Tracing Heavy Metal Pollution in the Romanian Black Sea: A Multi-Matrix Study of Contaminant Profiles and Ecological Risk Across the Continental Shelf and Beyond
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Analytical Techniques
2.3.1. Heavy Metals (HMs)
2.3.2. Granulometry
2.4. Data Processing
3. Results
3.1. Seawater
3.2. Sediments
3.3. Biota
4. Discussion
4.1. HMs in Seawater
4.2. HMs in Sediments
4.3. HM in Biota
4.4. Integrated Synthesis of Contamination Patterns Across Matrices
4.5. Implications and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Transect | Station Code | Type | Longitude [Degrees_East] | Latitude [Degrees_North] | Bot.Depth [m] | Observations | W | S | B |
---|---|---|---|---|---|---|---|---|---|
Sulina | SU1 | T | 29.7717 | 45.1439 | 10 | Regular monitoring network | x | x | |
Sulina | SU2 | T | 29.7934 | 45.1411 | 20 | Regular monitoring network | x | x | |
Mila9 | ML1 | T | 29.6517 | 45.0033 | 10 | Regular monitoring network | x | x | |
Mila9 | ML2 | T | 29.7333 | 45.0033 | 20 | Regular monitoring network | x | x | |
Mila9 | ML3 | T | 29.7928 | 44.9925 | 30 | Regular monitoring network | x | x | |
Sf. Gheorghe | SG1 | T | 29.6364 | 44.8836 | 10 | Regular monitoring network | x | x | |
Sf. Gheorghe | SG2 | T | 29.6783 | 44.8836 | 20 | Regular monitoring network | x | x | |
Sf. Gheorghe | SG3 | T | 29.7017 | 44.8836 | 30 | Regular monitoring network | x | x | x |
Portita | PO1 | T | 29.0067 | 44.6767 | 10 | Regular monitoring network | x | x | |
Portita | PO2 | T | 29.2992 | 44.6767 | 20 | Regular monitoring network | x | x | x |
Periboina | PB2 | T | 28.9301 | 44.4980 | 20 | Project-based (2019) | x | x | |
Gura Buhaz | GB1 | C | 28.7890 | 44.3897 | 5 | Regular monitoring network | x | x | |
Gura Buhaz | GB2 | C | 28.8530 | 44.3897 | 20 | Regular monitoring network | x | x | |
Cazino Mamaia | CZ1 | C | 28.6394 | 44.2358 | 5 | Regular monitoring network | x | x | |
Cazino Mamaia | CZ2 | C | 28.7061 | 44.2350 | 20 | Regular monitoring network | x | x | x |
Constanta Nord | CN1 | C | 28.6500 | 44.2167 | 10 | Regular monitoring network | x | x | |
Constanta Nord | CN2 | C | 28.7003 | 44.2167 | 20 | Regular monitoring network | x | x | |
Est Constanta | EC1 | C | 28.6833 | 44.1667 | 14 | Regular monitoring network | x | x | |
Est Constanta | EC2 | C | 28.7833 | 44.1667 | 28 | Regular monitoring network | x | x | x |
Constanta Sud | CS1 | C | 28.6489 | 44.1383 | 10 | Regular monitoring network | x | x | |
Constanta Sud | CS2 | C | 28.6850 | 44.1217 | 20 | Regular monitoring network | x | x | |
Eforie Sud | EF1 | C | 28.6662 | 44.0186 | 10 | Regular monitoring network | x | x | x |
Eforie Sud | EF2 | C | 28.6816 | 44.0187 | 20 | Regular monitoring network | x | x | x |
Costinesti | CO1 | C | 28.6442 | 43.9450 | 10 | Regular monitoring network | x | x | |
Costinesti | CO2 | C | 28.6739 | 43.9450 | 20 | Regular monitoring network | x | x | |
Costinesti | CO3 | C | 28.7267 | 43.9450 | 30 | Regular monitoring network | x | x | x |
Mangalia | MG1 | C | 28.5947 | 43.8003 | 10 | Regular monitoring network | x | x | |
Mangalia | MG2 | C | 28.6278 | 43.7989 | 20 | Regular monitoring network | x | x | x |
VamaVeche | VV1 | C | 28.6131 | 43.7511 | 10 | Regular monitoring network | x | x | |
VamaVeche | VV2 | C | 28.6211 | 43.7511 | 20 | Regular monitoring network | x | x | |
Sulina | SU3 | S | 29.9242 | 45.1228 | 30 | Regular monitoring network | x | x | x |
Sulina | SU4 | S | 30.1252 | 45.0642 | 40 | Project-based (2019) | x | x | x |
Sulina | SU5 | S | 30.3641 | 44.9582 | 50 | Project-based (2019) | x | x | |
Sf. Gheorghe | SG4 | S | 29.8529 | 44.8836 | 40 | Regular monitoring network | x | x | x |
Sf. Gheorghe | SG5 | S | 30.1580 | 44.8603 | 50 | Project-based (2019) | x | x | x |
Sf. Gheorghe | SG6 | S | 30.5647 | 44.8521 | 60 | Project-based (2019) | x | x | |
Portita | PO3 | S | 29.4742 | 44.6767 | 30 | Regular monitoring network | x | x | |
Portita | PO4 | S | 29.7500 | 44.6767 | 50 | Regular monitoring network | x | x | x |
Portita | PO5 | S | 29.9167 | 44.6767 | 57 | Regular monitoring network | x | x | x |
Portita | PO6 | S | 30.5246 | 44.6665 | 70 | Regular monitoring network | x | x | |
Periboina | PB3 | S | 29.1024 | 44.5145 | 30 | Project-based (2019) | x | x | |
Periboina | PB4 | S | 29.2735 | 44.5130 | 37 | Project-based (2019) | x | x | x |
Periboina | PB5 | S | 29.6596 | 44.5270 | 50 | Project-based (2019) | x | x | |
Periboina | PB6 | S | 29.8296 | 44.5091 | 60 | Project-based (2019) | x | x | |
Cazino Mamaia | CZ3 | S | 28.8472 | 44.2347 | 30 | Regular monitoring network | x | x | x |
Est Constanta | EC3 | S | 28.9000 | 44.1667 | 36 | Regular monitoring network | x | x | x |
Est Constanta | EC4 | S | 29.1333 | 44.1667 | 47 | Regular monitoring network | x | x | |
Est Constanta | EC5 | S | 29.3667 | 44.1667 | 54 | Regular monitoring network | x | x | |
Est Constanta | EC6 | S | 30.0239 | 44.1631 | 70 | Regular monitoring network | x | x | |
Est Constanta | EC7 | S | 30.2007 | 44.1634 | 90 | Regular monitoring network | x | x | |
Mangalia | MG3 | S | 28.7156 | 43.7986 | 39 | Regular monitoring network | x | x | x |
Mangalia | MG4 | S | 28.8290 | 43.7921 | 53 | Regular monitoring network | x | x | |
Mangalia | MG5 | S | 29.3983 | 43.7573 | 70 | Regular monitoring network | x | x | |
Mangalia | MG6 | S | 29.9644 | 43.7405 | 100 | Regular monitoring network | x | x | |
P1 | P1 | S | 30.9263 | 44.7579 | 81 | Project-based (2020–2022) | x | x | |
P2 | P2 | S | 30.5246 | 44.6665 | 72 | Project-based (2020–2022) | x | x | x |
P3 | P3 | S | 30.8951 | 44.6538 | 91 | Project-based (2020–2022) | x | x | |
P4 | P4 | S | 29.8771 | 44.4470 | 65 | Project-based (2020–2022) | x | x | x |
P5 | P5 | S | 30.7003 | 44.3966 | 100 | Project-based (2020–2022) | x | x | |
P6 | P6 | S | 30.8370 | 44.3902 | 125 | Project-based (2020–2022) | x | x | |
P7 | P7 | O | 31.1673 | 44.3821 | 481 | Project-based (2020–2022) | x | ||
P8 | P8 | S | 29.8440 | 44.1630 | 69 | Project-based (2020–2022) | x | x | x |
P9 | P9 | S | 30.2007 | 44.1490 | 94 | Project-based (2020–2022) | x | x | |
P10 | P10 | O | 30.9806 | 44.1351 | 499 | Project-based (2020–2022) | x | ||
P11 | P11 | S | 30.6604 | 44.0490 | 120 | Project-based (2020–2022) | x | x | |
P12 | P12 | S | 30.3692 | 44.0353 | 140 | Project-based (2020–2022) | x | x | |
P13 | P13 | S | 29.5922 | 44.0036 | 67 | Project-based (2020–2022) | x | x | x |
P14 | P14 | S | 30.0277 | 43.9746 | 80 | Project-based (2020–2022) | x | x | |
P15 | P15 | O | 30.6888 | 43.9433 | 526 | Project-based (2020–2022) | x | ||
P16 | P16 | O | 31.2623 | 43.9197 | 1223 | Project-based (2020–2022) | x | ||
P17 | P17 | S | 30.1565 | 43.8453 | 102 | Project-based (2020–2022) | x | x | |
P18 | P18 | S | 29.1935 | 43.7824 | 60 | Project-based (2020–2022) | x | x | |
P19 | P19 | S | 29.4941 | 43.7621 | 71 | Project-based (2020–2022) | x | x | |
P20 | P20 | S | 30.0177 | 43.7466 | 111 | Project-based (2020–2022) | x | x | |
P21 | P21 | O | 30.3579 | 43.7156 | 504 | Project-based (2020–2022) | x | ||
P22 | P22 | O | 30.8578 | 43.6769 | 1388 | Project-based (2020–2022) | x | ||
P23 | P23 | O | 31.1995 | 43.5409 | 1565 | Project-based (2020–2022) | x | ||
ANE-RO-1 | RO-1 | S | 30.5490 | 44.6253 | 78 | Project-based (2019) | x | x | x |
ANE-RO-2 | RO-2 | S | 30.9641 | 44.5468 | 106 | Project-based (2019) | x | x | |
ANE-RO-3 | RO-3 | S | 30.1173 | 44.3124 | 76 | Project-based (2019) | x | x | |
ANE-RO-4 | RO-4 | S | 30.5072 | 44.2679 | 103 | Project-based (2019) | x | x | |
ANE-RO-5 | RO-5 | S | 29.6778 | 43.9162 | 67 | Project-based (2019) | x | x | |
ANE-RO-6 | RO-6 | S | 30.1526 | 43.8430 | 103 | Project-based (2019) | x | x |
Appendix B
Station Code | Type | Bot. Depth [m] | Gravel (%) | Total G (%) | Sand (%) | Total S (%) | Silt (%) | Clay (%) | Total Mud (%) | Textural Group | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VCG | CG | MG | FG | VFG | VCS | CS | MS | FS | VFS | VCS | CS | MS | FS | VFS | C | |||||||
SU1 | T | 10 | 5 | 25 | 28 | 22 | 21 | 100 | Mud | |||||||||||||
SU2 | T | 20 | 3 | 14 | 27 | 25 | 16 | 15 | 100 | Mud | ||||||||||||
SU3 | T | 30 | 1 | 41 | 42 | 21 | 18 | 10 | 9 | 58 | Sandy Mud | |||||||||||
ML1 | T | 10 | 2 | 19 | 27 | 21 | 16 | 15 | 100 | Mud | ||||||||||||
ML2 | T | 20 | 1 | 1 | 10 | 14 | 22 | 18 | 13 | 12 | 90 | Sandy Mud | ||||||||||
ML3 | T | 30 | 2 | 25 | 27 | 19 | 14 | 12 | 100 | Mud | ||||||||||||
SG1 | T | 10 | 7 | 10 | 24 | 24 | 17 | 18 | 100 | Mud | ||||||||||||
SG2 | T | 20 | 11 | 29 | 27 | 17 | 16 | 100 | Mud | |||||||||||||
SG3 | T | 30 | 2 | 8 | 31 | 27 | 16 | 15 | 100 | Mud | ||||||||||||
SG4 | S | 40 | 17 | 17 | 21 | 25 | 15 | 16 | 6 | 83 | 1 | 1 | Gravelly Sand | |||||||||
PO1 | T | 10 | 2 | 2 | 20 | 22 | 22 | 15 | 10 | 9 | 98 | Mud | ||||||||||
PO2 | T | 20 | 19 | 27 | 23 | 17 | 14 | 100 | Mud | |||||||||||||
PO3 | S | 30 | 17 | 30 | 23 | 16 | 13 | 100 | Mud | |||||||||||||
PO4 | S | 50 | 9 | 30 | 27 | 19 | 14 | 100 | Mud | |||||||||||||
PO5 | S | 57 | 8 | 33 | 42 | 28 | 16 | 8 | 4 | 2 | 58 | Sandy gravel | ||||||||||
GB1 | C | 10 | 14 | 29 | 43 | 1 | 18 | 17 | 10 | 11 | 57 | Sandy Mud | ||||||||||
GB2 | C | 20 | 40 | 21 | 61 | 14 | 7 | 6 | 6 | 3 | 36 | 3 | 3 | Sandy Gravel | ||||||||
CZ1 | C | 10 | 14 | 47 | 61 | 2 | 1 | 11 | 10 | 6 | 9 | 39 | Muddy Sand | |||||||||
CZ2 | C | 20 | 7 | 51 | 57 | 9 | 1 | 11 | 10 | 6 | 6 | 43 | Muddy Sand | |||||||||
CZ3 | S | 30 | 8 | 21 | 29 | 21 | 13 | 14 | 20 | 3 | 71 | 0 | Gravelly sand | |||||||||
CN1 | C | 10 | 10 | 10 | 27 | 13 | 20 | 14 | 9 | 8 | 90 | Mud | ||||||||||
CN2 | C | 20 | 5 | 64 | 69 | 1 | 0 | 11 | 8 | 6 | 5 | 31 | Muddy Sand | |||||||||
EC1 | C | 14 | 25 | 51 | 76 | 4 | 1 | 7 | 6 | 4 | 5 | 25 | Muddy Sand | |||||||||
EC2 | C | 28 | 1 | 22 | 29 | 21 | 15 | 12 | 100 | Mud | ||||||||||||
EC3 | S | 36 | 33 | 29 | 62 | 17 | 10 | 5 | 4 | 2 | 38 | Sandy gravel | ||||||||||
EC4 | S | 47 | 3 | 16 | 19 | 32 | 19 | 12 | 10 | 5 | 79 | 2 | 2 | Gravelly sand | ||||||||
EC5 | S | 54 | 7 | 7 | 13 | 18 | 31 | 27 | 3 | 92 | 1 | 1 | Gravelly sand | |||||||||
EF2 | C | 20 | 4 | 17 | 28 | 22 | 15 | 13 | 100 | Mud | ||||||||||||
CO1 | C | 10 | 0 | 35 | 19 | 53 | 1 | 14 | 14 | 8 | 10 | 47 | Muddy Sand | |||||||||
CO2 | C | 20 | 15 | 11 | 27 | 9 | 5 | 11 | 32 | 15 | 72 | 2 | 2 | Gravelly sand | ||||||||
CO3 | C | 30 | 5 | 20 | 23 | 19 | 17 | 13 | 96 | Mud | ||||||||||||
MG1 | C | 10 | 45 | 5 | 50 | 6 | 7 | 13 | 11 | 12 | 49 | 1 | 1 | Sandy Gravel | ||||||||
MG2 | C | 20 | 3 | 7 | 10 | 6 | 2 | 2 | 50 | 27 | 86 | 4 | 4 | Gravelly Sand | ||||||||
MG3 | S | 39 | 31 | 34 | 65 | 17 | 8 | 5 | 3 | 2 | 35 | 1 | 1 | Sandy Gravel | ||||||||
MG4 | S | 53 | 2 | 21 | 23 | 33 | 18 | 12 | 8 | 5 | 77 | Gravelly Sand | ||||||||||
MG5 | S | 70 | 7 | 37 | 45 | 29 | 16 | 7 | 3 | 1 | 55 | Sandy Gravel | ||||||||||
VV2 | C | 20 | 49 | 31 | 80 | 3 | 6 | 5 | 3 | 2 | 2 | 20 | Muddy Gravel | |||||||||
P1 | S | 81 | 0 | 0 | 0 | 1 | 3 | 13 | 24 | 14 | 19 | 26 | 99 | Mud | ||||||||
P2 | S | 72 | 1 | 2 | 3 | 5 | 9 | 2 | 0 | 0 | 16 | 2 | 16 | 18 | 20 | 26 | 81 | Sandy Mud | ||||
P3 | S | 91 | 19 | 29 | 17 | 17 | 18 | 100 | Mud | |||||||||||||
P4 | S | 65 | 2 | 2 | 17 | 15 | 0 | 0 | 0 | 31 | 0 | 2 | 20 | 19 | 14 | 13 | 67 | Sandy Mud | ||||
P5 | S | 100 | 1 | 28 | 33 | 15 | 11 | 12 | 100 | Mud | ||||||||||||
P6 | S | 125 | 22 | 37 | 18 | 11 | 12 | 100 | Mud | |||||||||||||
P8 | S | 69 | 14 | 32 | 46 | 26 | 15 | 7 | 4 | 1 | 54 | 0 | Sandy Gravel | |||||||||
P9 | S | 94 | 1 | 22 | 27 | 18 | 17 | 15 | 100 | Mud | ||||||||||||
P11 | S | 120 | 4 | 6 | 10 | 19 | 20 | 11 | 17 | 23 | 90 | Gravelly mud | ||||||||||
P12 | S | 140 | 15 | 32 | 46 | 27 | 14 | 6 | 3 | 2 | 51 | 3 | 3 | Sandy Gravel | ||||||||
P13 | S | 67 | 2 | 21 | 23 | 34 | 23 | 12 | 5 | 2 | 77 | 1 | 1 | Gravelly Sand | ||||||||
P14 | S | 80 | 13 | 34 | 48 | 27 | 15 | 6 | 3 | 1 | 52 | Sandy Gravel | ||||||||||
P17 | S | 102 | 1 | 25 | 34 | 16 | 12 | 13 | 100 | Mud | ||||||||||||
P18 | S | 60 | 1 | 4 | 5 | 11 | 12 | 20 | 49 | 2 | 95 | Gravelly sand | ||||||||||
P19 | S | 71 | 12 | 35 | 47 | 27 | 16 | 7 | 3 | 1 | 53 | Sandy gravel | ||||||||||
P20 | S | 111 | 1 | 5 | 6 | 0 | 0 | 0 | 0 | 0 | 11 | 21 | 14 | 20 | 28 | 94 | Gravelly mud |
Transitional Area | ||||||||||
Species | Rapana | Anadara | Mytilus | Anadara | Mytilus | |||||
Year | 2018 | 2018 | 2023 | 2023 | 2023 | |||||
Station Code | PO2 | PO2 | SG3 | SG3 | SG3 | |||||
Cu | 600.42 | 178.20 | 345.22 | 94.93 | 67.98 | |||||
Cd | 3276.18 | 1168.76 | 4803.48 | 14,518.26 | 5220.87 | |||||
Pb | 9.23 | 0.41 | 195.84 | 28.35 | 702.04 | |||||
Ni | 57.33 | 141.45 | 950.80 | 2817.48 | 286.70 | |||||
Cr | 109.03 | 46.97 | 1392.02 | 320.91 | 215.63 | |||||
Coastal Area | ||||||||||
Species | Anadara | Rapana | Rapana | Mytilus | Anadara | Rapana | Mytilus | |||
Year | 2018 | 2020 | 2018 | 2018 | 2018 | 2019 | 2019 | |||
Station Code | CZ2 | CZ2 | EC2 | EC2 | EC2 | EC2 | EC2 | |||
Cu | 196.51 | 759.76 | 257.01 | 121.62 | 78.52 | 337.95 | 156.88 | |||
Cd | 702.26 | 7347.85 | 627.87 | 177.48 | 793.39 | 8373.91 | 8791.30 | |||
Pb | 0.39 | 0.76 | 21.67 | 1.89 | 2.73 | 9.71 | 27.43 | |||
Ni | 123.47 | 16.03 | 12.50 | 111.17 | 55.47 | 253.06 | 500.00 | |||
Cr | 67.90 | No data | 13.96 | 5.81 | 16.04 | 1673.24 | 3087.32 | |||
Species | Rapana | Rapana | Mytilus | Mytilus | Mytilus | Mytilus | Rapana | |||
Year | 2021 | 2021 | 2019 | 2020 | 2022 | 2023 | 2020 | |||
Station Code | EF2 | EF2 | CO3 | CO3 | CO3 | CO3 | MG2 | |||
Cu | 685.10 | 904.28 | 196.35 | 201.07 | 198.53 | 544.63 | 729.32 | |||
Cd | 5868.24 | 6959.46 | 155.17 | 5494.51 | 2351.32 | 4735.38 | 10,525.37 | |||
Pb | 9.66 | 766.50 | 0.18 | 19.64 | 44.99 | 1241.06 | 11.47 | |||
Ni | 11.59 | 3.64 | No data | 651.27 | 319.93 | 35,500.00 | 11.14 | |||
Cr | 168.90 | 341.59 | 251.20 | No data | 79.80 | 1427.66 | No data | |||
Shelf Area | ||||||||||
Species | Mytilus | Mytilus | Mytilus | Anadara | Mytilus | Anadara | Mytilus | |||
Year | 2020 | 2019 | 2021 | 2021 | 2022 | 2022 | 2019 | |||
Station Code | SU3 | SU4 | SG4 | SG4 | SG4 | SG4 | SG5 | |||
Cu | 222.14 | 219.84 | 329.03 | 679.36 | 564.49 | 967.04 | 84.06 | |||
Cd | 9043.37 | 6408.00 | 9839.51 | 2127.16 | 5449.91 | 3894.35 | 5605.56 | |||
Pb | 39.98 | 0.74 | >105 | >105 | 344.65 | 143.81 | 2.48 | |||
Ni | 747.39 | 22.33 | 25,356.61 | >105 | 9.25 | 25.62 | 162.86 | |||
Cr | No data | 157.76 | 315.56 | 286.03 | 561.52 | 606.31 | 468.83 | |||
Species | Mytilus | Mytilus | Mytilus | Mytilus | Rapana | Anadara | Mytilus | Anadara | Rapana | Anadara |
Year | 2019 | 2019 | 2019 | 2019 | 2020 | 2021 | 2021 | 2021 | 2021 | 2023 |
Station Code | PO4 | PO5 | PB4 | CZ3 | CZ3 | CZ3 | CZ3 | CZ3 | CZ3 | CZ3 |
Cu | 100.64 | 1470.06 | 1323.83 | 58.84 | 649.70 | 137.47 | 77.16 | 107.88 | 460.83 | 250.21 |
Cd | 420.54 | 1723.81 | 1135.48 | 136.76 | 4691.85 | 978.85 | 1513.36 | 12,427.52 | 629.79 | 26,772.60 |
Pb | 0.17 | 2.38 | 3.41 | 0.25 | 15.23 | 97.21 | 976.62 | 13.93 | 73.34 | 218.28 |
Ni | 6.11 | 26.21 | 35.41 | 694.67 | 232.52 | 1106.57 | 157.75 | 1.88 | 15.53 | 414.39 |
Cr | 2602.35 | 4067.35 | 3182.02 | 331.77 | 0.00 | 165.76 | 646.98 | 236.92 | 313.80 | 656.62 |
Species | Mytilus | Mytilus | Mytilus | Mytilus | Mytilus | Mytilus | ||||
Year | 2019 | 2019 | 2020 | 2023 | 2021 | 2021 | ||||
Station Code | EC3 | MG3 | MG3 | MG3 | P2 | P2 | ||||
Cu | 200.94 | 147.36 | 360.47 | 275.26 | 293.24 | 236.93 | ||||
Cd | >105 | 22,860.00 | 14,176.47 | 13,956.63 | 71,977.01 | 25,172.41 | ||||
Pb | 4.44 | 22.73 | 14.79 | >105 | 402.81 | 168.57 | ||||
Ni | 37.82 | 58.53 | 2917.49 | 389.56 | 146.90 | 62.32 | ||||
Cr | 578.70 | 240.22 | No data | 317.34 | 293.24 | 466.80 | ||||
Species | Mytilus | Mytilus | Mytilus | Mytilus | Mytilus | Mytilus | ||||
Year | 2021 | 2022 | 2022 | 2022 | 2021 | 2019 | ||||
Station Code | P4 | P13 | P13 | P13 | P13 | ANE-RO-1 | ||||
Cu | 359.69 | 311.58 | 223.82 | 112.94 | 265.18 | 355.05 | ||||
Cd | >105 | 59,942.86 | 64,200.00 | 30,671.43 | 75,450.00 | 716.26 | ||||
Pb | 5488.32 | 38.85 | 46.67 | 16.43 | 904.35 | 1043.24 | ||||
Ni | 3270.65 | 540.32 | 277.95 | 196.43 | 5544.69 | 848.28 | ||||
Cr | 440.80 | 6.86 | 9.71 | 6.81 | 283.08 | 233.91 |
Transitional Area | ||||||||||
Species | Rapana | Anadara | Mytilus | Anadara | Mytilus | |||||
Year | 2018 | 2018 | 2023 | 2023 | 2023 | |||||
Station Code | PO2 | PO2 | SG3 | SG3 | SG3 | |||||
Cu | 1.66 | 0.49 | 0.97 | 0.27 | 0.19 | |||||
Cd | 47.96 | 17.11 | 5.43 | 16.40 | 5.90 | |||||
Pb | 0.02 | 0.001 | 0.11 | 0.02 | 0.39 | |||||
Ni | 0.04 | 0.09 | 0.20 | 0.60 | 0.06 | |||||
Cr | No data | No data | 0.44 | 0.10 | 0.07 | |||||
Coastal Area | ||||||||||
Species | Anadara | Rapana | Rapana | Mytilus | Anadara | Rapana | Mytilus | |||
Year | 2018 | 2020 | 2018 | 2018 | 2018 | 2019 | 2019 | |||
Station Code | CZ2 | CZ2 | EC2 | EC2 | EC2 | EC2 | EC2 | |||
Cu | 0.72 | 3.43 | 0.57 | 0.27 | 0.18 | 0.96 | 0.44 | |||
Cd | 26.07 | 17.96 | 8.59 | 2.43 | 10.86 | 5.23 | 5.49 | |||
Pb | 0.003 | 0.0003 | 0.13 | 0.01 | 0.02 | 0.03 | 0.07 | |||
Ni | 0.12 | 0.01 | 0.02 | 0.15 | 0.07 | 0.24 | 0.48 | |||
Cr | No data | No data | 0.06 | 0.02 | 0.06 | 1.15 | 2.13 | |||
Species | Rapana | Rapana | Mytilus | Mytilus | Mytilus | Mytilus | Rapana | |||
Year | 2021 | 2021 | 2019 | 2020 | 2022 | 2023 | 2020 | |||
Station Code | EF2 | EF2 | CO3 | CO3 | CO3 | CO3 | MG2 | |||
Cu | 1.55 | 2.04 | 0.99 | 0.53 | 0.32 | 0.32 | 2.046 | |||
Cd | 5.17 | 6.13 | 10.04 | 3.38 | 8.16 | 7.63 | 40.754 | |||
Pb | 0.001 | 0.36 | 0.001 | 0.01 | 0.03 | 0.22 | 0.003 | |||
Ni | 0.01 | 0.001 | 0.11 | 0.11 | 0.06 | 0.12 | 0.006 | |||
Cr | 0.10 | 0.21 | 0.46 | No data | 0.09 | 0.18 | No data | |||
Shelf Area | ||||||||||
Species | Mytilus | Mytilus | Mytilus | Anadara | Mytilus | Anadara | Mytilus | |||
Year | 2020 | 2019 | 2021 | 2021 | 2022 | 2022 | 2019 | |||
Station Code | SU3 | SU4 | SG4 | SG4 | SG4 | SG4 | SG5 | |||
Cu | 0.87 | 0.70 | 0.18 | 0.38 | 0.28 | 0.47 | 0.48 | |||
Cd | 9.40 | 22.19 | 5.69 | 1.23 | 6.86 | 4.90 | 19.63 | |||
Pb | 0.01 | 0.02 | 0.39 | 0.11 | 0.03 | 0.01 | 0.02 | |||
Ni | 0.14 | 0.02 | 0.13 | 1.60 | 0.22 | 0.60 | 0.48 | |||
Cr | No data | 0.47 | 0.20 | 0.19 | 0.21 | 0.23 | 0.60 | |||
Species | Mytilus | Mytilus | Mytilus | Mytilus | Rapana | Anadara | Mytilus | Anadara | Rapana | Anadara |
Year | 2019 | 2019 | 2019 | 2019 | 2020 | 2021 | 2021 | 2021 | 2021 | 2023 |
Station Code | PO4 | PO5 | PB4 | CZ3 | CZ3 | CZ3 | CZ3 | CZ3 | CZ3 | CZ3 |
Cu | 0.289 | 1.001 | 0.99 | 0.933 | 0.677 | 0.968 | 0.544 | 0.760 | 3.246 | 0.450 |
Cd | 3.610 | 96.964 | 7.44 | 8.253 | 2.744 | 4.864 | 7.520 | 61.751 | 3.129 | 25.702 |
Pb | 0.001 | 0.005 | 0.02 | 0.005 | 0.002 | 0.039 | 0.389 | 0.006 | 0.029 | 0.029 |
Ni | 0.029 | 0.107 | 0.05 | 0.357 | 0.081 | 2.073 | 0.296 | 0.004 | 0.029 | 0.078 |
Cr | 0.095 | 0.299 | 0.45 | 0.591 | No data | 0.178 | 0.694 | 0.254 | 0.337 | 0.163 |
Species | Mytilus | Mytilus | Mytilus | Mytilus | Mytilus | Mytilus | ||||
Year | 2019 | 2019 | 2020 | 2023 | 2021 | 2021 | ||||
Station Code | EC3 | MG3 | MG3 | MG3 | P2 | P2 | ||||
Cu | 0.170 | 0.688 | 0.372 | 0.215 | 0.076 | 0.061 | ||||
Cd | 7.673 | 3.594 | 3.661 | 7.177 | 11.182 | 3.911 | ||||
Pb | 0.001 | 0.007 | 0.014 | 0.059 | 0.027 | 0.011 | ||||
Ni | 0.079 | 0.141 | 0.043 | 0.043 | 0.070 | 0.030 | ||||
Cr | 0.168 | 0.163 | No data | 0.073 | 0.027 | 0.043 | ||||
Species | Mytilus | Mytilus | Mytilus | Mytilus | Mytilus | Mytilus | ||||
Year | 2021 | 2022 | 2022 | 2022 | 2021 | 2019 | ||||
Station Code | P4 | P13 | P13 | P13 | P13 | ANE-RO-1 | ||||
Cu | 0.12 | 0.335 | 0.241 | 0.121 | 0.042 | 0.37 | ||||
Cd | 8.04 | 22.367 | 23.955 | 11.445 | 13.315 | 30.29 | ||||
Pb | 0.02 | 0.027 | 0.032 | 0.011 | 0.016 | 0.01 | ||||
Ni | 0.18 | 0.102 | 0.052 | 0.037 | 0.092 | 0.12 | ||||
Cr | 0.04 | 0.119 | 0.169 | 0.119 | 0.037 | 0.04 |
References
- El-Sharkawy, M.; Alotaibi, M.O.; Li, J.; Du, D.; Mahmoud, E. Heavy Metal Pollution in Coastal Environments: Ecological Implications and Management Strategies: A Review. Sustainability 2025, 17, 701. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, K.; Chu, F.; Ge, Q.; Xu, D.; Han, X.; Ye, L. Sources and Spatial Variations of Heavy Metals in Offshore Sediments of the Western Pearl River Estuary. Mar. Pollut. Bull. 2023, 188, 114599. [Google Scholar] [CrossRef]
- Krutov, A. (Ed.) BSC State of the Environment of the Black Sea (2009–2014/5); Publications of the Commission on the Protection of the Black Sea Against Pollution (BSC): Istanbul, Turkey, 2019. [Google Scholar]
- Lazar, L.; Vlas, O.; Pantea, E.; Boicenco, L.; Marin, O.; Abaza, V.; Filimon, A.; Bisinicu, E. Black Sea Eutrophication Comparative Analysis of Intensity between Coastal and Offshore Waters. Sustainability 2024, 16, 5146. [Google Scholar] [CrossRef]
- Lazar, L.; Spanu, A.; Boicenco, L.; Oros, A.; Damir, N.; Bisinicu, E.; Abaza, V.; Filimon, A.; Harcota, G.; Marin, O.; et al. Methodology for Prioritizing Marine Environmental Pressures under Various Management Scenarios in the Black Sea. Front. Mar. Sci. 2024, 11, 1388877. [Google Scholar] [CrossRef]
- Cozzi, S.; Ibáñez, C.; Lazar, L.; Raimbault, P.; Giani, M. Flow Regime and Nutrient-Loading Trends from the Largest South European Watersheds: Implications for the Productivity of Mediterranean and Black Sea’s Coastal Areas. Water 2018, 11, 1. [Google Scholar] [CrossRef]
- Daskalov, G.M.; Boicenco, L.; Grishin, A.N.; Lazar, L.; Mihneva, V.; Shlyakhov, V.A.; Zengin, M. Architecture of Collapse: Regime Shift and Recovery in an Hierarchically Structured Marine Ecosystem. Glob. Change Biol. 2017, 23, 1486–1498. [Google Scholar] [CrossRef]
- Bișinicu, E.; Lazăr, L.; Timofte, F. Dynamics of Zooplankton along the Romanian Black Sea Coastline: Temporal Variation, Community Structure, and Environmental Drivers. Diversity 2023, 15, 1024. [Google Scholar] [CrossRef]
- Bișinicu, E.; Boicenco, L.; Pantea, E.; Timofte, F.; Lazăr, L.; Vlas, O. Qualitative Model of the Causal Interactions between Phytoplankton, Zooplankton, and Environmental Factors in the Romanian Black Sea. Phycology 2024, 4, 168–189. [Google Scholar] [CrossRef]
- Bisinicu, E.; Abaza, V.; Boicenco, L.; Adrian, F.; Harcota, G.-E.; Marin, O.; Oros, A.; Pantea, E.; Spinu, A.; Timofte, F.; et al. Spatial Cumulative Assessment of Impact Risk-Implementing Ecosystem-Based Management for Enhanced Sustainability and Biodiversity in the Black Sea. Sustainability 2024, 16, 4449. [Google Scholar] [CrossRef]
- Kudelsky, A.V. Global Geoenvironmental Problems: Black Sea Basin. Water Resour. 2011, 38, 849–858. [Google Scholar] [CrossRef]
- Orhon, D. Evaluation of the Impact from the Black Sea on the Pollution of the Marmara Sea. Water Sci. Technol. 1995, 32, 191–198. [Google Scholar] [CrossRef]
- Strokal, M.; Strokal, V.; Kroeze, C. The Future of the Black Sea: More Pollution in over Half of the Rivers. Ambio 2023, 52, 339–356. [Google Scholar] [CrossRef]
- Bat, L.; Öztekin, A.; Şahin, F.; Arıcı, E.; Özsandıkçı, U. An Overview of the Black Sea Pollution in Turkey. Mediterr. Fish. Aquac. Res. 2018, 1, 66–86. [Google Scholar]
- Bat, L.; Ozkan, E.Y.; Buyukisik, H.B.; Oztekin, H.C. Assessment of Metal Pollution in Sediments along Sinop Peninsula of the Black Sea. Int. J. Mar. Sci. 2017, 7, 205–213. [Google Scholar] [CrossRef]
- Ulger, S.; Higano, Y. A Preliminary Study to Improve the Water Quality in the Black Sea: Turkish Black Sea Basin. Stud. Reg. Sci. 2001, 32, 353–367. [Google Scholar] [CrossRef]
- Simionov, I.-A.; Cristea, D.S.; Petrea, S.-M.; Mogodan, A.; Nicoara, M.; Plavan, G.; Baltag, E.S.; Jijie, R.; Strungaru, S.-A. Preliminary Investigation of Lower Danube Pollution Caused by Potentially Toxic Metals. Chemosphere 2021, 264, 128496. [Google Scholar] [CrossRef] [PubMed]
- Bucşe, A.; Pârvulescu, O.C.; Vasiliu, D.; Rădulescu, F.; Lupaşcu, N.; Ispas, B.A. Spatial Distribution of Trace Elements and Potential Contamination Sources for Surface Sediments of the North-Western Black Sea, Romania. Front. Mar. Sci. 2024, 10, 1310164. [Google Scholar] [CrossRef]
- Oros, A.; Coatu, V.; Secrieru, D.; Tiganus, D.; Vasiliu, D.; Atabay, H.; Beken, C.; Tolun, L.; Moncheva, S.; Bat, L. Results of the Assessment of the Western Black Sea Contamination Status in the Frame of the MISIS Joint Cruise. Cercet. Mar. 2016, 46, 61–81. [Google Scholar]
- Lazar, L.; Boicenco, L.; Todorova, V.; Denga, Y.; Atabay, H.; Kurt, G.; Marian, P.; Tonay, M.; Abaza, V.; Bisinicu, E.; et al. ANEMONE Deliverable 2.3 “Black Sea State of Environment Based on ANEMONE Joint Cruise”; Lazar, L., Ed.; Editura CD Press: București, Romania, 2021. [Google Scholar]
- Alygizakis, N.; Giannakopoulos, T.; Τhomaidis, N.S.; Slobodnik, J. Detecting the Sources of Chemicals in the Black Sea Using Non-Target Screening and Deep Learning Convolutional Neural Networks. Sci. Total Environ. 2022, 847, 157554. [Google Scholar] [CrossRef]
- Shchiptsov, O.A.; Goncharov, O.Y. European Research Project on the State of Pollution in the Black Sea «Black Sea SIERRA»: Mission and Participation of Ukrainian Oceanographers. Geofizicheskiy Zhurnal 2023, 45, 162–171. [Google Scholar] [CrossRef]
- Jiang, D.; Khokhlov, V.; Tuchkovenko, Y.; Kushnir, D.; Ovcharuk, V.; Spyrakos, E.; Stanica, A.; Slabakova, V.; Tyler, A. The Biogeochemical Response of the North-Western Black Sea to the Kakhovka Dam Breach. Commun. Earth Environ. 2025, 6, 185. [Google Scholar] [CrossRef]
- Bisinicu, E.; Lazar, L. Assessing the Black Sea Mesozooplankton Community Following the Nova Kakhovka Dam Breach. J. Mar. Sci. Eng. 2025, 13, 67. [Google Scholar] [CrossRef]
- Cyriac, M.; Gireeshkumar, T.R.; Furtado, C.M.; Fathin, K.P.F.; Shameem, K.; Shaik, A.; Vignesh, E.R.; Nair, M.; Kocherla, M.; Balachandran, K.K. Distribution, Contamination Status and Bioavailability of Trace Metals in Surface Sediments along the Southwest Coast of India. Mar. Pollut. Bull. 2021, 164, 112042. [Google Scholar] [CrossRef] [PubMed]
- Oros, A.; Coatu, V.; Damir, N.; Danilov, D.; Ristea, E. Recent Findings on the Pollution Levels in the Romanian Black Sea Ecosystem: Implications for Achieving Good Environmental Status (GES) Under the Marine Strategy Framework Directive (Directive 2008/56/EC). Sustainability 2024, 16, 9785. [Google Scholar] [CrossRef]
- European Union. European Parliament Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 Establishing a Framework for Community Action in the Field of Marine Environmental Policy (Marine Strategy Framework Directive). OJL 2008, 164, 19–40. [Google Scholar]
- Tornero, V.; Hanke, G. Chemical Contaminants Entering the Marine Environment from Sea-Based Sources: A Review with a Focus on European Seas. Mar. Pollut. Bull. 2016, 112, 17–38. [Google Scholar] [CrossRef]
- Boicenco, L.; Abaza, V.; Anton, E.; Bisinicu, E.; Buga, L.; Coatu, V.; Damir, N.; Diaconeasa, D.; Dumitrache, C.; Filimon, A.; et al. Studiu Privind Elaborarea Raportului Privind Starea Ecologică a Ecosistemului Marin Marea Neagră Conform Cerintelor Art. 17 Ale Directivei Cadru Strategia Pentru Mediul Marin (2008/56/EC). 2018. Available online: https://www.mmediu.ro/app/webroot/uploads/files/Studiu_raport_MSFD-2024.pdf (accessed on 20 July 2025).
- Panin, N.; Jipa, D. Danube River Sediment Input and Its Interaction with the North-Western Black Sea. Estuar. Coast. Shelf Sci. 2002, 54, 551–562. [Google Scholar] [CrossRef]
- Panin, N.; Jipa, D.C.; Gomoiu, M.T.; Secrieru, D. Importance of Sedimentary Processes in Environmental Changes: Lower River Danube—Danube Delta—Western Black Sea System. In Environmental Degradation of the Black Sea: Challenges and Remedies; Springer: Dordrecht, The Netherlands, 1999; pp. 23–41. [Google Scholar]
- Catianis, I.; Ungureanu, C.; Magagnini, L.; Ulazzi, E.; Campisi, T.; Stanica, A. Environmental Impact of the Midia Port-Black Sea (Romania), on the Coastal Sediment Quality. Open Geosci. 2016, 8, 174–194. [Google Scholar] [CrossRef]
- Marin, D.; Ciucă, A.-M.; Filimon, A.; Stoica, E. Marine Litter and Plastic Detection on Black Sea Beaches by Using Unmanned Aerial Vehicle (UAV). Ovidius Univ. Ann. Chem. 2024, 35, 43–50. [Google Scholar] [CrossRef]
- Lazar, L.; Boicenco, L.; Moncheva, S.; Denga, Y.; Atabay, H.; Abaza, V.; Bisinicu, E.; Valentina, C.; Adrian, F.; George, H.; et al. ANEMONE Deliverable 2.1, 2021. “Impact of the Rivers on the Black Sea Ecosystem”; Lazar, L., Ed.; Editura CD Press: București, Romania, 2021; ISBN 978-606-528-528-6. [Google Scholar]
- Lazar, L.; Boicenco, L.; Denga, Y.; Tolun, L.; Kurt, G.; Bisinicu, E.; Valentina, C.; Adrian, F.; Marin, O.; Oros, A.; et al. ANEMONE Deliverable 2.2 “Anthropogenic Pressures and Impacts on the Black Sea Coastal Ecosystem”; Lazar, L., Ed.; Editura CD Press: București, Romania, 2021; ISBN 978-606-528-529-3. [Google Scholar]
- Grasshoff, K.; Kremling, K.; Ehrhardt, M. (Eds.) Methods of Seawater Analysis, 3rd ed.; Willey-VCH: Weinheim, Germany, 1999; ISBN 978-3-527-61399-1. [Google Scholar]
- UNEP; IOC; IAEA UNEP. Manual for the Geochemical Analysis of Marine Sediments and Suspended Particulate Matter; Reference Methods for Marine Pollution Studies No. 63; United Nations Environment Programme: Nairobi, Kenya, 1995. [Google Scholar]
- UNEP; FAO; IOC; IAEA. Guidelines for Monitoring Chemical Contaminants in the Sea Using Marine Organisms; References Methods for Marine Pollution Studies No 6; United Nations Environment Programme: Nairobi, Kenya, 1993. [Google Scholar]
- IAEA-MEL. Training Manual on the Measurement of Heavy Metals in Environmental Samples; IAEA-MEL: Monaco-Ville, Monaco, 1999. [Google Scholar]
- European Union. Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. OJL 2023, 119, 103–157. [Google Scholar]
- Blott, S.J.; Pye, K. GRADISTAT: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments. Earth Surf. Process Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Folk, R.L.; Ward, W.C. Brazos River Bar [Texas]; a Study in the Significance of Grain Size Parameters. J. Sediment. Res. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- TIBCO Statistica Inc. TIBCO Software, Version 14.0.1.25; Palo Alto Inc.: Santa Clara, CA, USA, 2023.
- Schlitzer, R. Ocean Data View. Available online: https://odv.awi.de (accessed on 11 July 2024).
- European Union. European Parliament Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. OJL 2013, 226, 1–17. [Google Scholar]
- Order No. 161/2006 for the Approval of the Regulation on the Classification of Surface Water Quality for Determining the Ecological Status of Water Bodies. In Official Gazette of Romania, Bucharest, Romania; Government of Romania: Bucharest, Romania, 2006; Volume 511. Available online: https://legislatie.just.ro/Public/DetaliiDocumentAfis/72574 (accessed on 20 July 2025). (In Romanian)
- Long, E.R.; Macdonald, D.D.; Smith, S.L.; Calder, F.D. Incidence of Adverse Biological Effects within Ranges of Chemical Concentrations in Marine and Estuarine Sediments. Environ. Manag. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- 2019 Updated Audit Trail of OSPAR EACs and Other Assessment Criteria Used to Distinguish above and below Thresholds; 2020. Available online: https://www.ospar.org/documents?v=43066 (accessed on 20 July 2025).
- European Parliament Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Establishing a European Chemicals Agency, Amending Directive 1999/45/EC and Repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as Well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC; 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1907-20250623 (accessed on 20 July 2025).
- European Chemicals Agency (ECHA) Guidance on Information Requirements and Chemical Safety Assessment, Chapter R.11: PBT/VPvB Assessment, Version 4.0, ECHA-23-H-10-EN 2023. Available online: https://echa.europa.eu/guidance-documents/guidance-on-information-requirements-and-chemical-safety-assessment (accessed on 20 July 2025).
- U.S. Environmental Protection Agency (USEPA) Bioaccumulation Testing and Interpretation for the Purpose of Sediment Quality Assessment: Status and Needs. EPA-823-R-00-001. 2000. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/20003TM1.PDF?Dockey=20003TM1.PDF (accessed on 20 July 2025).
- Long, E.; Morgan, L. The Potential for Biological Effects of Sediment-Sorbed Contaminants Tested in the National Status and Trends Program. NOAA Tech. Memo. NOS OMA 1991, 52. Available online: https://repository.library.noaa.gov/view/noaa/1750 (accessed on 20 July 2025).
- Long, E.R.; Field, L.J.; MacDonald, D.D. Predicting Toxicity in Marine Sediments with Numerical Sediment Quality Guidelines. Environ. Toxicol. Chem. 1998, 17, 714–727. [Google Scholar] [CrossRef]
- Buchman, M.F. Screening Quick Reference Tables (SQuiRTs). 2008. Available online: https://semspub.epa.gov/work/03/2171359.pdf (accessed on 20 July 2025).
- Oros, A. Monitoring and Assessment of Heavy Metals in the Romanian Black Sea Ecosystem during 2006-2018, in the Context of Marine Strategy Framework Directive (MSFD) 2008/56/EC Implementation. Cercet. Mar.-Rech. Mar. 2019, 49, 8–33. Available online: https://www.marine-research-journal.org/index.php/cmrm/article/view/140/105 (accessed on 20 July 2025).
- Ristea, E.; Pârvulescu, O.C.; Lavric, V.; Oros, A. Assessment of Heavy Metal Contamination of Seawater and Sediments Along the Romanian Black Sea Coast: Spatial Distribution and Environmental Implications. Sustainability 2025, 17, 2586. [Google Scholar] [CrossRef]
- Secrieru, D.; Secrieru, A. Heavy Metal Enrichment of Man-Made Origin of Superficial Sediment on the Continental Shelf of the North-Western Black Sea. Estuar. Coast. Shelf Sci. 2002, 54, 513–526. [Google Scholar] [CrossRef]
- Vignati, D.A.L.; Secrieru, D.; Bogatova, Y.I.; Dominik, J.; Céréghino, R.; Berlinsky, N.A.; Oaie, G.; Szobotka, S.; Stanica, A. Trace Element Contamination in the Arms of the Danube Delta (Romania/Ukraine): Current State of Knowledge and Future Needs. J. Environ. Manag. 2013, 125, 169–178. [Google Scholar] [CrossRef]
- Chen, Y.-M.; Gao, J.; Yuan, Y.-Q.; Ma, J.; Yu, S. Relationship between Heavy Metal Contents and Clay Mineral Properties in Surface Sediments: Implications for Metal Pollution Assessment. Cont. Shelf Res. 2016, 124, 125–133. [Google Scholar] [CrossRef]
- Constantinescu, A.M.; Tyler, A.N.; Stanica, A.; Spyrakos, E.; Hunter, P.D.; Catianis, I.; Panin, N. A Century of Human Interventions on Sediment Flux Variations in the Danube-Black Sea Transition Zone. Front. Mar. Sci. 2023, 10, 1068065. [Google Scholar] [CrossRef]
- Lazar, L.; Gomoiu, M.T.; Boicenco, L.; Vasiliu, D. Total Organic Carbon (TOC) of the Surface Layer Sediments Covering the Seafloor of the Romanian Black Sea Coast. Geoecomarina 2012, 18, 121–132. [Google Scholar]
- Zhang, C.; Yu, Z.; Zeng, G.; Jiang, M.; Yang, Z.; Cui, F.; Zhu, M.; Shen, L.; Hu, L. Effects of Sediment Geochemical Properties on Heavy Metal Bioavailability. Environ. Int. 2014, 73, 270–281. [Google Scholar] [CrossRef]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The Pollution Conveyed by Urban Runoff: A Review of Sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef]
- Byrnes, T.A.; Dunn, R.J.K. Boating- and Shipping-Related Environmental Impacts and Example Management Measures: A Review. J. Mar. Sci. Eng. 2020, 8, 908. [Google Scholar] [CrossRef]
- Frank, J.J.; Poulakos, A.G.; Tornero-Velez, R.; Xue, J. Systematic Review and Meta-Analyses of Lead (Pb) Concentrations in Environmental Media (Soil, Dust, Water, Food, and Air) Reported in the United States from 1996 to 2016. Sci. Total Environ. 2019, 694, 133489. [Google Scholar] [CrossRef]
- Faucher, K.; Fichet, D.; Miramand, P.; Lagardère, J.-P. Impact of Chronic Cadmium Exposure at Environmental Dose on Escape Behaviour in Sea Bass (Dicentrarchus labrax L.; Teleostei, Moronidae). Environ. Pollut. 2008, 151, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Thiagarajan, V.; Nah, T.; Xin, X. Impacts of Atmospheric Particulate Matter Deposition on Phytoplankton: A Review. Sci. Total Environ. 2024, 950, 175280. [Google Scholar] [CrossRef] [PubMed]
- Janssen, D.J.; Gilliard, D.; Rickli, J.; Nasemann, P.; Koschinsky, A.; Hassler, C.S.; Bowie, A.R.; Ellwood, M.J.; Kleint, C.; Jaccard, S.L. Chromium Stable Isotope Distributions in the Southwest Pacific Ocean and Constraints on Hydrothermal Input from the Kermadec Arc. Geochim. Cosmochim. Acta 2023, 342, 31–44. [Google Scholar] [CrossRef]
- Ene, A.; Teodorof, L.; Chiţescu, C.L.; Burada, A.; Despina, C.; Bahrim, G.E.; Vasile, A.M.; Seceleanu-Odor, D.; Enachi, E. Surface Water Contaminants (Metals, Nutrients, Pharmaceutics, Endocrine Disruptors, Bacteria) in the Danube River and Black Sea Basins, SE Romania. Appl. Sci. 2025, 15, 5009. [Google Scholar] [CrossRef]
- Preisner, M.; Smol, M.; Szołdrowska, D. A Toxic-Free Environment Ambition in the Light of the Polish Baltic Sea Coastal Zone Pollution by Heavy Metals. Desalination Water Treat. 2021, 232, 225–235. [Google Scholar] [CrossRef]
- Theodosi, C.; Stavrakakis, S.; Koulaki, F.; Stavrakaki, I.; Moncheva, S.; Papathanasiou, E.; Sanchez-Vidal, A.; Koçak, M.; Mihalopoulos, N. The Significance of Atmospheric Inputs of Major and Trace Metals to the Black Sea. J. Mar. Syst. 2013, 109–110, 94–102. [Google Scholar] [CrossRef]
- Abdel Ghani, S.; Hamdona, S.; Shakweer, L.; El Saharty, A. Spatial Distribution and Pollution Assessment of Heavy Metals in Surface and Bottom Water along the Eastern Part of the Egyptian Mediterranean Coast. Mar. Pollut. Bull. 2023, 197, 115713. [Google Scholar] [CrossRef]
- Atabay, H.; Aslan, E.; Tan, İ.; Tolun, L.; Çağlar Balkıs, N. Spatial and Temporal Assessment of Heavy Metal Contamination in the Black Sea Surface Waters. Int. J. Environ. Geoinform. 2024, 11, 17–28. [Google Scholar] [CrossRef]
- Yottiam, A.; Chaikaew, P.; Kulsawat, W.; Srithongouthai, S. Application of Novel Background Criteria for Assessing Metal Contamination in Sediments of the Inner Gulf of Thailand. Chemosphere 2025, 375, 144235. [Google Scholar] [CrossRef]
- Oaie, G.; Secrieru, D.; Bondar, C.; Szobotkat, S.; Duţu, L.; Stănescu, L.; Opreanu, G.; Duţu, F.; Pojar, L.; Manta, T. Lower Danube River: Characterization of Sediments and Pollutants. Geo-Eco-Marina 2015, 21, 19–34. [Google Scholar]
- Buyang, S.; Yi, Q.; Cui, H.; Wan, K.; Zhang, S. Distribution and Adsorption of Metals on Different Particle Size Fractions of Sediments in a Hydrodynamically Disturbed Canal. Sci. Total Environ. 2019, 670, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Nayar, S.; Goh, B.P.L.; Chou, L.M. Environmental Impact of Heavy Metals from Dredged and Resuspended Sediments on Phytoplankton and Bacteria Assessed in in Situ Mesocosms. Ecotoxicol. Environ. Saf. 2004, 59, 349–369. [Google Scholar] [CrossRef] [PubMed]
- Mali, M.; Malcangio, D.; Dell’ Anna, M.M.; Damiani, L.; Mastrorilli, P. Influence of Hydrodynamic Features in the Transport and Fate of Hazard Contaminants within Touristic Ports. Case Study: Torre a Mare (Italy). Heliyon 2018, 4, e00494. [Google Scholar] [CrossRef]
- Robledo Ardila, P.A.; Álvarez-Alonso, R.; Árcega-Cabrera, F.; Durán Valsero, J.J.; Morales García, R.; Lamas-Cosío, E.; Oceguera-Vargas, I.; DelValls, A. Assessment and Review of Heavy Metals Pollution in Sediments of the Mediterranean Sea. Appl. Sci. 2024, 14, 1435. [Google Scholar] [CrossRef]
- Varol, M.; Ustaoğlu, F.; Tokatlı, C. Metal Pollution, Eco-Health Risks and Source Apportionment in Coastal Sediments of Samsun, Türkiye: A Receiving Zone for the Kızılırmak and Yeşilırmak Rivers. Environ. Res. 2025, 282, 122113. [Google Scholar] [CrossRef]
- Doncheva, V.; Hristova, O.; Slavova, K. Metal Pollution Assessment in Sediments of the Bulgarian Black Sea Coastal Zone. Ecol. Balk. 2020, 12, 179–189. [Google Scholar]
- Kotelyanets, E.A.; Sovga, E.E.; Konovalov, S.K. Spatial Distribution of Heavy Metals in the Bottom Sediments of Bays of the Sevastopol Region. Lomonosov Geogr. J. 2024, 79, 68–79. [Google Scholar] [CrossRef]
- Konstantinova, E.; Minkina, T.; Nevidomskaya, D.; Bauer, T.; Zamulina, I.; Latsynnik, E.; Dudnikova, T.; Yadav, R.K.; Burachevskaya, M.; Mandzhieva, S. Pollution and Ecological Risk Assessment of Potentially Toxic Elements in Sediments Along the Fluvial-to-Marine Transition Zone of the Don River. Water 2024, 16, 3200. [Google Scholar] [CrossRef]
- Shahabi-Ghahfarokhi, S.; Josefsson, S.; Apler, A.; Kalbitz, K.; Åström, M.; Ketzer, M. Baltic Sea Sediments Record Anthropogenic Loads of Cd, Pb, and Zn. Environ. Sci. Pollut. Res. 2021, 28, 6162–6175. [Google Scholar] [CrossRef] [PubMed]
- Oros, A.; Galatchi, M. Long-Term Heavy Metal Bioaccumulation in Sprat (Sprattus Sprattus) from the Romanian Black Sea: Ecological and Human Health Risks in the Context of Sustainable Fisheries. Fishes 2025, 10, 178. [Google Scholar] [CrossRef]
- Nakhlé, K.F.; Cossa, D.; Khalaf, G.; Beliaeff, B. Brachidontes Variabilis and Patella Sp. as Quantitative Biological Indicators for Cadmium, Lead and Mercury in the Lebanese Coastal Waters. Environ. Pollut. 2006, 142, 73–82. [Google Scholar] [CrossRef] [PubMed]
- McGeer, J.C.; Brix, K.V.; Skeaff, J.M.; DeForest, D.K.; Brigham, S.I.; Adams, W.J.; Green, A. Inverse Relationship between Bioconcentration Factor and Exposure Concentration for Metals: Implications for Hazard Assessment of Metals in the Aquatic Environment. Environ. Toxicol. Chem. 2003, 22, 1017–1037. [Google Scholar] [CrossRef]
- Gagnon, C.; Fisher, N.S. Bioavailability of Sediment-Bound Methyl and Inorganic Mercury to a Marine Bivalve. Environ. Sci. Technol. 1997, 31, 993–998. [Google Scholar] [CrossRef]
- Zhang, S.; Fu, K.; Gao, S.; Liang, B.; Lu, J.; Fu, G. Bioaccumulation of Heavy Metals in the Water, Sediment, and Organisms from The Sea Ranching Areas of Haizhou Bay in China. Water 2023, 15, 2218. [Google Scholar] [CrossRef]
- Pantea, E.-D.; Oros, A.; Rosioru, D.M.; Rosoiu, N. Condition Index of Mussel Mytilus Galloprovincialis (Lamarck, 1819) as a Physiological Indicator of Heavy Metals Contamination. Ann. Acad. Rom. Sci. Ser. Biol. Sci. 2020, 9, 20–36. [Google Scholar] [CrossRef]
- Long, R. The Marine Strategy Framework Directive: A New European Approach to the Regulation of the Marine Environment, Marine Natural Resources and Marine Ecological Services. J. Energy Nat. Resour. Law 2011, 29, 1–44. [Google Scholar] [CrossRef]
- Golumbeanu, M.; Oros, A.; Nenciu, M.; Zavatarelli, M.; Drago, A. Contribution of Environmental Indices in Meeting the Objectives and Principles of the Marine Strategy Framework Directive (MSFD). J. Environ. Prot. Ecol. 2014, 15, 1130–1138. [Google Scholar]
- Bisinicu, E.; Harcota, G.; Lazar, L. Interactions between Environmental Factors and the Mesozooplankton Community from the Romanian Black Sea Waters. Turk. J. Zool. 2023, 47, 202–215. [Google Scholar] [CrossRef]
- Rainbow, P.S.; Kriefman, S.; Smith, B.D.; Luoma, S.N. Have the Bioavailabilities of Trace Metals to a Suite of Biomonitors Changed over Three Decades in SW England Estuaries Historically Affected by Mining? Sci. Total Environ. 2011, 409, 1589–1602. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ward, D.; Williams, J.; Fisher, N. Metal Bioaccumulation by Estuarine Food Webs in New England, USA. J. Mar. Sci. Eng. 2016, 4, 41. [Google Scholar] [CrossRef]
- Hauser-Davis, R.A.; Wosnick, N. Climate Change Implications for Metal and Metalloid Dynamics in Aquatic Ecosystems and Its Context within the Decade of Ocean Sciences. Water 2022, 14, 2415. [Google Scholar] [CrossRef]
- Abdallah, M.A.M. Bioaccumulation of Heavy Metals in Mollusca Species and Assessment of Potential Risks to Human Health. Bull. Environ. Contam. Toxicol. 2013, 90, 552–557. [Google Scholar] [CrossRef]
- Damir, N.; Coatu, V.; Danilov, D.; Lazăr, L.; Oros, A. From Waters to Fish: A Multi-Faceted Analysis of Contaminants’ Pollution Sources, Distribution Patterns, and Ecological and Human Health Consequences. Fishes 2024, 9, 274. [Google Scholar] [CrossRef]
- Oros, A.; Pantea, E.-D.; Ristea, E. Heavy Metal Concentrations in Wild Mussels Mytilus Galloprovincialis (Lamarck, 1819) during 2001–2023 and Potential Risks for Consumers: A Study on the Romanian Black Sea Coast. Sci 2024, 6, 45. [Google Scholar] [CrossRef]
- Galaţchi, M.; Oros, A.; Coatu, V.; Costache, M.; Coprean, D.; Galaţchi, L.-D. Pollutant Bioaccumulation in Anchovy (Engraulis Encrasicolus) Tissue, Fish Species of Commercial Interest at the Romanian Black Sea Coast. Ovidius Univ. Ann. Chem. 2017, 28, 11–17. [Google Scholar] [CrossRef]
- Phaenark, C.; Phankamolsil, Y.; Sawangproh, W. Ecological and Health Implications of Heavy Metal Bioaccumulation in Thai Fauna: A Systematic Review. Ecotoxicol. Environ. Saf. 2024, 285, 117086. [Google Scholar] [CrossRef]
- Chen, S.; Chen, S.; Tao, Z.; Li, Y.; Magni, P.; Zhang, L.; Zheng, X.; Pan, K. The Importance of Organic Matter in Controlling the Metal Variability and Mobility in Seagrass Sediments. Environ. Pollut. 2025, 366, 125542. [Google Scholar] [CrossRef]
- Nawrot, N.; Wojciechowska, E.; Mohsin, M.; Kuittinen, S.; Pappinen, A.; Rezania, S. Trace Metal Contamination of Bottom Sediments: A Review of Assessment Measures and Geochemical Background Determination Methods. Minerals 2021, 11, 872. [Google Scholar] [CrossRef]
- Birch, G.F. A Review and Critical Assessment of Sedimentary Metal Indices Used in Determining the Magnitude of Anthropogenic Change in Coastal Environments. Sci. Total Environ. 2023, 854, 158129. [Google Scholar] [CrossRef] [PubMed]
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control.a Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Y.; Shen, Z.; Niu, J.; Tang, Z. Distribution and Speciation of Heavy Metals in Sediments from the Mainstream, Tributaries, and Lakes of the Yangtze River Catchment of Wuhan, China. J. Hazard. Mater. 2009, 166, 1186–1194. [Google Scholar] [CrossRef]
- Long, E.R.; MacDonald, D.D.; Severn, C.G.; Hong, C.B. Classifying Probabilities of Acute Toxicity in Marine Sediments with Empirically Derived Sediment Quality Guidelines. Environ. Toxicol. Chem. 2000, 19, 2598–2601. [Google Scholar] [CrossRef]
- El-SiKaily, A.; Shabaka, S. Biomarkers in Aquatic Systems: Advancements, Applications and Future Directions. Egypt. J. Aquat. Res. 2024, 50, 169–182. [Google Scholar] [CrossRef]
- Kolovoyiannis, V.; Mazioti, A.A.; Potiris, M.; Mamoutos, I.; Majamäki, E.; Hänninen, R.; Krasakopoulou, E.; Tragou, E.; Zervakis, V.; Sofiev, M.; et al. Modelling the Impact of Present and Future Maritime Transport on Marine Pollution at an Environmentally Sensitive Coastal Ecosystem (Saronikos Gulf, Eastern Mediterranean). Mar. Pollut. Bull. 2025, 219, 118335. [Google Scholar] [CrossRef] [PubMed]
Valid N | Mean | Median | Minimum | Maximum | 25th Percentile | 75th Percentile | Std.Dev. | Coef.Var. | |
---|---|---|---|---|---|---|---|---|---|
Cu | 298 | 10.798 | 8.196 | 0.137 | 51.560 | 3.581 | 14.340 | 9.887 | 91.563 |
Cd | 298 | 0.461 | 0.061 | 0.001 | 6.330 | 0.027 | 0.744 | 0.742 | 160.765 |
Pb | 298 | 5.679 | 1.630 | 0.001 | 35.900 | 0.443 | 9.240 | 7.726 | 136.051 |
Ni | 298 | 7.164 | 2.415 | 0.010 | 82.280 | 0.747 | 9.300 | 11.437 | 159.643 |
Cr | 298 | 7.215 | 4.250 | 0.050 | 48.220 | 1.237 | 10.180 | 9.017 | 124.981 |
Valid N | Mean | Median | Minimum | Maximum | 25th Percentile | 75th Percentile | Std.Dev. | Coef.Var. | |
---|---|---|---|---|---|---|---|---|---|
Cu | 277 | 22.747 | 18.771 | 1.474 | 123.900 | 9.903 | 31.050 | 17.664 | 77.654 |
Cd | 277 | 0.288 | 0.190 | 0.002 | 4.345 | 0.100 | 0.311 | 0.432 | 149.904 |
Pb | 277 | 16.807 | 13.739 | 0.880 | 95.630 | 6.605 | 22.743 | 13.966 | 83.094 |
Ni | 277 | 40.197 | 33.860 | 0.240 | 126.810 | 18.728 | 56.080 | 26.960 | 67.069 |
Cr | 277 | 25.537 | 21.585 | 3.010 | 89.164 | 13.195 | 34.750 | 15.986 | 62.598 |
Co * | 87 | 6.010 | 5.103 | 0.340 | 17.190 | 3.145 | 8.325 | 3.535 | 58.817 |
Valid N | Mean | Median | Minimum | Maximum | 25th Percentile | 75th Percentile | Std.Dev. | Coef.Var. | |
---|---|---|---|---|---|---|---|---|---|
Cu | 48 | 2.601 | 1.750 | 0.459 | 12.867 | 1.023 | 3.970 | 2.320 | 89.204 |
Cd | 48 | 0.581 | 0.305 | 0.068 | 2.915 | 0.218 | 0.837 | 0.583 | 100.330 |
Pb | 48 | 0.170 | 0.044 | 0.001 | 1.586 | 0.0146 | 0.105 | 0.331 | 193.675 |
Ni | 48 | 1.214 | 0.734 | 0.011 | 12.534 | 0.332 | 1.195 | 2.082 | 171.460 |
Cr | 48 | 1.019 | 0.490 | 0.088 | 4.384 | 0.269 | 1.360 | 1.074 | 105.444 |
Co * | 16 | 0.080 | 0.017 | 0.001 | 0.434 | 0.012 | 0.131 | 0.115 | 144.101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oros, A.; Marin, D.; Reiz, G.; Nenita, R.D. Tracing Heavy Metal Pollution in the Romanian Black Sea: A Multi-Matrix Study of Contaminant Profiles and Ecological Risk Across the Continental Shelf and Beyond. Water 2025, 17, 2406. https://doi.org/10.3390/w17162406
Oros A, Marin D, Reiz G, Nenita RD. Tracing Heavy Metal Pollution in the Romanian Black Sea: A Multi-Matrix Study of Contaminant Profiles and Ecological Risk Across the Continental Shelf and Beyond. Water. 2025; 17(16):2406. https://doi.org/10.3390/w17162406
Chicago/Turabian StyleOros, Andra, Dragos Marin, Gulten Reiz, and Robert Daniel Nenita. 2025. "Tracing Heavy Metal Pollution in the Romanian Black Sea: A Multi-Matrix Study of Contaminant Profiles and Ecological Risk Across the Continental Shelf and Beyond" Water 17, no. 16: 2406. https://doi.org/10.3390/w17162406
APA StyleOros, A., Marin, D., Reiz, G., & Nenita, R. D. (2025). Tracing Heavy Metal Pollution in the Romanian Black Sea: A Multi-Matrix Study of Contaminant Profiles and Ecological Risk Across the Continental Shelf and Beyond. Water, 17(16), 2406. https://doi.org/10.3390/w17162406