Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (266)

Search Parameters:
Keywords = marine erosion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5142 KiB  
Article
Cavitation-Jet-Induced Erosion Controlled by Injection Angle and Jet Morphology
by Jinichi Koue and Akihisa Abe
J. Mar. Sci. Eng. 2025, 13(8), 1415; https://doi.org/10.3390/jmse13081415 - 25 Jul 2025
Viewed by 187
Abstract
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria [...] Read more.
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria and larvae, from ship hulls and underwater infrastructure. Through erosion experiments on coated specimens, variations in jet morphology, and flow visualization using the Schlieren method, we examined how factors such as jet incident angle and nozzle configuration influence removal performance. The results reveal that erosion occurs not only at the direct jet impact zone but also in regions where cavitation bubbles exhibit intense motion, driven by pressure fluctuations and shock waves. Notably, single-hole jets with longer potential cores produced more concentrated erosion, while multi-jet interference enhanced bubble activity. These findings underscore the importance of understanding bubble distribution dynamics in the flow field and provide insight into optimizing cavitation jet configurations to expand the effective cleaning area while minimizing material damage. This study contributes to advancing biofouling removal technologies that promote safer and more sustainable maritime operations. Full article
Show Figures

Figure 1

18 pages, 4202 KiB  
Article
Genetic Impacts of Sustained Stock Enhancement on Wild Populations: A Case Study of Penaeus penicillatus in the Beibu Gulf, China
by Yaxuan Wu, Dianrong Sun, Liangming Wang, Yan Liu, Changping Yang, Manting Liu, Qijian Xie, Cheng Chen, Jianwei Zou, Dajuan Zhang and Binbin Shan
Diversity 2025, 17(8), 511; https://doi.org/10.3390/d17080511 - 24 Jul 2025
Viewed by 186
Abstract
In recent decades, fishery stock enhancement has been increasingly utilized as a restoration tool to mitigate population declines and enhance the resilience of marine fisheries. Nevertheless, persistent enhancement efforts risk eroding the evolutionary potential of wild populations via genetic homogenization and maladaptive gene [...] Read more.
In recent decades, fishery stock enhancement has been increasingly utilized as a restoration tool to mitigate population declines and enhance the resilience of marine fisheries. Nevertheless, persistent enhancement efforts risk eroding the evolutionary potential of wild populations via genetic homogenization and maladaptive gene flow. Using long-term monitoring data (2017–2023), we quantified the effects of large-scale Penaeus penicillatus stock enhancement (~108 juveniles/yr) on wild population dynamics and genetic integrity in the Beibu Gulf ecosystem. Temporal genetic changes were assessed using eight highly polymorphic microsatellite loci, comparing founder (2017) and enhanced (2024) populations to quantify stocking impacts. Insignificantly lower expected heterozygosity was observed in the stocked population (He = 0.60, 2024) relative to natural populations (He = 0.62–0.66; p > 0.1), indicating genetic dilution effects from enhancement activities. No significant erosion of genetic diversity was detected post-enhancement, suggesting current stocking practices maintain short-term population genetic integrity. Despite conserved heterozygosity, pairwise Fst analysis detected significant genetic shifts between temporal cohorts (pre-enhancement—2017 vs. post-enhancement—2024; Fst = 0.25, p < 0.05), demonstrating stocking-induced population restructuring. Genetic connectivity analysis revealed that while the enhanced Beihai population (A-BH) maintained predominant self-recruitment (>90%), it experienced substantial stocking-derived gene flow (17% SW → A-BH). The post-stocking period showed both reduced genetic exchange with adjacent populations and increased asymmetric dispersal from A-BH (e.g., 5% to YJ), indicating that hatchery releases simultaneously enhanced population isolation while altering regional genetic structure. Our findings revealed the paradoxical dual effects of stock enhancement and allelic diversity while disrupting natural genetic architecture. This underscores the need for evolutionary-impact assessments in marine resource management. Full article
(This article belongs to the Special Issue Ecological Dynamics and Conservation of Marine Fisheries)
Show Figures

Figure 1

21 pages, 8441 KiB  
Article
Upper Pleistocene Marine Levels of the Es Copinar–Es Estufadors (Formentera, Balearic Islands, West Mediterranean)
by Laura del Valle, Guillem X. Pons and Joan J. Fornós
Quaternary 2025, 8(3), 38; https://doi.org/10.3390/quat8030038 - 21 Jul 2025
Viewed by 451
Abstract
Late Pleistocene coastal deposits on the southeastern coast of Formentera (Es Ram–Es Estufadors) provide a high-resolution record of sea-level and climatic fluctuations associated with Marine Isotope Stage (MIS) 5. Three distinct beach levels (Sef-1, Sef-2, Sef-3) were identified, corresponding to substages MIS 5e, [...] Read more.
Late Pleistocene coastal deposits on the southeastern coast of Formentera (Es Ram–Es Estufadors) provide a high-resolution record of sea-level and climatic fluctuations associated with Marine Isotope Stage (MIS) 5. Three distinct beach levels (Sef-1, Sef-2, Sef-3) were identified, corresponding to substages MIS 5e, 5c, and possibly 5a, based on sedimentological features, fossil assemblages, and Optically Stimulated Luminescence (OSL) dating. The oldest beach level (Sef-1) is attributed to MIS 5e (ca. 128–116 ka) and is characterised by the widespread presence of thermophilic Senegalese fauna—including Thetystrombus latus, Conus ermineus, and Linatella caudata—which mark the onset of this interglacial phase and are associated with two peaks in relative sea-level highstand. A subsequent cooling event during MIS 5d is recorded by the development of thin palaeosols and the disappearance of these warm-water taxa. The second beach level (Sef-2) reflects renewed sea-level rise and warmer conditions during MIS 5c, with abundant macrofauna and red algae. The transition to MIS 5b (~97 ka) is marked by a significant sea-level drop (down to –60 m), cooler climate, and enhanced colluvial sedimentation linked to increased runoff and erosion. In total, 54 macrofaunal species were identified—16 from Sef-1 and 46 from Sef-2—highlighting ecological shifts across substages. These results improve our understanding of coastal response to sea-level oscillations and paleoenvironmental dynamics in the western Mediterranean during the Late Pleistocene. Full article
Show Figures

Figure 1

20 pages, 10098 KiB  
Article
Alkali-Activated Dredged-Sediment-Based Fluidized Solidified Soil: Early-Age Engineering Performance and Microstructural Mechanisms
by Qunchao Ma, Kangyu Wang, Qiang Li and Yuting Zhang
Materials 2025, 18(14), 3408; https://doi.org/10.3390/ma18143408 - 21 Jul 2025
Viewed by 286
Abstract
Fluidized solidified soil (FSS) has emerged as a promising material for marine pile scour remediation, yet its limited construction window and vulnerability to hydraulic erosion before sufficient curing constrain its broader application. This study systematically evaluates FSS formulations based on dredged sediment, cement [...] Read more.
Fluidized solidified soil (FSS) has emerged as a promising material for marine pile scour remediation, yet its limited construction window and vulnerability to hydraulic erosion before sufficient curing constrain its broader application. This study systematically evaluates FSS formulations based on dredged sediment, cement partially replaced by silica fume (i.e., 0%, 4%, 8%, and 12%), and quicklime activation under three water–solid ratios (WSR, i.e., 0.525, 0.55, and 0.575). Experimental assessments included flowability tests, unconfined compressive strength, direct shear tests, and microstructural analysis via XRD and SEM. The results indicate that SF substitution significantly mitigates flowability loss during the 90–120 min interval, thereby extending the operational period. Moreover, the greatest enhancement in mechanical performance was achieved at an 8% SF replacement: at WSR = 0.55, the 3-day UCS increased by 22.78%, while the 7-day cohesion and internal friction angle rose by 13.97% and 2.59%, respectively. Microscopic analyses also confirmed that SF’s pozzolanic reaction generated additional C-S-H gel. However, the SF substitution exhibits a pronounced threshold effect, with levels above 8% introducing unreacted particles that disrupt the cementitious network. These results underscore the critical balance between flowability and early-age strength for stable marine pile scour repair, with WSR = 0.525 and 8% SF substitution identified as the optimal mix. Full article
Show Figures

Figure 1

24 pages, 18493 KiB  
Article
Aeolian Landscapes and Paleoclimatic Legacy in the Southern Chacopampean Plain, Argentina
by Enrique Fucks, Yamile Rico, Luciano Galone, Malena Lorente, Sebastiano D’Amico and María Florencia Pisano
Geographies 2025, 5(3), 33; https://doi.org/10.3390/geographies5030033 - 14 Jul 2025
Viewed by 457
Abstract
The Chacopampean Plain is a major physiographic unit in Argentina, bounded by the Colorado River to the south, the Sierras Pampeanas and Subandinas to the west, and the Paraná River, Río de la Plata Estuary, and the Argentine Sea to the east. Its [...] Read more.
The Chacopampean Plain is a major physiographic unit in Argentina, bounded by the Colorado River to the south, the Sierras Pampeanas and Subandinas to the west, and the Paraná River, Río de la Plata Estuary, and the Argentine Sea to the east. Its subsurface preserves sediments from the Miocene marine transgression, while the surface hosts some of the country’s most productive soils. Two main geomorphological domains are recognized: fluvial systems dominated by alluvial megafans in the north, and aeolian systems characterized by loess accumulation and wind erosion in the south. The southern sector exhibits diverse landforms such as deflation basins, ridges, dune corridors, lunettes, and mantiform loess deposits. Despite their regional extent, the origin and chronology of many aeolian features remain poorly constrained, as previous studies have primarily focused on depositional units rather than wind-sculpted erosional features. This study integrates remote sensing data, field observations, and a synthesis of published chronometric and sedimentological information to characterize these aeolian landforms and elucidate their genesis. Our findings confirm wind as the dominant morphogenetic agent during Late Quaternary glacial stadials. These aeolian morphologies significantly influence the region’s hydrology, as many permanent and ephemeral water bodies occupy deflation basins or intermediate low-lying sectors prone to flooding under modern climatic conditions, which are considerably wetter than during their original formation. Full article
Show Figures

Figure 1

20 pages, 9819 KiB  
Article
Performance Degradation and Chloride Ion Migration Behavior of Repaired Bonding Interfaces inSeawater-Freeze-Thaw Environment
by Mengdie Niu, Xiang He, Yaxin Wang, Yuxuan Shen, Wei Zhang and Guoxin Li
Buildings 2025, 15(14), 2431; https://doi.org/10.3390/buildings15142431 - 10 Jul 2025
Viewed by 247
Abstract
The bond interface is the weakest part of the repair system, and its performance is a key factor impacting the repair effectiveness of damaged concrete constructions. However, the research on the damage law and the mechanism of repair of the bonded interface in [...] Read more.
The bond interface is the weakest part of the repair system, and its performance is a key factor impacting the repair effectiveness of damaged concrete constructions. However, the research on the damage law and the mechanism of repair of the bonded interface in the cold region marine environment is not in-depth. In this study, the influence of polyvinyl alcohol (PVA) fibers and crystalline admixtures (CAs) on the mechanical properties and volumetric deformation performance of cementitious repair materials was researched. Furthermore, the deterioration patterns of the bond strength and chloride ion diffusion characteristics of the repair interface under the coupling of seawater-freeze-thaw cycles were investigated. Combined with the composition, micro-morphology, and micro-hardness of hydration products before and after erosion, the damage mechanism of the repaired bonding interface was revealed. The results indicate that the synergistic use of PVA fibers and CAs can significantly improve the compressive strength, bond strength and volume stability of the repair materials. The compressive strength and 40° shear strength of S0.6CA at 28 d were 101.7 MPa and 45.95 MPa, respectively. Under the seawater-freeze-thaw cycle action, the relationship between the contents of free and bound chloride ions in the bonded interface can be better fitted by the Langmuir equation. The deterioration process of the bonding interface and the penetration rate of chloride ions can be effectively delayed by PVA fiber and CAs. After 700 seawater-freeze-thaw cycles, the loss rates of bond strength and chloride diffusion coefficient of S0.6CA were reduced by 26.34% and 52.5%, respectively, compared with S0. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 15772 KiB  
Article
Impact of Inorganic Salts on Rheology, Strength, and Microstructure of Excess-Sulfate Phosphogypsum Slag Cement
by Zhe Chen, Zixin Xue, Yong Xia, Chunli Wu, Junming Mai, Weisen Liu, Yuan Feng and Jianhe Xie
Buildings 2025, 15(13), 2348; https://doi.org/10.3390/buildings15132348 - 4 Jul 2025
Viewed by 268
Abstract
Excess-sulfate phosphogypsum slag cement (EPSC), offering the potential for large-scale phosphogypsum (PG) utilization, has drawn significant attention. However, its susceptibility to salt erosion in marine/saline environments remains unquantified, hindering engineering applications. This study, therefore, systematically investigates the effect of various salts (NaCl, MgCl [...] Read more.
Excess-sulfate phosphogypsum slag cement (EPSC), offering the potential for large-scale phosphogypsum (PG) utilization, has drawn significant attention. However, its susceptibility to salt erosion in marine/saline environments remains unquantified, hindering engineering applications. This study, therefore, systematically investigates the effect of various salts (NaCl, MgCl2, KCl, and Na2SO4) at different concentrations (0.5–1.5%) on the hydration mechanism and performance of EPSC using rheometry, strength tests, and microstructural characterization (XRD/SEM-EDS). The findings reveal that EPSC exhibits low initial yield stress and plastic viscosity, both of which increase over time. The addition of Na+, Cl, and SO42− ions promotes hydration and flocculent structure formation in the EPSC paste, thereby enhancing the yield stress and plastic viscosity. In contrast, Mg2+ and K+ ions inhibit the hydration reaction, although Mg2+ temporarily increases the plastic viscosity by forming Mg(OH)2 during the initial stage of the reaction. Both Na2SO4 and NaCl improve mechanical properties when their concentrations are within the 0.5–1.0% range; however, excessive amounts (>1%) negatively impact these properties. Significantly, adding 0.5% NaCl significantly improves the mechanical properties of EPSC, achieving a 28-day compressive strength of 51.06 MPa—a 9.5% increase compared to the control group. XRD and SEM-EDX analyses reveal that NaCl enhances pore structure via Friedel’s salt formation, while Na2SO4 promotes the early nucleation of ettringite. However, excessive ettringite formation in the later stages of the hydration reaction due to Na2SO4 may negatively affect compressive strength due to the inherent abundance of SO42− in the EPSC system. Therefore, attention should be paid to the effect of excessive SO42− on the system. These results establish salt-type/dosage thresholds for EPSC design, enabling its rational use in coastal infrastructure where salt resistance is critical. Full article
Show Figures

Figure 1

14 pages, 5229 KiB  
Article
The Effect of Kappa Phases on Tribocorrosion Behaviour of Nickel Aluminum Bronze (NAB) and Manganese Aluminum Bronze (MAB)
by Carlos Berlanga-Labari, Adrián Claver, María Victoria Biezma-Moraleda and José Fernández-Palacio
Lubricants 2025, 13(7), 290; https://doi.org/10.3390/lubricants13070290 - 29 Jun 2025
Viewed by 375
Abstract
Nickel aluminum bronze (NAB) and manganese aluminum bronze (MAB) are widely used in propulsion and seawater handling systems in naval platforms due to their attractive combination of mechanical strength, toughness, and very low susceptibility to marine corrosion. Nevertheless, it is well known that [...] Read more.
Nickel aluminum bronze (NAB) and manganese aluminum bronze (MAB) are widely used in propulsion and seawater handling systems in naval platforms due to their attractive combination of mechanical strength, toughness, and very low susceptibility to marine corrosion. Nevertheless, it is well known that they can suffer from selective phase corrosion and erosion–corrosion, primarily caused by cavitation and sand erosion. Both alloys have a multiphase microstructure that governs their mechanical and chemical behavior. The tribocorrosion behavior of cast NAB and MAB alloys was studied in artificial seawater to analyze the effect on microstructure. The microstructure and nanohardness were evaluated and correlated with tribocorrosion test results conducted under two different loads (10 and 40 N) in a unidirectional sliding mode using a 1 M NaCl solution as the electrolyte. A significant increase in the corrosion rate due to the wear effect was observed in both alloys. MAB exhibited a slightly better tribocorrosion performance than NAB, which was attributed to significant differences in the shape, distribution, and size of the intermetallic kappa phases—rich in iron, aluminum, and nickel—within the microstructure. Pitting corrosion was observed in NAB, while selective corrosion of kappa phases occurred in MAB, highlighting the role of the protective layer in the tribocorrosion behavior of both alloys. These findings were supported by post-test solution analysis using ICP-AES and corrosion product characterization by EDX. A synergistic effect between wear and corrosion was confirmed for both alloys, as erosion removes the protective layer, exposing fresh material to continuous friction and favoring a progressive material loss over time. The practical impact of this study lies in improving the control and design of highly alloyed bronze microstructures under in-service corrosion–erosion conditions. Full article
(This article belongs to the Special Issue Fundamentals and Applications of Tribocorrosion)
Show Figures

Graphical abstract

16 pages, 4725 KiB  
Article
Fatigue Analysis and Solid Particle Erosion Behavior of Nozzle Ring for Marine Turbocharger
by Woo-Seok Jeon and Il-Cho Park
J. Mar. Sci. Eng. 2025, 13(7), 1230; https://doi.org/10.3390/jmse13071230 - 26 Jun 2025
Viewed by 321
Abstract
This study investigates the degradation characteristics of turbocharger nozzle rings in marine diesel engines by conducting numerical analysis and solid particle erosion (SPE) tests to examine their structural stability and morphological surface damage trends. The fatigue analysis was conducted under a load condition [...] Read more.
This study investigates the degradation characteristics of turbocharger nozzle rings in marine diesel engines by conducting numerical analysis and solid particle erosion (SPE) tests to examine their structural stability and morphological surface damage trends. The fatigue analysis was conducted under a load condition corresponding to 100% output of the main engine, using ANSYS software. The SPE test was conducted in accordance with ASTM G76-05 standards, and the weight loss and erosion rate were calculated. Surface damage was closely examined through 3D analysis and scanning electron microscopy (SEM). The flow analysis revealed that the loads were highly concentrated at the nozzle ring inlet and the leading edge of the blades, with a maximum pressure coefficient of 0.07678 MPa. The load decreased toward the trailing edge of the nozzle ring, and the surface pressure coefficients of the flange, inner hoop, and outer hoop—where the nozzle ring blades are fixed—were found to be nearly identical. The fatigue life of the nozzle ring under 100% engine load was calculated as 1.377e+7 cycles, with a fatigue damage value of 1.32e+32. Notably, the fatigue life in the regions near the inner and outer hoops of the nozzle ring approached zero. The results of the SPE test using spherical SiO2 particles confirmed that the surface damage of the nozzle ring material, 316L stainless steel, followed a typical ductile material damage mechanism. In addition, the surface damage characteristics were significantly influenced by SPE test parameters such as the shape of solid particles, nozzle diameter, and impact angle. Full article
Show Figures

Figure 1

23 pages, 5570 KiB  
Article
Evaluation of Coastal Sediment Dynamics Utilizing Natural Radionuclides and Validated In-Situ Radioanalytical Methods at Legrena Beach, Attica Region, Greece
by Christos Tsabaris, Alicia Tejera, Ronald L. Koomans, Damien Pham van Bang, Abdelkader Hammouti, Dimitra Malliouri, Vasilios Kapsimalis, Pablo Martel, Ana C. Arriola-Velásquez, Stylianos Alexakis, Effrosyni G. Androulakaki, Georgios Eleftheriou, Kennedy Kilel, Christos Maramathas, Dionisis L. Patiris and Hannah Affum
J. Mar. Sci. Eng. 2025, 13(7), 1229; https://doi.org/10.3390/jmse13071229 - 26 Jun 2025
Viewed by 521
Abstract
This study was realized in the frame of an IAEA Coordinated Research Project for the evaluation of sediment dynamics, applying in-situ radiometric methods accompanied with a theoretical model. The in-situ methods were validated using lab-based high-resolution gamma-ray spectrometry. Sediment dynamics assessments were performed [...] Read more.
This study was realized in the frame of an IAEA Coordinated Research Project for the evaluation of sediment dynamics, applying in-situ radiometric methods accompanied with a theoretical model. The in-situ methods were validated using lab-based high-resolution gamma-ray spectrometry. Sediment dynamics assessments were performed based on the measured and mapped activity concentrations of specific 238U progenies (214Bi or 214Pb), 232Th progenies (208Tl and 228Ac), and 40K along the shoreline of the beach. The maps of the activity concentrations of natural radionuclides were produced rapidly using software tools (R language v4.5). The sediment dynamics of the studied area were also investigated through numerical simulations, applying an open source model considering land–sea interactions and meteorological conditions and the corresponding sediment processes. The assessments, which were conducted utilizing the detailed data from the natural radioactivity maps, were validated by the simulation results, since both were found to be in agreement. Generally, it was confirmed that the distribution of radionuclides reflects the selective transport processes of sediments, which are related to the corresponding processes that occur in the study area. Legrena Beach in Attica, Greece, served as a pilot area for the comparative analysis of methods and demonstration of their relevance and applicability for studying coastal processes. Full article
Show Figures

Figure 1

34 pages, 2086 KiB  
Review
Local Scour Around Marine Structures: A Comprehensive Review of Influencing Factors, Prediction Methods, and Future Directions
by Bingchuan Duan, Duoyin Wang, Chenxi Qin and Lunliang Duan
Buildings 2025, 15(12), 2125; https://doi.org/10.3390/buildings15122125 - 19 Jun 2025
Viewed by 673
Abstract
Local scour is a phenomenon of sediment erosion and transport caused by the dynamic interaction between water flow and seabed sediment, posing a serious threat to the safety of marine engineering structures such as cross-sea bridges and offshore wind turbines. To improve scour [...] Read more.
Local scour is a phenomenon of sediment erosion and transport caused by the dynamic interaction between water flow and seabed sediment, posing a serious threat to the safety of marine engineering structures such as cross-sea bridges and offshore wind turbines. To improve scour prediction and prevention capabilities, this review systematically analyzes the influence mechanisms of factors such as hydrodynamic conditions, sediment characteristics, and structural geometry, and discusses scour protection measures. Based on this, a comprehensive evaluation of the applicability of different prediction methods, including traditional empirical formulas, numerical simulations, probabilistic prediction models, and machine learning (ML) methods, was conducted. The study focuses on analyzing the limitations of existing methods: empirical formulas lack adaptability under complex field conditions, numerical simulation still faces challenges in validating real marine environments, and data-driven models suffer from “black box” issues and insufficient generalization capabilities. Based on the current research progress, this review presents prospects for future development, emphasizing the need to deepen the study of scouring mechanisms in complex real marine environments, develop efficient numerical models for engineering applications, and explore intelligent prediction methods that integrate data-driven approaches with physical mechanisms. This aims to provide more reliable theoretical support for the safe design, risk prevention, and scouring mitigation measures in marine engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

25 pages, 20771 KiB  
Article
Sedimentary and Early Diagenetic Responses to the Huaiyuan Movement During the Early–Middle Ordovician Transition in the Ordos Basin, North China
by Hao Quan, Zhou Yu, Zhanfeng Qiao, Chenqing Li, Pan Xia, Zhongtang Su, Huaguo Wen, Min Qin and Meng Ning
Geosciences 2025, 15(6), 219; https://doi.org/10.3390/geosciences15060219 - 12 Jun 2025
Viewed by 405
Abstract
The early Paleozoic Huaiyuan Movement created a major unconformity in the Ordos Basin, significantly influencing sedimentation and early diagenesis in both the overlying and underlying strata near the unconformity. However, the origins of the associated dolomite and silica near this unconformity remain poorly [...] Read more.
The early Paleozoic Huaiyuan Movement created a major unconformity in the Ordos Basin, significantly influencing sedimentation and early diagenesis in both the overlying and underlying strata near the unconformity. However, the origins of the associated dolomite and silica near this unconformity remain poorly understood. This study aims to reveal how this tectonic event controlled the Early–Middle Ordovician sedimentary environments and early diagenetic processes. The petrological and geochemical results indicate a progressive transition from a dolomitic tidal flat to an intra-platform depression, culminating in a mixed tidal flat during the Early-to-Middle Ordovician, driven by the Huaiyuan Movement. Furthermore, this movement, accompanied by intense weathering and erosion, increased the supply of marine dissolved silica (DSi) and terrestrial nutrients. Consequently, extensive tidal-edge biogenic silica accumulated, which later precipitated as siliceous-cemented dolomite during a shallow-burial stage. We propose a conceptual model of the sedimentary–early diagenetic processes in response to the Huaiyuan Movement, providing novel insights into the regional paleoenvironmental evolution across the Early–Middle Ordovician transition in the Ordos Basin. Full article
Show Figures

Figure 1

22 pages, 3288 KiB  
Review
Recent Developments on Biomineralization for Erosion Control
by Shan Liu, Changrui Dong, Yongqiang Zhu, Zichun Wang, Yujie Li and Guohui Feng
Appl. Sci. 2025, 15(12), 6591; https://doi.org/10.3390/app15126591 - 11 Jun 2025
Viewed by 577
Abstract
Erosion poses significant threats to infrastructures and ecosystems, exacerbated by climate change-driven sea-level rise and intensified wave actions. Microbially induced calcium carbonate precipitation (MICP) has emerged as a promising, sustainable, and eco-friendly solution for erosion mitigation. This review synthesizes recent advancements in optimizing [...] Read more.
Erosion poses significant threats to infrastructures and ecosystems, exacerbated by climate change-driven sea-level rise and intensified wave actions. Microbially induced calcium carbonate precipitation (MICP) has emerged as a promising, sustainable, and eco-friendly solution for erosion mitigation. This review synthesizes recent advancements in optimizing biomineralization efficiency, multi-scale erosion control, and field-scale MICP implementations in marine dynamic conditions. Key findings include the following: (1) Kinetic analysis of Ca2+ conversion confirmed complete ion utilization within 24 h under optimized PA concentration (3%), resulting in a compressive strength of 2.76 MPa after five treatment cycles in ISO-standard sand. (2) Field validations in Ahoskie and Sanya demonstrated the efficacy of MICP in coastal erosion control through tailored delivery systems and environmental adaptations. Sanya’s studies highlighted seawater-compatible MICP solutions, achieving maximum 1743 kPa penetration resistance in the atmospheric zone and layered “M-shaped” CaCO3 precipitation in tidal regions. (3) Experimental studies revealed that MICP treatments (2–4 cycles) reduced maximum scour depth by 84–100% under unidirectional currents (0.3 m/s) with the maximum surface CaCO3 content reaching 3.8%. (4) Numerical simulations revealed MICP enhanced seabed stability by increasing vertical effective stress and reducing pore pressure. Comparative analysis demonstrates that while the destabilization depth of untreated seabed exhibits a linear correlation with wave height increments, MICP-treated seabed formations maintain exceptional stability through cohesion-enhancing properties, even when subjected to progressively intensified wave forces. This review supports the use of biomineralization as a sustainable alternative for shoreline protection, seabed stabilization, and offshore foundation integrity. Full article
(This article belongs to the Special Issue Sustainable Research on Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

18 pages, 4011 KiB  
Article
Effect of Marine Coolant Additives on Cavitation Erosion–Corrosion of Diesel Engine Cylinder Liner
by Woo-Seok Jeon and Il-Cho Park
Appl. Sci. 2025, 15(11), 6353; https://doi.org/10.3390/app15116353 - 5 Jun 2025
Viewed by 456
Abstract
In this study, cavitation erosion tests were conducted to investigate the effects of the presence of coolant additives and chlorides on the corrosion and cavitation erosion of cylinder liners in marine diesel engines. Electrochemical experiments were conducted to evaluate the corrosion characteristics of [...] Read more.
In this study, cavitation erosion tests were conducted to investigate the effects of the presence of coolant additives and chlorides on the corrosion and cavitation erosion of cylinder liners in marine diesel engines. Electrochemical experiments were conducted to evaluate the corrosion characteristics of ductile cast iron (DCI), and the corrosion potential and corrosion current density were measured. In addition, weight loss, surface roughness, and maximum surface damage depth were quantified as a function of cavitation exposure time. Furthermore, to investigate the erosion and erosion–corrosion characteristics induced by cavitation attack, the damaged surface morphology was closely examined using a scanning electron microscope (SEM) after the cavitation erosion tests. The results revealed that the coolant additive effectively protected the DCI from corrosion caused by aggressive chlorides. In particular, when an appropriate amount of additive was added to a coolant containing 100 ppm of chloride, the corrosion current density of DCI was reduced by approximately 31.7 times, significantly improving corrosion resistance. Therefore, different surface damage mechanisms corresponding to cavitation erosion and cavitation erosion–corrosion were identified depending on the presence or absence of the coolant additive during the cavitation erosion tests. Full article
Show Figures

Figure 1

20 pages, 4934 KiB  
Article
Assessing the Retreat of a Sandy Shoreline Backed by Coastal Aquaculture Ponds: A Case Study of Two Beaches in Guangdong Province, China
by Zhubin Cao, Yuan Li, Weiqiu Chen, Shanhang Chi and Chi Zhang
Water 2025, 17(11), 1583; https://doi.org/10.3390/w17111583 - 23 May 2025
Viewed by 435
Abstract
China has the world’s largest area of coastal aquaculture ponds, accounting for 39% of the total coastal aquaculture pond area worldwide. The rapid development of coastal aquaculture can significantly reduce global food shortages and support the development of marine economies on the Chinese [...] Read more.
China has the world’s largest area of coastal aquaculture ponds, accounting for 39% of the total coastal aquaculture pond area worldwide. The rapid development of coastal aquaculture can significantly reduce global food shortages and support the development of marine economies on the Chinese mainland. However, coastal aquaculture ponds have been recognized as a beach hazard because they require pipes to be laid on the surface of the beach to discharge wastewater, polluting the beach and artificially dividing it into multiple segments. Based on a well-conceived remote sensing analysis, the erosion of beaches backed by densely distributed coastal aquaculture ponds was determined to be 10 m/y. A high-efficiency shoreline evolution model was verified using a satellite-derived shoreline dataset. For the present case, the Brier Skill Score (BSS) was calculated to be 0.55, indicating a moderate match between the modeled and satellite-derived shoreline datasets. The verified ShorelineS model was then used to predict the future evolution of a shoreline backed by densely distributed coastal aquacultural ponds. The retreat distance of the erosion hotspot was predicted to increase from 150 m in 2025 to 240 m in 2040. It is expected that the beach will lose the entirety of its dry part in the future. Potential strategies for beach protection include reasonable management and the ecological restoration and nourishment of the beach. Full article
(This article belongs to the Special Issue Coastal Management and Nearshore Hydrodynamics, 2nd Edition)
Show Figures

Figure 1

Back to TopTop