, with surface communities being more cooperative and phototrophic, while thermocline networks showed modularity and potential ecological specialization. This study highlights the value of integrated eDNA-based monitoring in revealing seasonal biodiversity dynamics and ecological interactions in coastal marine ecosystems, supporting future spatial planning and conservation strategies in the Thracian Sea. Full article
Show Figures

Figure 1

17 pages, 3822 KB  
Article
Ecological Suitability Assessment of Larimichthys crocea in Coastal Waters of the East China Sea and Yellow Sea Based on MaxEnt Modeling
by Shuwen Yu, Wei Meng, Hongliang Zhang, Hui Ge, Lei Wu, Yao Qu, Qiuhong Zhang and Yongdong Zhou
J. Mar. Sci. Eng. 2025, 13(10), 1945; https://doi.org/10.3390/jmse13101945 - 11 Oct 2025
Viewed by 264
Abstract
The Larimichthys crocea represents a critically important economic marine species in China’s East Yellow Sea. However, its populations have experienced significant decline due to overexploitation. Despite implemented conservation measures—including stock enhancement, spawning ground protection, and seasonal fishing moratoria—the recovery of yellow croaker resources [...] Read more.
The Larimichthys crocea represents a critically important economic marine species in China’s East Yellow Sea. However, its populations have experienced significant decline due to overexploitation. Despite implemented conservation measures—including stock enhancement, spawning ground protection, and seasonal fishing moratoria—the recovery of yellow croaker resources remains markedly slow. To address this, our study employed the Maximum Entropy (MaxEnt) model to evaluate and characterize the habitat selection patterns of Larimichthys crocea, thereby providing a theoretical foundation for scientifically informed stock enhancement and resource recovery strategies. Species occurrence data were compiled from field surveys conducted during April and November (2019–2023), supplemented with records from the GBIF database and peer-reviewed literature. Concurrent environmental variables, including primary productivity, current velocity, depth, temperature, salinity, silicate, nitrate, phosphate, and pH, were obtained from the Copernicus and NOAA databases. After rigorous screening, 136 distribution points (April) and 369 points (November) were retained for analysis. The model performance was robust, with an AUC (Area Under the Curve) value of 0.935 for April (2019–2023) and 0.905 for November (2019–2023), indicating excellent predictive accuracy (AUC > 0.9). April (2019–2023): Nitrate, salinity, phosphate, and silicate were identified as the primary environmental factors influencing habitat suitability. November (2019–2023): Silicate, salinity, nitrate, and primary productivity emerged as the dominant drivers. Spatially, Larimichthys crocea exhibited high-density distributions in offshore regions of Zhejiang and Jiangsu, particularly near the Yangtze River estuary. Populations were also associated with island-reef systems, forming continuous distributions along Zhejiang’s offshore waters. In Jiangsu, aggregations were concentrated between Nantong and Yancheng. This study delineates habitat suitability zones for Larimichthys crocea, offering a scientific basis for optimizing stock enhancement programs, designing targeted conservation measures, and establishing marine protected areas. Our findings enable policymakers to develop sustainable fisheries management strategies, ensuring the long-term viability of this ecologically and economically vital species. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

20 pages, 3476 KB  
Article
A Quantitative Evaluation Method for Navigation Safety in Coastal Waters Based on Unstructured Grids
by Panpan Zhang, Jinqiang Bi, Xin Teng and Kexin Bao
J. Mar. Sci. Eng. 2025, 13(10), 1848; https://doi.org/10.3390/jmse13101848 - 24 Sep 2025
Viewed by 311
Abstract
In this paper, we propose a quantitative evaluation method for navigation safety in coastal waters based on unstructured grids. Initially, a comprehensive analysis was conducted on various factors affecting navigation safety, including natural conditions, traffic conditions, and marine hydro-meteorological conditions, to construct a [...] Read more.
In this paper, we propose a quantitative evaluation method for navigation safety in coastal waters based on unstructured grids. Initially, a comprehensive analysis was conducted on various factors affecting navigation safety, including natural conditions, traffic conditions, and marine hydro-meteorological conditions, to construct a multi-source fused spatiotemporal dataset. Subsequently, channel boundary extraction was performed using Constrained Delaunay Triangle–Alpha-Shapes, and the precise extraction of ship navigation areas was performed based on Constrained Delaunay Triangle–Voronoi diagrams. Additionally, temporal feature grids were constructed based on the spatiotemporal characteristics of marine hydro-meteorological data. Finally, unstructured grids for evaluating navigation safety were established through spatial overlay analysis. Based on this foundation, a quantitative analysis and evaluation model for comprehensive navigation safety assessment was developed using the fuzzy evaluation method. By calculating the fuzzy relation matrix and weight vectors, quantitative assessments were conducted for each grid cell, yielding safety risk levels from both spatial and temporal dimensions. An analysis was performed using maritime data within the geographic boundaries of lon.119.17–120.41° E and lat.34.40–35.47° N. The results indicated that the unstructured grid division and channel boundary extraction in the demonstrated sea area were closely related to parameters such as the ship traffic flow patterns and the spatiotemporal characteristics of the marine environmental factors. A quantitative evaluation and analysis of the 186 unstructured grid cells revealed that the high risk levels primarily corresponded to restricted navigation areas, the higher-risk grid cells were mainly anchorages, and the low to lower risk levels were primarily associated with channels and navigable areas for ships. Full article
(This article belongs to the Special Issue Advancements in Maritime Safety and Risk Assessment)
Show Figures

Figure 1

45 pages, 5732 KB  
Article
Tracing Heavy Metal Pollution in the Romanian Black Sea: A Multi-Matrix Study of Contaminant Profiles and Ecological Risk Across the Continental Shelf and Beyond
by Andra Oros, Dragos Marin, Gulten Reiz and Robert Daniel Nenita
Water 2025, 17(16), 2406; https://doi.org/10.3390/w17162406 - 14 Aug 2025
Viewed by 1031
Abstract
This study provides a comprehensive six-year assessment (2018–2023) of heavy metal contamination in the Romanian Black Sea sector, integrating data from seawater, surface sediments, and benthic mollusks. Sampling was conducted across a broad spatial gradient, including transitional, coastal, shelf, and offshore waters beyond [...] Read more.
This study provides a comprehensive six-year assessment (2018–2023) of heavy metal contamination in the Romanian Black Sea sector, integrating data from seawater, surface sediments, and benthic mollusks. Sampling was conducted across a broad spatial gradient, including transitional, coastal, shelf, and offshore waters beyond 200 m depth. Concentrations of six potentially toxic metals, including cadmium (Cd), lead (Pb), nickel (Ni), chromium (Cr), copper (Cu), and cobalt (Co), were measured to evaluate regional variability, potential sources, and ecological implications. Results indicate some exceedances of regulatory thresholds for Cd and Pb in transitional and coastal waters, associated with Danube River input and coastal pressures. Seabed substrate analysis revealed widespread enrichment in Ni, moderate levels of Cr, and sporadic Cd elevation in Danube-influenced areas, along with localized hotspots of Cu and Pb near port and industrial zones. Biological uptake patterns in mollusks (bivalves Mytilus galloprovincialis and Anadara inequivalvis and gastropod Rapana venosa) highlighted Cd among key metals of concern, with elevated Bioconcentration Factor (BCF) and Biota–Sediment Accumulation Factor (BAF). Offshore waters generally exhibited lower pollution levels. However, isolated exceedances, such as Cr outliers recorded in 2022, suggest that deep-sea inputs from atmospheric or maritime sources may be both episodic in nature and underrecognized due to limited monitoring coverage. The combined use of water, sediment, and biota data emphasize the strength of multi-matrix approaches in marine pollution evaluation, revealing persistent nearshore pressures and less predictable offshore anomalies. These findings contribute to a more complete understanding of heavy metal distribution in the northwestern Black Sea and provide a scientific basis for improving long-term environmental monitoring and risk management strategies in the region. Full article
Show Figures

Figure 1

17 pages, 5229 KB  
Article
Distribution and Relationship of Radionuclides and Heavy Metal Concentrations in Marine Sediments from the Areas Surrounding the Daya Bay Power Plant, Southeast China
by Chengpeng Huang, Yunpeng Lin, Haidong Li, Binxin Zheng, Xueqiang Zhu, Yiming Xu, Heshan Lin, Qiangqiang Zhong, Fangfang Shu, Mingjiang Cai and Yunhai Li
J. Mar. Sci. Eng. 2025, 13(7), 1237; https://doi.org/10.3390/jmse13071237 - 27 Jun 2025
Viewed by 636
Abstract
Radionuclides and heavy metals pose potential risks to marine ecosystems and human health. Daya Bay, the site of China’s first commercial nuclear power plant, has experienced significant anthropogenic impacts, yet the extent of radionuclide and heavy metal contamination remains unclear. Nineteen surface sediment [...] Read more.
Radionuclides and heavy metals pose potential risks to marine ecosystems and human health. Daya Bay, the site of China’s first commercial nuclear power plant, has experienced significant anthropogenic impacts, yet the extent of radionuclide and heavy metal contamination remains unclear. Nineteen surface sediment samples were collected in January 2024 and analyzed for natural (210Pb, 228Th, 226Ra, 228Ra, and 40K) and anthropogenic (137Cs) radionuclides, heavy metals (Cu, Pb, Zn, Cd, Cr, Mn, Hg, and As), grain size, and total organic carbon (TOC). The surface sediments of Daya Bay were predominantly fine-grained, with TOC levels ranging from 0.41% to 1.83%, influenced significantly by riverine input from the Dan’ao River. Natural radionuclides exhibited distinct spatial patterns: 210Pb and 228Th activity levels were higher in fine-grained sediments, and correlated with TOC, indicating adsorption and sedimentation controls. In contrast, anthropogenic 137Cs activity was low and showed no significant impact from the nuclear power plant. Notably, the absence in the samples of key anthropogenic radionuclides typically associated with nuclear power plant operations further confirmed the negligible impact of the power plant on local sediment contamination. The results indicated that the baseline levels of both natural and anthropogenic radionuclides and heavy metals were predominantly influenced by natural processes and local anthropogenic activities rather than the operation of the nuclear power plant. This study establishes critical baselines for radioactivity and heavy metals in Daya Bay, underscoring effective pollution control measures and the resilience of local ecosystems despite anthropogenic pressures. Full article
(This article belongs to the Special Issue Coastal Geochemistry: The Processes of Water–Sediment Interaction)
Show Figures

Figure 1

20 pages, 5625 KB  
Article
Assessing Chlorophyll-a Variability and Its Relationship with Decadal Climate Patterns in the Arabian Sea
by Muhsan Ali Kalhoro, Veeranjaneyulu Chinta, Muhammad Tahir, Chunli Liu, Lixin Zhu, Zhenlin Liang, Aidah Baloch and Jun Song
J. Mar. Sci. Eng. 2025, 13(6), 1170; https://doi.org/10.3390/jmse13061170 - 14 Jun 2025
Cited by 1 | Viewed by 1283
Abstract
The Arabian Sea has undergone significant warming since the mid-20th century, highlighting the importance of assessing how decadal climate patterns influence chlorophyll-a (Chl-a) and broader marine ecosystem dynamics. This study investigates the variability of Chl-a, sea surface temperature (SST), and sea level anomaly [...] Read more.
The Arabian Sea has undergone significant warming since the mid-20th century, highlighting the importance of assessing how decadal climate patterns influence chlorophyll-a (Chl-a) and broader marine ecosystem dynamics. This study investigates the variability of Chl-a, sea surface temperature (SST), and sea level anomaly (SLA) over the past three decades, and their relationships with the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). The mean Chl-a concentration was 1.10 mg/m3, with peak levels exceeding 2 mg/m3 between 2009 and 2013, and the lowest value (0.6 mg/m3) was recorded in 2014. Elevated Chl-a levels were consistently observed in February and March across both coastal and offshore regions. Empirical orthogonal function (EOF) analysis revealed distinct spatial patterns in Chl-a and SST, indicating dynamic regional variability. The SST increased by 0.709 °C over the past four decades, accompanied by a steady rise in the SLA of approximately 1 cm. The monthly mean Chl-a exhibited a strong inverse relationship with both the SST and SLA and a positive correlation with SST gradients (R2 > 0.5). A positive correlation (R2 > 0.5) was found between the PDO and Chl-a, whereas the PDO was negatively correlated with the SST and SLA. In contrast, the AMO was negatively correlated with Chl-a but positively associated with warming and SLA rise. These findings underline the contrasting roles of the PDO and AMO in modulating productivity and ocean dynamics in the Arabian Sea. This study emphasizes the need for continued monitoring to improve predictions of ecosystem responses under future climate change scenarios. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

15 pages, 1807 KB  
Article
Monitoring the Status of Mesophotic Biogenic Reefs in the Northern Adriatic Sea: Comparing a Biotic Index and Multivariate Community Patterns
by Gregorio Motta, Verdiana Vellani, Manuela Piccardo, Matteo De Luca, Saul Ciriaco, Marco Segarich, Lisa Peratoner, Maurizio Spoto, Antonio Terlizzi, Monia Renzi and Stanislao Bevilacqua
Environments 2025, 12(4), 124; https://doi.org/10.3390/environments12040124 - 17 Apr 2025
Viewed by 613
Abstract
Coralligenous bioconstructions are priority habitats crucial for the protection of Mediterranean marine biodiversity. Among these bioconstructions, the mesophotic biogenic reefs of the northern Adriatic are of particular concern due to their ecological relevance and the high levels of human pressure in the region. [...] Read more.
Coralligenous bioconstructions are priority habitats crucial for the protection of Mediterranean marine biodiversity. Among these bioconstructions, the mesophotic biogenic reefs of the northern Adriatic are of particular concern due to their ecological relevance and the high levels of human pressure in the region. Thus, effective monitoring strategies are vital for the conservation and management of these fragile environments. In this study, we investigated the multivariate spatial and temporal patterns of sessile macrobenthos on biogenic reefs within two areas of a Natura 2000 site in the northern Adriatic over a four-year period. We also classified the ecological status of reefs based on the NAMBER index, specifically tailored for these peculiar bioconstructions. Our findings revealed that temporal trajectories of assemblages significantly differed between the two investigated areas, mostly due to larger fluctuations in algal turf abundance in the area closest to the coast, which is putatively more exposed to human impacts. In this area, the index identified a “Moderate” status during the period of peaking turf abundance, while the reef status consistently remained “Good” in other periods and in the area located further from the coast. This highlights the index sensitivity in reflecting actual changes in assemblages potentially associated with reef degradation. Full article
Show Figures

Graphical abstract

22 pages, 7907 KB  
Article
Real-Time Fault Diagnosis of Mooring Chain Jack Hydraulic System Based on Multi-Scale Feature Fusion Under Diverse Operating Conditions
by Yujia Liu, Wenhua Li, Haoran Ye, Shanying Lin and Lei Hong
J. Mar. Sci. Eng. 2025, 13(4), 783; https://doi.org/10.3390/jmse13040783 - 15 Apr 2025
Viewed by 689
Abstract
The condition monitoring of mooring equipment is an important engineering reliability issue during the operation of a floating production storage and offloading unit (FPSO). The chain jack (CJ) is the key equipment for powering the mooring chain in a spread mooring system. Under [...] Read more.
The condition monitoring of mooring equipment is an important engineering reliability issue during the operation of a floating production storage and offloading unit (FPSO). The chain jack (CJ) is the key equipment for powering the mooring chain in a spread mooring system. Under complex and dynamic marine operating conditions, different severity faults in the CJ hydraulic system display distinct time-scale characteristics. Hence, this paper proposes a real-time fault diagnosis method of the CJ hydraulic system based on multi-scale feature fusion. Firstly, the model incorporates a convolutional neural network (CNN) layer to extract localized spatial features from multivariate time-series data, effectively identifying fault patterns over the associated short intervals. Subsequently, the bidirectional long short-term memory (BiLSTM) layer is introduced to construct a dynamic temporal model to comprehensively capture the evolution of the fault severity. Finally, a multi-scale global attention mechanism (GAM) emphasizes persistent fault behaviors across time scales, dynamically prioritizing relevant features to improve diagnostic accuracy and model interpretability. The study results indicate that the proposed model’s accuracy improves by 7.36% over the CNN-GAM for 11 failure modes, up to 99.34%. This study contributes to the safe operation of an FPSO by guiding monitoring CJ operations under different load conditions. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 6239 KB  
Article
Calcite Precipitation with Palmitic and Stearic Acids
by Maurice P. Testa, Erik B. Larson and Brenda L. Kirkland
Minerals 2025, 15(4), 361; https://doi.org/10.3390/min15040361 - 30 Mar 2025
Viewed by 732
Abstract
The objective of this project was to document the early stages of growth of carbonate minerals in the presence of two different organic compounds commonly associated with cell walls or found in biofilms. Organic molecules are believed to influence an environment to be [...] Read more.
The objective of this project was to document the early stages of growth of carbonate minerals in the presence of two different organic compounds commonly associated with cell walls or found in biofilms. Organic molecules are believed to influence an environment to be more favorable for carbonate mineral precipitation or serve as a substrate for the initiation of crystal growth. Palmitic and stearic acids are common fatty acids that bind to cell walls and are the most common organic molecules in marine environments. Scanning electron microscope (SEM), transmission electron microscope (TEM), and energy dispersive X-ray spectroscopy (X-EDS) analyses were used to image the interface between the organic molecules and calcite minerals. The SEM and TEM images were used to further understand the interactions between organic compounds and calcite minerals. The palmitic and stearic acid showed a curious formation of spheroidal structures in a spatial relationship with calcite crystal growth. This research is significant because it shows that a spatial relationship exists between organic matter and the mineral calcite. More importantly, the organic material may be acting as a nucleation surface. These experiments represent patterns similar to those observed in nature. Full article
(This article belongs to the Special Issue Mineral Dissolution and Precipitation in Geologic Porous Media)
Show Figures

Figure 1

12 pages, 2449 KB  
Article
Toward Sustainable Fisheries: Assessing Catch per Unit Effort, Retained Bycatch, and Discard Ratios in the Red Sea Shrimp Trawl Fishery of the Kingdom of Saudi Arabia
by Sirajudheen Thayyil Kadengal, Tevfik Ceyhan, Zafer Tosunoğlu, Sheeja Gireesh, Santhosh Kumar Charles, Ronald Grech Santucci, Adel M. S. Adam, Eyüp Mümtaz Tıraşın, Vahdet Ünal and Mark Dimech
Sustainability 2024, 16(23), 10285; https://doi.org/10.3390/su162310285 - 24 Nov 2024
Cited by 2 | Viewed by 2815
Abstract
Shrimp trawl fishery is of significant importance in Saudi Arabia’s marine capture fishery sector. Al Qunfudhah and Jizan are the only ports along the southern Saudi Arabian coast of the Red Sea dedicated to shrimp fishing. This study evaluates the catch per unit [...] Read more.
Shrimp trawl fishery is of significant importance in Saudi Arabia’s marine capture fishery sector. Al Qunfudhah and Jizan are the only ports along the southern Saudi Arabian coast of the Red Sea dedicated to shrimp fishing. This study evaluates the catch per unit effort (CPUE) of targeted shrimp species along with the associated retained bycatch and discard ratios across these two trawling locations. Using daily catch data from commercial shrimp trawlers specific to each port’s vessel type, this research provides the first comprehensive analysis of CPUE dynamics and fishing practices in these fishing grounds. The CPUE of target shrimps exhibited a wide range (0.01 kg h−1 to 13.08 kg h−1) with an overall mean of 1.37 ± 0.143 kg h−1. Penaeus semisulcatus emerged as the predominant species (mean CPUE: 3.77 ± 0.28 kg h−1), followed by Metapenaeus monoceros (mean CPUE: 0.1 ± 0.02 kg h−1). Significant differences in CPUE were observed among species, including P. semisulcatus, Penaeus hathor, and Penaeus pulchricaudatus, although CPUE differences between the two fishing grounds were minor, likely due to their proximity and similar environmental conditions. The bycatch analysis identified a total of 72 species across 28 families, with significant variation in the relative ratios. Sepiidae species constituted 31.8% of the total bycatch, followed by Portunidae species (24.8%). Discard patterns also varied, with Gerres oyena being the most commonly discarded species (mean discard ratio: 11.37% ± 1.89%), followed by Equulites klunzingeri (mean discard ratio: 8.76% ± 2.00%). While CPUE differences between Al Qunfudhah and Jizan were modest, this study highlights the need for expanded spatial and temporal coverage to enhance future analyses. These findings underscore the importance of integrated data for a comprehensive understanding of fishing effort and bycatch dynamics, supporting sustainable fisheries management in the Red Sea. By addressing bycatch and discard practices, this research contributes to efforts to mitigate ecological impacts and promote sustainable resource use in Saudi Arabia’s fisheries sector. Full article
(This article belongs to the Section Sustainable Oceans)
Show Figures

Figure 1

20 pages, 3494 KB  
Article
Characteristics of Microbial Diversity and Metabolic Versatility in Dynamic Mid-Okinawa Trough Subsurface Sediments
by Youzhi Xin, Tao Zhang, Ye Chen, Linqiang Wu, Chengzhu Jiang and Nengyou Wu
J. Mar. Sci. Eng. 2024, 12(11), 1924; https://doi.org/10.3390/jmse12111924 - 28 Oct 2024
Viewed by 1919
Abstract
Large-scale and multi-sample datasets have revealed that microbial diversity and geographic distribution patterns are distinct across various habitats, particularly between hydrothermal vent and cold seep ecosystems. To date, our understanding of the effects of spatial and geochemical gradients on marine microbial communities remains [...] Read more.
Large-scale and multi-sample datasets have revealed that microbial diversity and geographic distribution patterns are distinct across various habitats, particularly between hydrothermal vent and cold seep ecosystems. To date, our understanding of the effects of spatial and geochemical gradients on marine microbial communities remains limited. Here, we report the microbial diversity and metabolic versatility of a remote seafloor sediment ecosystem at different sites (GC-2, -4, -5, -6, -8) in the Mid-Okinawa Trough (Mid-OT) using high-throughput metagenomic sequencing technology. Desulfobacteraceae (3.1%) were detected in a high abundance at GC-2 with intense methane concentrations (353 μL/L), which showed a clear correlation with cold seeping. Whereas Candidatus Brocadiaceae (1.7%), Rhodobacteraceae (0.9%), and Rhodospirillaceae (0.7%), which are commonly involved in denitrification and sulfur oxidation, were enriched at GC-8. Concurrently investigating the potential of deep-sea microbial metabolism, we gained insights into the adaptive capabilities and metabolic mechanisms of microorganisms within seafloor environments. Utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, the analysis of functional modules revealed a significant enrichment (71–74%) of genes associated with metabolic pathways. These results expand our knowledge of the relationship between microbial biodiversity and metabolic versatility in deep-sea extreme environments. Full article
(This article belongs to the Special Issue Research Progress on Deep-Sea Organisms)
Show Figures

Figure 1

17 pages, 3602 KB  
Article
Understanding Two Decades of Turbidity Dynamics in a Coral Triangle Hotspot: The Berau Coastal Shelf
by Faruq Khadami, Ayi Tarya, Ivonne Milichristi Radjawane, Totok Suprijo, Karina Aprilia Sujatmiko, Iwan Pramesti Anwar, Muhamad Faqih Hidayatullah and Muhamad Fauzan Rizky Adisty Erlangga
Water 2024, 16(16), 2300; https://doi.org/10.3390/w16162300 - 15 Aug 2024
Viewed by 2203
Abstract
Turbidity serves as a crucial indicator of coastal water health and productivity. Twenty years of remote sensing data (2003–2022) from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) satellite were used to analyze the spatial and temporal variations in turbidity, as measured by total [...] Read more.
Turbidity serves as a crucial indicator of coastal water health and productivity. Twenty years of remote sensing data (2003–2022) from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) satellite were used to analyze the spatial and temporal variations in turbidity, as measured by total suspended matter (TSM), in the Berau Coastal Shelf (BCS), East Kalimantan, Indonesia. The BCS encompasses the estuary of the Berau River and is an integral part of the Coral Triangle, renowned for its rich marine and coastal habitats, including coral reefs, mangroves, and seagrasses. The aim of this research is to comprehend the seasonal and interannual patterns of turbidity and their associations with met-ocean parameters, such as wind, rainfall, and climate variations like the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). The research findings indicate that the seasonal spatial pattern of turbidity is strongly influenced by monsoon winds, while its temporal patterns are closely related to river discharge and rainfall. The ENSO and IOD climate cycles exert an influence on the interannual turbidity variations, with turbidity values decreasing during La Niña and negative IOD events and conversely increasing during El Niño and positive IOD events. Furthermore, the elevated turbidity during negative IOD and La Niña coincides with rising temperatures, potentially acting as a compound stressor on marine habitats. These findings significantly enhance our understanding of turbidity dynamics in the BCS, thereby supporting the management of marine and coastal ecosystems in the face of changing climatic and environmental conditions. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

21 pages, 3348 KB  
Article
The Use of the GWPCA-MGWR Model for Studying Spatial Relationships between Environmental Variables and Longline Catches of Yellowfin Tunas
by Menghao Li, Xiaoming Yang, Yue Wang, Yuhan Wang and Jiangfeng Zhu
J. Mar. Sci. Eng. 2024, 12(6), 1002; https://doi.org/10.3390/jmse12061002 - 15 Jun 2024
Cited by 6 | Viewed by 1969
Abstract
The yellowfin tuna represents a significant fishery resource in the Pacific Ocean. Its resource endowment status and spatial variation mechanisms are intricately influenced by marine environments, particularly under varying climate events. Consequently, investigating the spatial variation patterns of dominant environmental factors under diverse [...] Read more.
The yellowfin tuna represents a significant fishery resource in the Pacific Ocean. Its resource endowment status and spatial variation mechanisms are intricately influenced by marine environments, particularly under varying climate events. Consequently, investigating the spatial variation patterns of dominant environmental factors under diverse climate conditions, and understanding the response of yellowfin tuna catch volume based on the spatial heterogeneity among these environmental factors, presents a formidable challenge. This paper utilizes comprehensive 5°×5° yellowfin tuna longline fishing data and environmental data, including seawater temperature and salinity, published by the Western and Central Pacific Fisheries Commission (WCPFC) and the Inter-American Tropical Tuna Commission (IATTC) for the period 2000–2021 in the Pacific Ocean. In conjunction with the Niño index, a multiscale geographically weighted regression model based on geographically weighted principal component analysis (GWPCA-MGWR) and spatial association between zones (SABZ) is employed for this study. The results indicate the following: (1) The spatial distribution of dominant environmental factors affecting the catch of Pacific yellowfin tuna is primarily divided into two types: seawater temperature dominates in the western Pacific Ocean, while salinity dominates in the eastern Pacific Ocean. When El Niño occurs, the area with seawater temperature as the dominant environmental factor in the western Pacific Ocean further extends eastward, and the water layers where the dominant environmental factors are located develop to deeper depths; when La Niña occurs, there is a clear westward expansion in the area with seawater salinity as the dominant factor in the eastern Pacific Ocean. This change in the spatial distribution pattern of dominant factors is closely related to the movement of the position of the warm pool and cold tongue under ENSO events. (2) The areas with a higher catch of Pacific yellowfin tuna are spatially associated with the dominant environmental factor of mid-deep seawater temperature (105–155 m temperature) to a greater extent than other factors, the highest correlation exceeds 70%, and remain relatively stable under different ENSO events. The formation of this spatial association pattern is related to the vertical movement of yellowfin tuna as affected by subsurface seawater temperature. (3) The GWPCA-MGWR model can fully capture the differences in environmental variability among subregions in the Pacific Ocean under different climatic backgrounds, intuitively reflect the changing areas and influencing boundaries from a macro perspective, and has a relatively accurate prediction on the trend of yellowfin tuna catch in the Pacific Ocean. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

17 pages, 2994 KB  
Article
Characteristics and Sources of Heavy Metals Pollution in Surface Sediments: An Integrated Land–Sea Comparative Analysis in Dingzi Bay, South Yellow Sea
by Xiaoyuan Gu, Yang Liu, Shixiong Yang, Jianwei Sun, Qingtong Wang, Haigen Wang, Yuhai Chen and Wei Wang
Water 2024, 16(12), 1692; https://doi.org/10.3390/w16121692 - 13 Jun 2024
Cited by 6 | Viewed by 1662
Abstract
Systematic and scientific assessments on heavy metal pollution are greatly important to protecting the coastal eco-environment. In this paper, the spatial distribution, pollution degree, ecological toxicity and possible sources of eight heavy metal elements collected from the 126 marine and 715 terrestrial surface [...] Read more.
Systematic and scientific assessments on heavy metal pollution are greatly important to protecting the coastal eco-environment. In this paper, the spatial distribution, pollution degree, ecological toxicity and possible sources of eight heavy metal elements collected from the 126 marine and 715 terrestrial surface sediments surrounding Dingzi Bay were analyzed by obtaining concentration measurements. The results revealed that the concentrations of heavy metals followed a pattern: inner bay > terrestrial areas > outer bay. Cr, Ni, Cu, Zn, Cd, Pb, and Hg were found to accumulate in fine particles (<0.063 mm), while As showed an association with specific particles (>0.25 mm and <0.016 mm). Spatial pollution patterns varied from non-polluted to low pollution levels overall, with localized contamination by individual elements. In addition to natural sources, four types of anthropogenic pollution were identified in the marine and terrestrial settings. Agricultural pollution, characterized by As predominance, exerted profound effects on both terrestrial and marine environments. Industrial pollution, featuring Hg dominance, was widespread in land environment and predominantly linked to atmospheric deposition. Traffic pollution, marked by elevated Pb and Cd, was concentrated around factories and densely populated areas. Maritime pollution, comprising Hg, Cr, Cd, and Zn, primarily occurred in the nearshore areas outside the bay. The findings of this study provide scientific data to the authorities in charge of sustainable coastal zone management in the South Yellow Sea. Full article
(This article belongs to the Special Issue Advances in Marine Sedimentation and Geological Processes)
Show Figures

Figure 1

11 pages, 3701 KB  
Article
Spatial Distribution Pattern of the Mesozooplankton Community in Ross Sea Region Marine Protected Area (RSR MPA) during Summer
by Sung Hoon Kim, Wuju Son, Jeong-Hoon Kim and Hyoung Sul La
Diversity 2024, 16(3), 174; https://doi.org/10.3390/d16030174 - 8 Mar 2024
Cited by 1 | Viewed by 1577 | Correction
Abstract
The Ross Sea region Marine Protected Area (RSR MPA) is one of the most productive regions in the Southern Ocean. Mesozooplankton intermediates the primary product to the higher predators, such as penguins and seals, in this ecosystem. In this study, the mesozooplankton community [...] Read more.
The Ross Sea region Marine Protected Area (RSR MPA) is one of the most productive regions in the Southern Ocean. Mesozooplankton intermediates the primary product to the higher predators, such as penguins and seals, in this ecosystem. In this study, the mesozooplankton community structure and spatial pattern in the RSR MPA in January were investigated by using 505 μm-mesh-size bongo net samples. As a result, 37 mesozooplankton taxa with a total mean abundance of 35.26 ind./m3, ranging from 2.94 to 139.17 ind./m3, were confirmed. Of the 37 taxa, 7 occupied almost 84% of the total abundance, with copepods being the main dominant taxa. As shown by our hierarchical analysis, the mesozooplankton community was divided into four groups, each associated with a specific geographical distribution. Group A was composed of stations around Terra Nova Bay and showed relatively low abundance. Group B included stations around the continental slope region. Group D was composed of the Ross Sea continental shelf stations, while group C consisted of stations geographically located between those of groups B and D. These four groups were influenced by various environmental factors, such as water temperature, salinity, and nutrients. In summary, the mesozooplankton community can be separated according to geographical pattern. This pattern is related to several environmental factors. Full article
(This article belongs to the Special Issue Dynamics of Marine Communities)
Show Figures

Figure 1

Back to TopTop