Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = marine electric propulsion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 2307 KiB  
Article
Modeling of Energy Management System for Fully Autonomous Vessels with Hybrid Renewable Energy Systems Using Nonlinear Model Predictive Control via Grey Wolf Optimization Algorithm
by Harriet Laryea and Andrea Schiffauerova
J. Mar. Sci. Eng. 2025, 13(7), 1293; https://doi.org/10.3390/jmse13071293 - 30 Jun 2025
Viewed by 320
Abstract
This study presents a multi-objective predictive energy management system (EMS) for optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective is to minimize fuel consumption and emissions while maximizing renewable energy usage and pure-electric sailing durations. The EMS combines nonlinear [...] Read more.
This study presents a multi-objective predictive energy management system (EMS) for optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective is to minimize fuel consumption and emissions while maximizing renewable energy usage and pure-electric sailing durations. The EMS combines nonlinear model predictive control (NMPC) with metaheuristic optimizers—Grey Wolf Optimization (GWO) and Genetic Algorithm (GA)—and is benchmarked against a conventional rule-based (RB) method. The HRES architecture comprises photovoltaic arrays, vertical-axis wind turbines (VAWTs), diesel engines, generators, and a battery storage system. A ship dynamics model was used to represent propulsion power under realistic sea conditions. Simulations were conducted using real-world operational and environmental datasets, with state prediction enhanced by an Extended Kalman Filter (EKF). Performance is evaluated using marine-relevant indicators—fuel consumption; emissions; battery state of charge (SOC); and emission cost—and validated using standard regression metrics. The NMPC-GWO algorithm consistently outperformed both NMPC-GA and RB approaches, achieving high prediction accuracy and greater energy efficiency. These results confirm the reliability and optimization capability of predictive EMS frameworks in reducing emissions and operational costs in autonomous maritime operations. Full article
(This article belongs to the Special Issue Advancements in Hybrid Power Systems for Marine Applications)
Show Figures

Figure 1

19 pages, 4849 KiB  
Article
Optimal Design for Torque Ripple Reduction in a Traction Motor for Electric Propulsion Vessels
by Gi-haeng Lee and Yong-min You
Actuators 2025, 14(7), 314; https://doi.org/10.3390/act14070314 - 24 Jun 2025
Viewed by 281
Abstract
Recently, as carbon emission regulations enforced by the International Maritime Organization (IMO) have become stricter and pressure from the World Trade Organization (WTO) to abolish tax-free fuel subsidies has increased, the demand for electric propulsion systems in the marine sector has grown. Most [...] Read more.
Recently, as carbon emission regulations enforced by the International Maritime Organization (IMO) have become stricter and pressure from the World Trade Organization (WTO) to abolish tax-free fuel subsidies has increased, the demand for electric propulsion systems in the marine sector has grown. Most small domestic fishing vessels rely on tax-free fuel and have limited cruising ranges and constant-speed operation, which makes them well-suited for electric propulsion. This paper proposes replacing the internal combustion engine system of such vessels with an electric propulsion system. Based on real operating conditions, an Interior Permanent Magnet Synchronous Motor (IPMSM) was designed and optimized. The Savitsky method was used to calculate total resistance at a typical cruising speed, from which the required torque and output were determined. To reduce torque ripple, an asymmetric dummy slot structure was proposed, with two dummy slots of different widths and depths placed in each stator slot. These dimensions, along with the magnet angle, were set as optimization parameters, and a metamodel-based optimal design was carried out. As a result, while meeting the design constraints, torque ripple decreased by 2.91% and the total harmonic distortion (THD) of the back-EMF was lowered by 1.32%. Full article
(This article belongs to the Special Issue Feature Papers in Actuators for Surface Vehicles)
Show Figures

Figure 1

26 pages, 6783 KiB  
Article
Robust Optimal Power Scheduling for Fuel Cell Electric Ships Under Marine Environmental Uncertainty
by Gabin Kim, Minji Lee and Il-Yop Chung
Energies 2025, 18(11), 2837; https://doi.org/10.3390/en18112837 - 29 May 2025
Viewed by 396
Abstract
This paper presents a robust optimization-based approach for voyage and power generation scheduling to enhance the economic efficiency and reliability of electric propulsion ships powered by polymer electrolyte membrane fuel cells (PEMFCs) and battery energy storage systems (BESSs). The scheduling method is formulated [...] Read more.
This paper presents a robust optimization-based approach for voyage and power generation scheduling to enhance the economic efficiency and reliability of electric propulsion ships powered by polymer electrolyte membrane fuel cells (PEMFCs) and battery energy storage systems (BESSs). The scheduling method is formulated considering generation cost curves of PEMFCs with mixed-integer linear programming (MILP) and is extended to a robust optimization framework that accounts for marine environmental uncertainties. The robust optimization approach, implemented via the column-and-constraint generation (C&CG) method, ensures stable operation under various uncertainty scenarios, such as wave speed and direction influenced by wind and tidal currents. To validate the proposed method, a simulation was conducted under realistic operational conditions, followed by a case study comparing the MILP and robust optimization approaches in terms of economic efficiency and reliability. Additionally, the optimization model incorporated degradation costs associated with PEMFCs and BESSs to account for long-term operational efficiency. The case study assessed the performance of both methods under load variation scenarios across different marine environmental uncertainties. Full article
(This article belongs to the Special Issue Advancements in Marine Renewable Energy and Hybridization Prospects)
Show Figures

Figure 1

28 pages, 10026 KiB  
Article
Zero-Vector-Free MPC with Virtual Vector Synthesis for CMV Suppression in Electric Propulsion Systems
by Sung-woo Song and Chan Roh
J. Mar. Sci. Eng. 2025, 13(6), 1010; https://doi.org/10.3390/jmse13061010 - 22 May 2025
Viewed by 456
Abstract
This study proposes a novel finite control set model predictive control strategy (FCS-MPC) to suppress common-mode voltage (CMV) in electric propulsion systems while maintaining current quality. The key innovation is a virtual multi-vector synthesis method that eliminates zero-voltage vectors by adaptively generating small [...] Read more.
This study proposes a novel finite control set model predictive control strategy (FCS-MPC) to suppress common-mode voltage (CMV) in electric propulsion systems while maintaining current quality. The key innovation is a virtual multi-vector synthesis method that eliminates zero-voltage vectors by adaptively generating small and medium vectors based on the modulation index and voltage sector. Unlike conventional CMV-reduction methods that compromise current quality or rely on fixed switching states, the proposed method enhances voltage resolution without relying on zero vectors. Simulation results demonstrate that, compared to conventional MPC, the proposed method reduces the CMV from approximately 100 V to 33 V—a 66.7% reduction. In terms of current quality, it achieves a 22.0% reduction in total harmonic distortion (THD) compared to the conventional reduced-CMV MPC method under low modulation conditions, while avoiding its excessive switching frequency. Experimental validation confirms both stable waveform generation and robust CMV suppression, while the proposed MPC reduces DSP execution time from 30.88 μs to 22.71 μs, thereby increasing computational availability to 77.3% and enabling real-time implementation on low-cost hardware. These results confirm the practicality of the proposed controller for real-time marine propulsion systems requiring both electromagnetic compatibility and high current quality. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

38 pages, 2428 KiB  
Review
Overview of Dual Two-Level Inverter Configurations for Open-End Winding Machines: Enhancing Power Quality and Efficiency
by Mohammed Zerdani, Sid Ahmed El Mehdi Ardjoun and Houcine Chafouk
Appl. Sci. 2025, 15(10), 5611; https://doi.org/10.3390/app15105611 - 17 May 2025
Viewed by 682
Abstract
Today, power electronic-based converters are at the core of many modern systems, such as smart grids and electric vehicles. In this context, the Dual Two-Level Inverter (DTLI) supplying an open-end winding machine offers an innovative and promising solution for marine propulsion, aeronautics, and [...] Read more.
Today, power electronic-based converters are at the core of many modern systems, such as smart grids and electric vehicles. In this context, the Dual Two-Level Inverter (DTLI) supplying an open-end winding machine offers an innovative and promising solution for marine propulsion, aeronautics, and electric vehicles. This configuration provides several advantages, including a reduced DC bus voltage, enhanced fault tolerance, and improved overall system performance. However, ensuring optimal energy efficiency and high-power quality remains a major challenge given the increasing demands for performance and sustainability. This paper presents a state-of-the-art review of the main DTLI configurations and their impact on system performance. Three architectures are analyzed, highlighting their benefits and limitations. This study aims to demonstrate the influence of the DC bus voltage ratio and pulse width modulation strategies on power quality and energy efficiency. The objective is to enhance the understanding of the DTLI’s potential and to guide its integration into other electrical systems. Full article
(This article belongs to the Special Issue Challenges for Power Electronics Converters, 2nd Edition)
Show Figures

Figure 1

23 pages, 9176 KiB  
Article
Advancing Discontinuous-Model Predictive Control for High Performance Inverters via Optimized Zero-Voltage State Selection Based on Offset Voltage
by Eui-cheol Shin, Hyeon-gyo Chae and Chan Roh
Appl. Sci. 2025, 15(10), 5532; https://doi.org/10.3390/app15105532 - 15 May 2025
Viewed by 412
Abstract
Electric propulsion ships have garnered significant attention for addressing the environmental impact associated with conventional shipping vessels. Their performance critically depends on the inverters that control propulsion motors. This study aims to enhance inverter control by addressing the limitations of conventional model predictive [...] Read more.
Electric propulsion ships have garnered significant attention for addressing the environmental impact associated with conventional shipping vessels. Their performance critically depends on the inverters that control propulsion motors. This study aims to enhance inverter control by addressing the limitations of conventional model predictive control (MPC), particularly its high current errors and total harmonic distortion (THD) owing to the limited switching frequency. Herein, a discontinuous MPC is proposed that is capable of reducing the switching losses by implementing discontinuous switching during high current periods. This approach employs zero-voltage vectors that are selected based on the polarity of the offset voltage to prevent unnecessary switching losses. Experimental results indicate that the proposed approach reduces the current error by up to 45%, THD by up to 30%, and switching losses by 15–25%. Therefore, this study demonstrates the potential of the proposed control strategy to improve the efficiency and reliability of electric propulsion systems, thereby contributing to the advancement of inverter control technology and development of eco-friendly shipping vessels. Full article
(This article belongs to the Special Issue Power Electronics: Control and Applications)
Show Figures

Figure 1

36 pages, 4700 KiB  
Review
Electrification in Maritime Vessels: Reviewing Storage Solutions and Long-Term Energy Management
by Ahmet Aksöz, Burçak Asal, Saeed Golestan, Merve Gençtürk, Saadin Oyucu and Emre Biçer
Appl. Sci. 2025, 15(10), 5259; https://doi.org/10.3390/app15105259 - 8 May 2025
Viewed by 2050
Abstract
Electric and hybrid marine vessels are marking a new phase of eco-friendly maritime transport, combining electricity and traditional propulsion to boost efficiency and reduce emissions. The industry’s advancements in charging infrastructure and strict regulations help these vessels lead the way toward a sustainable [...] Read more.
Electric and hybrid marine vessels are marking a new phase of eco-friendly maritime transport, combining electricity and traditional propulsion to boost efficiency and reduce emissions. The industry’s advancements in charging infrastructure and strict regulations help these vessels lead the way toward a sustainable and economically viable future in shipping. In this review, electric and hybrid marine vessels are discussed, including past applications and trend demonstrations. This paper systematically analyzes maritime vessels’ energy management and battery systems, highlighting advances in lithium-based and alternative battery technologies. Additionally, the review examines the impact of these technologies on sustainability and operational efficiency in the maritime industry. This paper contributes to the field by presenting a holistic view of the challenges and solutions associated with the electrification of maritime vessels, aiming to inform future developments and policymaking in this dynamic sector. Unlike many existing reviews that focus exclusively on battery chemistries or energy management algorithms, this manuscript integrates multiple aspects of maritime electrification—including propulsion types, charging infrastructure, grid systems (MVDC), EMS, BMS, and AI applications—into one cohesive systems-level review. This cross-sectional integration is particularly rare in the literature and enhances the practical value of the review for designers, policymakers, and shipbuilders. Full article
Show Figures

Figure 1

16 pages, 13077 KiB  
Article
Effect of Blade Number on Tip Vortex Cavitation of Propeller
by Yanan Wang, Yang Xiao, Bin Fang, Wen Li, Chuanzhi Duan, Weipeng Zhang and Jian Hu
J. Mar. Sci. Eng. 2025, 13(5), 915; https://doi.org/10.3390/jmse13050915 - 6 May 2025
Viewed by 543
Abstract
Tip vortex cavitation not only impacts the hydrodynamic performance of a propeller but also results in vibrations, noise, and erosion. In this study, the effect of blade number on propeller tip vortex cavitation is investigated using computational fluid dynamics (CFD) methods. Numerical simulation [...] Read more.
Tip vortex cavitation not only impacts the hydrodynamic performance of a propeller but also results in vibrations, noise, and erosion. In this study, the effect of blade number on propeller tip vortex cavitation is investigated using computational fluid dynamics (CFD) methods. Numerical simulation is performed regarding four model propellers with blade numbers varying from one to four. These propellers have the same blade geometry as the E779A propeller. Large eddy simulation (LES) and the Schnerr–Sauer cavitation model are used to solve tip vortex cavitation with local mesh refinement according to the spiral tip vortex trajectory. The hydrodynamic performance and tip cavitation of the propellers are solved and analyzed to reveal the fluid mechanism of tip vortex formation. The effect of blade number on wake velocity and wake vorticity is discussed. Numerical analysis showed that the increase in blade number leads to a reduction in the thrust and torque of a single blade, although the total thrust and torque of all blades increased. The present study takes new insights to the suppression of tip vortex cavitation, which benefits propeller design. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

32 pages, 4936 KiB  
Article
Optimization and Performance Evaluation of PM Motor and Induction Motor for Marine Propulsion Systems
by Theoklitos S. Karakatsanis
Appl. Syst. Innov. 2025, 8(3), 58; https://doi.org/10.3390/asi8030058 - 29 Apr 2025
Viewed by 1803
Abstract
The electrification of ships and the use of electric propulsion systems are projects which have attracted increased research and industrial interest in recent years. Efforts are particularly focused on reducing pollutants for better environmental conditions and increasing efficiency. The main source of propulsion [...] Read more.
The electrification of ships and the use of electric propulsion systems are projects which have attracted increased research and industrial interest in recent years. Efforts are particularly focused on reducing pollutants for better environmental conditions and increasing efficiency. The main source of propulsion for such a ship’s shafts is related to the operation of electrical machines. In this case, several advantages are offered, related to both reduced fuel consumption and system functionality. Nowadays, two types of electric motors are used in propulsion applications: traditional induction motors (IMs) and permanent magnet synchronous motors (PMSMs). The evolution of magnetic materials and increased interest in high efficiency and power density have established PMSMs as the dominant technology in various industrial and maritime applications. This paper presents a comprehensive comparative analysis of PMSMs and both Squirrel-Cage and Wound-Rotor IMs for ship propulsion applications, focusing on design optimization. The study shows that PMSMs can be up to 3.11% more efficient than IMs. Additionally, the paper discusses critical operational and economic aspects of adopting PMSMs in large-scale ship propulsion systems, such as various load conditions, torque ripple, thermal behavior, material constraints, control complexity, and lifetime costs, contributing to decision making in the marine industry. Full article
Show Figures

Figure 1

59 pages, 16255 KiB  
Review
Research Progress of Fuel Cell Technology in Marine Applications: A Review
by Zheng Zhang, Xiangxiang Zheng, Daan Cui, Min Yang, Mojie Cheng and Yulong Ji
J. Mar. Sci. Eng. 2025, 13(4), 721; https://doi.org/10.3390/jmse13040721 - 3 Apr 2025
Cited by 2 | Viewed by 1483
Abstract
With the increasing severity of global environmental issues and the pressure from the strict pollutant emission regulations proposed by the International Maritime Organization (IMO), the shipping industry is seeking new types of marine power systems that can replace traditional propulsion systems. Marine fuel [...] Read more.
With the increasing severity of global environmental issues and the pressure from the strict pollutant emission regulations proposed by the International Maritime Organization (IMO), the shipping industry is seeking new types of marine power systems that can replace traditional propulsion systems. Marine fuel cells, as an emerging energy technology, only emit water vapor or a small amount of carbon dioxide during operation, and have received widespread attention in recent years. However, research on their application in the shipping industry is relatively limited. Therefore, this paper collects relevant reports and literature on the use of fuel cells on ships over the past few decades, and conducts a thorough study of typical fuel cell-powered vessels. It summarizes and proposes current design schemes and optimization measures for marine fuel cell power systems, providing directions for further improving battery performance, reducing carbon emissions, and minimizing environmental pollution. Additionally, this paper compares and analyzes marine fuel cells with those used in automotive, aviation, and locomotive applications, offering insights and guidance for the development of marine fuel cells. Although hydrogen fuel cell technology has made significant progress in recent years, issues still exist regarding hydrogen production, storage, and related safety and standardization concerns. In terms of comprehensive performance and economics, it still cannot effectively compete with traditional internal combustion engines. However, with the continued rapid development of fuel cell technology, marine fuel cells are expected to become a key driver for promoting green shipping and achieving carbon neutrality goals. Full article
(This article belongs to the Special Issue Marine Fuel Cell Technology: Latest Advances and Prospects)
Show Figures

Figure 1

18 pages, 7522 KiB  
Article
Development of a Fault Prediction Algorithm for Marine Propulsion Energy Storage System
by Jaehoon Lee, Sang-Kyun Park, Salim Abdullah Bazher and Daewon Seo
Energies 2025, 18(7), 1687; https://doi.org/10.3390/en18071687 - 27 Mar 2025
Cited by 1 | Viewed by 354
Abstract
The transition to environmentally sustainable maritime operations has gained urgency with the International Maritime Organization’s (IMO) 2023 GHG reduction strategy, aiming for net-zero emissions by 2050. While alternative fuels like LNG and methanol serve as transitional solutions, lithium-ion battery energy storage systems (ESSs) [...] Read more.
The transition to environmentally sustainable maritime operations has gained urgency with the International Maritime Organization’s (IMO) 2023 GHG reduction strategy, aiming for net-zero emissions by 2050. While alternative fuels like LNG and methanol serve as transitional solutions, lithium-ion battery energy storage systems (ESSs) offer a viable low-emission alternative. However, safety concerns such as thermal runaway, overcharging, and internal faults pose significant risks to marine battery systems. This study presents an AI-based fault prediction algorithm to enhance the safety and reliability of lithium-ion battery systems used in electric propulsion ships. The research employs a Long Short-Term Memory (LSTM)-based predictive model, integrating electrochemical impedance spectroscopy (EIS) data and voltage deviation analyses to identify failure patterns. Bayesian optimization is applied to fine-tune hyperparameters, ensuring high predictive accuracy. Additionally, a recursive multi-step prediction model is developed to anticipate long-term battery performance trends. The proposed algorithm effectively detects voltage deviations and pre-emptively predicts battery failures, mitigating fire hazards and ensuring operational stability. The findings support the development of safer and more reliable energy storage solutions, contributing to the broader adoption of electric propulsion in maritime applications. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

20 pages, 5582 KiB  
Article
Dual-Vector-Based Model Predictive Current Control with Online Parameter Identification for Permanent-Magnet Synchronous Motor Drives in Marine Electric Power Propulsion System
by Shengqi Huang, Yuanwei Zhang, Lei Shi, Yuqing Huang and Bin Chang
J. Mar. Sci. Eng. 2025, 13(3), 585; https://doi.org/10.3390/jmse13030585 - 17 Mar 2025
Cited by 1 | Viewed by 558
Abstract
Due to its high efficiency, reliability, and environmental benefits, the permanent-magnet synchronous motor (PMSM) is increasingly being used in marine propulsion applications. As a promising solution, finite-control-set model predictive current control (FCS-MPCC) has been gaining attention in marine propulsion systems. However, FCS-MPCC for [...] Read more.
Due to its high efficiency, reliability, and environmental benefits, the permanent-magnet synchronous motor (PMSM) is increasingly being used in marine propulsion applications. As a promising solution, finite-control-set model predictive current control (FCS-MPCC) has been gaining attention in marine propulsion systems. However, FCS-MPCC for PMSM drives applies only a single switching state within each control cycle. Moreover, its prediction model depends on motor parameters. To address this issue, a dual-vector (DV)-based MPCC (DV-MPCC) incorporating online parameter identification was proposed. Firstly, a DV-MPCC suitable for a two-phase stationary reference frame was introduced. To reduce torque ripple, the DV combination was generated based on the error current vector, and the action time was allocated in accordance with the minimum root mean square error of the current. Furthermore, a model reference adaptive system (MRAS) for multi-parameter identification was developed based on the incremental current state equation. This equation was constructed and used as an adjustable model, enabling accurate estimation of resistance and inductance parameters, even when the flux parameter was completely unknown. Additionally, the proposed method addressed the identification error caused by rank deficiency. Experimental validation confirmed the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

20 pages, 3067 KiB  
Article
Improved Deadbeat Predictive Direct Power Control for Three-Phase PWM Rectifier Based on LADRC
by He Ma, Xuliang Yao, Jingfang Wang, Xinghong Luo and Shengqi Huang
J. Mar. Sci. Eng. 2025, 13(3), 402; https://doi.org/10.3390/jmse13030402 - 21 Feb 2025
Viewed by 600
Abstract
In modern marine vessels equipped with electric propulsion systems, rectifiers are commonly used as part of the setup. However, the conventional deadbeat predictive direct power control strategy for three-phase voltage source pulse-width modulation (PWM) rectifiers tends to underperform when subjected to load variations [...] Read more.
In modern marine vessels equipped with electric propulsion systems, rectifiers are commonly used as part of the setup. However, the conventional deadbeat predictive direct power control strategy for three-phase voltage source pulse-width modulation (PWM) rectifiers tends to underperform when subjected to load variations and external disturbances. To address these limitations, this paper proposes an enhanced linear active disturbance rejection control (LADRC), incorporating virtual capacitance and an improved equivalent input disturbance strategy. The integration of virtual capacitance in the LADRC is specifically applied during load transitions. Virtual capacitance is a capacitor element simulated through the control strategy. It enhances voltage stability and dynamic response capability by compensating for voltage fluctuations and power deficits in the system. By providing a virtual active power, this approach substantially improves power tracking performance, reducing the DC voltage drop and settling time by 60% and 74%, respectively. In addition, the proposed strategy is easy to implement and does not add complexity to the LADRC. Moreover, the equivalent input disturbance is refined through virtual capacitance, enabling accurate disturbance estimation. As a result, the active power ripple and current total harmonic distortion under disturbances are reduced by 44% and 40%, respectively. The stability of the proposed strategy is comprehensively analyzed, and experimental results from a prototype system validate its effectiveness and accuracy. Full article
(This article belongs to the Special Issue Optimization and Control of Marine Renewable Energy Systems)
Show Figures

Figure 1

22 pages, 8002 KiB  
Article
Controlling Engine Load Distribution in LNG Ship Propulsion Systems to Optimize Gas Emissions and Fuel Consumption
by Siniša Martinić-Cezar, Zdeslav Jurić, Nur Assani and Nikola Račić
Energies 2025, 18(3), 485; https://doi.org/10.3390/en18030485 - 22 Jan 2025
Cited by 1 | Viewed by 1097
Abstract
The increasing emphasis on environmental sustainability and stricter gas emissions regulations has made the optimization of fuel and emissions a crucial factor for marine propulsion systems. This paper investigates the potential to improve fuel efficiency and reduce emissions of LNG ship propulsion systems [...] Read more.
The increasing emphasis on environmental sustainability and stricter gas emissions regulations has made the optimization of fuel and emissions a crucial factor for marine propulsion systems. This paper investigates the potential to improve fuel efficiency and reduce emissions of LNG ship propulsion systems by using different load sharing strategies in Dual-Fuel Diesel-Electric (DFDE) propulsion systems. Using data collected from on-board cyclic measurements and an optimization model, the effects of different load sharing strategies for various types of fuel, such as HFO, MDO, and LNG, under different engine load conditions were investigated. The results of these strategies are compared with those of on-board power management systems (PMS), which evenly allocate power among the engines, irrespective of fuel usage and emission levels. The results show that load adjustments according to the optimization model can considerably increase fuel economy and contribute to the reduction of CO2 and NOx compared to standard practice at the equal load in different ship operating modes. Our approach introduces an innovative optimization concept that has been proven to improve fuel efficiency and reduce emissions beyond standard practices. This paper demonstrates the robustness of the model in balancing environmental and operational objectives and presents an effective approach for more sustainable and efficient ship operations. The results are in line with global sustainability efforts and provide valuable insights for future innovations in energy optimization and ship emission control. Full article
Show Figures

Figure 1

18 pages, 9055 KiB  
Article
A Study on Equivalent Series Resistance Estimation Compensation for DC-Link Capacitor Life Diagnosis of Propulsion Drive in Electric Propulsion Ship
by Chan Roh, Hyeon-min Jeon, Seong-wan Kim, Jong-su Kim, Sung-woo Song, Na-young Lee and Seok-cheon Kang
Processes 2025, 13(2), 291; https://doi.org/10.3390/pr13020291 - 21 Jan 2025
Viewed by 1074
Abstract
This study proposes a novel fault diagnosis algorithm based on Equivalent Series Resistance (ESR) estimation to enhance the accuracy of capacitor life diagnosis techniques for the DC link in marine electric propulsion systems. Accurate ESR estimation is critical for maintaining the reliability and [...] Read more.
This study proposes a novel fault diagnosis algorithm based on Equivalent Series Resistance (ESR) estimation to enhance the accuracy of capacitor life diagnosis techniques for the DC link in marine electric propulsion systems. Accurate ESR estimation is critical for maintaining the reliability and efficiency of DC-Link capacitors, which play a key role in stabilizing voltage, reducing harmonics, and ensuring the smooth operation of electric propulsion systems. By preventing capacitor failures, this algorithm contributes to reducing the risk of catastrophic damage to entire systems. The ESR value is determined by extracting AC voltage and current data within the frequency range of 10 kHz to 30 kHz using a band-pass filter. To improve reliability, the algorithm compensates for input errors based on the modulation index and switching pattern, with error data stored in a lookup table. By addressing limitations in existing ESR estimation techniques, the proposed method reduces estimation errors across the entire range and enhances fault diagnosis accuracy. Experimental results validate the algorithm’s improved accuracy, reliability, and stability, demonstrating its effectiveness in preventing damage to power conversion devices. Full article
Show Figures

Figure 1

Back to TopTop