Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (188)

Search Parameters:
Keywords = mangrove tree

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 25345 KiB  
Article
Mangrove Damage and Early-Stage Canopy Recovery Following Hurricane Roslyn in Marismas Nacionales, Mexico
by Samuel Velázquez-Salazar, Luis Valderrama-Landeros, Edgar Villeda-Chávez, Cecilia G. Cervantes-Rodríguez, Carlos Troche-Souza, José A. Alcántara-Maya, Berenice Vázquez-Balderas, María T. Rodríguez-Zúñiga, María I. Cruz-López and Francisco Flores-de-Santiago
Forests 2025, 16(8), 1207; https://doi.org/10.3390/f16081207 - 22 Jul 2025
Viewed by 1157
Abstract
Hurricanes are powerful tropical storms that can severely damage mangrove forests through uprooting trees, sediment erosion, and saltwater intrusion, disrupting their critical role in coastal protection and biodiversity. After a hurricane, evaluating mangrove damage helps prioritize rehabilitation efforts, as these ecosystems play a [...] Read more.
Hurricanes are powerful tropical storms that can severely damage mangrove forests through uprooting trees, sediment erosion, and saltwater intrusion, disrupting their critical role in coastal protection and biodiversity. After a hurricane, evaluating mangrove damage helps prioritize rehabilitation efforts, as these ecosystems play a key ecological role in coastal regions. Thus, we analyzed the defoliation of mangrove forest canopies and their early recovery, approximately 2.5 years after the landfall of Category 3 Hurricane Roslyn in October 2002 in Marismas Nacionales, Mexico. The following mangrove traits were analyzed: (1) the yearly time series of the Combined Mangrove Recognition Index (CMRI) standard deviation from 2020 to 2025, (2) the CMRI rate of change (slope) following the hurricane’s impact, and (3) the canopy height model (CHM) before and after the hurricane using satellite and UAV-LiDAR data. Hurricane Roslyn caused a substantial decrease in canopy cover, resulting in a loss of 47,202 ha, which represents 82.8% of the total area of 57,037 ha. The CMRI standard deviation indicated early signs of canopy recovery in one-third of the mangrove-damaged areas 2.5 years post-impact. The CMRI slope indicated that areas near the undammed rivers had a maximum recovery rate of 0.05 CMRI units per month, indicating a predicted canopy recovery of ~2.5 years. However, most mangrove areas exhibited CMRI rates between 0.01 and 0.03 CMRI units per month, anticipating a recovery time between 40 months (approximately 3.4 years) and 122 months (roughly 10 years). Unfortunately, most of the already degraded Laguncularia racemosa forests displayed a negative CMRI slope, suggesting a lack of canopy recovery so far. Additionally, the CHM showed a median significant difference of 3.3 m in the canopy height of fringe-type Rhizophora mangle and Laguncularia racemosa forests after the hurricane’s landfall. Full article
Show Figures

Figure 1

22 pages, 4017 KiB  
Article
Mapping and Estimating Blue Carbon in Mangrove Forests Using Drone and Field-Based Tree Height Data: A Cost-Effective Tool for Conservation and Management
by Ali Karimi, Behrooz Abtahi and Keivan Kabiri
Forests 2025, 16(7), 1196; https://doi.org/10.3390/f16071196 - 20 Jul 2025
Viewed by 448
Abstract
Mangrove forests are vital blue carbon (BC) ecosystems that significantly contribute to climate change mitigation through carbon sequestration. Accurate, scalable, and cost-effective methods for estimating carbon stocks in these environments are essential for conservation planning. In this study, we assessed the potential of [...] Read more.
Mangrove forests are vital blue carbon (BC) ecosystems that significantly contribute to climate change mitigation through carbon sequestration. Accurate, scalable, and cost-effective methods for estimating carbon stocks in these environments are essential for conservation planning. In this study, we assessed the potential of drones, also known as unmanned aerial vehicles (UAVs), for estimating above-ground biomass (AGB) and BC in Avicennia marina stands by integrating drone-based canopy measurements with field-measured tree heights. Using structure-from-motion (SfM) photogrammetry and a consumer-grade drone, we generated a canopy height model and extracted structural parameters from individual trees in the Melgonze mangrove patch, southern Iran. Field-measured tree heights served to validate drone-derived estimates and calibrate an allometric model tailored for A. marina. While drone-based heights differed significantly from field measurements (p < 0.001), the resulting AGB and BC estimates showed no significant difference (p > 0.05), demonstrating that crown area (CA) and model formulation effectively compensate for height inaccuracies. This study confirms that drones can provide reliable estimates of BC through non-invasive means—eliminating the need to harvest, cut, or physically disturb individual trees—supporting their application in mangrove monitoring and ecosystem service assessments, even under challenging field conditions. Full article
Show Figures

Figure 1

20 pages, 5767 KiB  
Article
Accurate Evaluation of Urban Mangrove Forest Health Considering Stand Structure Indicators Based on UAVs
by Chaoyang Zhai, Yiteng Zhang, Yifan Wu and Xiaoxue Shen
Forests 2025, 16(7), 1168; https://doi.org/10.3390/f16071168 - 16 Jul 2025
Viewed by 283
Abstract
Stand structural configuration dictates ecosystem functional performance. Mangrove ecosystems, located in ecologically sensitive coastal ecotones, require efficient acquisition of stand structure parameters and health assessments based on these parameters for practical applications. Effective assessment of mangrove ecosystem health, crucial for their functional performance [...] Read more.
Stand structural configuration dictates ecosystem functional performance. Mangrove ecosystems, located in ecologically sensitive coastal ecotones, require efficient acquisition of stand structure parameters and health assessments based on these parameters for practical applications. Effective assessment of mangrove ecosystem health, crucial for their functional performance in ecologically sensitive coastal ecotones, relies on efficient acquisition of stand structure parameters. This study developed a UAV (Unmanned Aerial Vehicle)-based framework for mangrove health evaluation integrating stand structure parameters, utilizing UAV visible-light imagery, field plot surveys, and computer vision techniques, and applied it to the assessment of a national nature reserve. We obtained the following results: (1) A deep neural network, combining UAV visible-light data with tree height constraints, achieved 88.29% overall accuracy in simultaneously identifying six dominant mangrove species; (2) Stand structure parameters were derived based on individual tree extraction results in seedling zones along forest edges (with canopy individual tree segmentation accuracy ≥ 78.57%), and a stand health evaluation model was constructed; (3) Health assessment revealed that the core zone exhibited significantly superior stand health compared to non-core zones. This method demonstrates high efficiency, significantly reducing the time and effort for monitoring, and offers robust support for future mangrove forest health assessments and adaptive conservation strategies. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

21 pages, 3134 KiB  
Article
Allometric Growth and Carbon Sequestration of Young Kandelia obovata Plantations in a Constructed Urban Costal Wetland in Haicang Bay, Southeast China
by Jue Zheng, Lumin Sun, Lingxuan Zhong, Yizhou Yuan, Xiaoyu Wang, Yunzhen Wu, Changyi Lu, Shufang Xue and Yixuan Song
Forests 2025, 16(7), 1126; https://doi.org/10.3390/f16071126 - 8 Jul 2025
Viewed by 429
Abstract
The focus of this study was on young populations of Kandelia obovata within a constructed coastal wetland in Haicang Bay, Xiamen, Southeast China. The objective was to systematically examine their allometric growth characteristics and carbon sequestration potential over an 8-year monitoring period (2016–2024). [...] Read more.
The focus of this study was on young populations of Kandelia obovata within a constructed coastal wetland in Haicang Bay, Xiamen, Southeast China. The objective was to systematically examine their allometric growth characteristics and carbon sequestration potential over an 8-year monitoring period (2016–2024). Allometric equations were developed to estimate biomass, and the spatiotemporal variation in both plant and soil carbon stocks was estimated. There was a significant increase in total biomass per tree, from 120 ± 17 g at initial planting to 4.37 ± 0.59 kg after 8 years (p < 0.001), with aboveground biomass accounting for the largest part (72.2% ± 7.3%). The power law equation with D2H as an independent variable yielded the highest predictive accuracy for total biomass (R2 = 0.957). Vegetation carbon storage exhibited an annual growth rate of 4.2 ± 0.8 Mg C·ha−1·yr−1. In contrast, sediment carbon stocks did not show a significant increase throughout the experimental period, although long-term accumulation was observed. The restoration of mangroves in urban coastal constructed wetlands is an effective measure to sequester carbon, achieving a carbon accumulation rate of 21.8 Mg CO2eq·ha−1·yr−1. This rate surpasses that of traditional restoration methods, underscoring the pivotal role of interventions in augmenting blue carbon sinks. This study provides essential parameters for allometric modeling and carbon accounting in urban mangrove afforestation strategies, facilitating optimized restoration management and low-carbon strategies. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 2562 KiB  
Article
Responses of Biomass and Allometric Growth Equations of Juvenile Mangrove Plants to Salinity, Flooding, and Aboveground Competition
by Kaijie Hu, Wei Wang, Wei Qian, Nong Sheng, Jiliang Cheng and Yanmei Xiong
Horticulturae 2025, 11(7), 712; https://doi.org/10.3390/horticulturae11070712 - 20 Jun 2025
Viewed by 368
Abstract
China has implemented large-scale mangrove restoration and afforestation initiatives in recent years. However, there has been a paucity of research on the growth of mangrove seedlings in a composite stress environment and the allometric growth equation of mangrove seedlings. To enhance juvenile mangrove [...] Read more.
China has implemented large-scale mangrove restoration and afforestation initiatives in recent years. However, there has been a paucity of research on the growth of mangrove seedlings in a composite stress environment and the allometric growth equation of mangrove seedlings. To enhance juvenile mangrove survival rates and develop precise carbon sequestration models, this study examines biomass accumulation patterns and allometric equation development under diverse environmental and biological conditions. A manipulative field experiment employed a three-factor full factorial design using seedlings from eight mangrove species. The experimental design incorporated three variables: salinity, flooding (environmental stressors), and aboveground interspecific competition (a biological factor). Following a two-year growth period, measurements of surviving seedlings’ basal diameter, plant height, and above- and belowground biomass were collected to assess growth responses and construct allometric models. Results indicated that high salinity reduced total mangrove biomass, whereas prolonged flooding increased tree height. Interspecific competition favored fast-growing species (e.g., Sonneratia caseolaris) while suppressing slow-growing counterparts (e.g., Avicennia marina). Synergistic effects between salinity and flooding influenced biomass and basal diameter, whereas salinity–flooding and salinity–competition interactions demonstrated antagonistic effects on tree height. High salinity, prolonged flooding, and competition elevated the proportion of aboveground biomass allocation. The results suggest that salinity stress and flooding stress were major growth-limiting factors for juvenile mangroves. Slow-growing species are not suitable to be mixed with fast-growing species in mangrove afforestation projects. Allometric models fitting for juvenile mangroves growing under different environmental factors were also developed. This study deepens our understanding of the growth of mangrove seedlings under composite stress conditions, provides effective tools for assessing the carbon sink potential of mangrove seedlings, and provides scientific guidance for future mangrove restoration projects. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

44 pages, 8654 KiB  
Article
Hidden Treasures of Colombia’s Pacific Mangrove: New Fungal Species and Records of Macrofungi (Basidiomycota)
by Viviana Motato-Vásquez, Lina Katherine Vinasco-Diaz, Jorge M. Londoño-Caicedo and Ana C. Bolaños-Rojas
J. Fungi 2025, 11(6), 459; https://doi.org/10.3390/jof11060459 - 17 Jun 2025
Viewed by 932
Abstract
Mangrove-associated fungi represent a diverse but understudied group of eukaryotic organisms, especially in the Neotropics. The Colombian Pacific region, with approximately 1300 km of coastline covered with 194,880 ha of mangrove forests that remain largely unexplored for macrofungal diversity, is recognized as a [...] Read more.
Mangrove-associated fungi represent a diverse but understudied group of eukaryotic organisms, especially in the Neotropics. The Colombian Pacific region, with approximately 1300 km of coastline covered with 194,880 ha of mangrove forests that remain largely unexplored for macrofungal diversity, is recognized as a global biodiversity hotspot. This study aimed to catalog the macrofungi associated with mangrove ecosystems in Colombia, integrating morphological characterization and molecular phylogenetics, focusing on three Valle del Cauca Pacific coast localities. A total of 81 specimens were collected from both living trees and decaying wood. Detailed macroscopic and microscopic analyses were conducted, and DNA sequences from two ribosomal DNA barcode regions (ITS and LSU) were generated for 43 specimens. Three new species—Neohypochnicium manglarense, Phlebiopsis colombiana, and Porogramme bononiae—were documented. In addition, eight species were reported as new records for both Colombia and mangrove ecosystems, including Microporus affinis, Paramarasmius palmivorus, Phlebiopsis flavidoalba, Porogramme brasiliensis, Resinicium grandisporum, Trametes ellipsospora, T. menziesii, and T. polyzona. Although previously recorded in Colombian terrestrial ecosystems, Lentinus scleropus and Oudemansiella platensis are globally reported here for the first time from mangrove habitats. Furthermore, Fomitopsis nivosella and Punctularia strigosozonata were documented for the first time in Colombia. This study addresses the first exploration of mangrove-associated macrofungi in the country and provides new insights into the hidden fungal diversity and potential of mangrove ecosystems as a latent niche for basidiomycete dispersal along Colombia’s Pacific coast. Full article
(This article belongs to the Special Issue Fungal Diversity in Various Environments, 4th Edition)
Show Figures

Figure 1

24 pages, 2054 KiB  
Review
AI-Powered Plant Science: Transforming Forestry Monitoring, Disease Prediction, and Climate Adaptation
by Zuo Xu and Dalong Jiang
Plants 2025, 14(11), 1626; https://doi.org/10.3390/plants14111626 - 26 May 2025
Viewed by 925
Abstract
The integration of artificial intelligence (AI) and forestry is driving transformative advances in precision monitoring, disaster management, carbon sequestration, and biodiversity conservation. However, significant knowledge gaps persist in cross-ecological model generalisation, multi-source data fusion, and ethical implementation. This review provides a comprehensive overview [...] Read more.
The integration of artificial intelligence (AI) and forestry is driving transformative advances in precision monitoring, disaster management, carbon sequestration, and biodiversity conservation. However, significant knowledge gaps persist in cross-ecological model generalisation, multi-source data fusion, and ethical implementation. This review provides a comprehensive overview of AI’s transformative role in forestry, focusing on three key areas: resource monitoring, disaster management, and sustainability. Data were collected via a comprehensive literature search of academic databases from 2019 to 2025. The review identified several key applications of AI in forestry, including high-precision resource monitoring with sub-metre accuracy in delineating tree canopies, enhanced disaster management with high recall rates for wildfire detection, and optimised carbon sequestration in mangrove forests. Despite these advancements, challenges remain in cross-ecological model generalisation, multi-source data fusion, and ethical implementation. Future research should focus on developing robust, scalable AI models that can be integrated into existing forestry management systems. Policymakers and practitioners should collaborate to ensure that AI-driven solutions are implemented in a way that balances technological innovation with ecosystem resilience and ethical considerations. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence for Plant Research)
Show Figures

Figure 1

28 pages, 7610 KiB  
Article
Spatiotemporal Responses of Global Vegetation Growth to Terrestrial Water Storage
by Chao Wang, Aoxue Cui, Renke Ji, Shuzhe Huang, Pengfei Li, Nengcheng Chen and Zhenfeng Shao
Remote Sens. 2025, 17(10), 1701; https://doi.org/10.3390/rs17101701 - 13 May 2025
Cited by 1 | Viewed by 520
Abstract
Global vegetation growth is dynamically influenced and regulated by hydrological processes. Understanding vegetation responses to terrestrial water storage (TWS) dynamics is crucial for predicting ecosystem resilience and guiding water resource management under climate change. This study investigated global vegetation responses to a terrestrial [...] Read more.
Global vegetation growth is dynamically influenced and regulated by hydrological processes. Understanding vegetation responses to terrestrial water storage (TWS) dynamics is crucial for predicting ecosystem resilience and guiding water resource management under climate change. This study investigated global vegetation responses to a terrestrial water storage anomaly (TWSA) using NDVI and TWSA datasets from January 2004 to December 2023. We proposed a Pearson-ACF time lag analysis method that combined dynamic windowing and enhanced accuracy to capture spatial correlations and temporal lag effects in vegetation responses to TWS changes. The results showed the following: (1) Positive NDVI-TWSA correlations were prominent in low-latitude tropical regions, whereas negative responses occurred mainly north of 30°N and in South American rainforest, covering 38.96% of the global vegetated land. (2) Response patterns varied by vegetation type: shrubland, grassland, and cropland exhibited short lags (1–4 months), while tree cover, herbaceous wetland, mangroves, and moss and lichen typically presented delayed responses (8–9 months). (3) Significant bidirectional Granger causality was identified in 16.39% of vegetated regions, mainly in eastern Asia, central North America, and central South America. These findings underscored the vital role of vegetation in the global water cycle, providing support for vegetation prediction, water resource planning, and adaptive water management in water-scarce regions. Full article
Show Figures

Figure 1

8 pages, 1851 KiB  
Proceeding Paper
Yeast Microbiome of Avicennia officinalis: Differences in Its Taxonomic and Functional Composition Within Plant Compartments
by Kizhakkeyveetil Abdul Saleem Nimsi, Kozhikotte Manjusha and Jasna Vijayan
Biol. Life Sci. Forum 2024, 39(1), 7; https://doi.org/10.3390/blsf2024039007 - 8 May 2025
Viewed by 376
Abstract
Mangrove ecosystems are renowned for their rich fungal diversity, housing a plethora of multicellular fungi and yeasts. In this investigation, we examined the yeast diversity associated with various compartments (rhizospheric soil, stems, roots, leaves, barks, and flowers) of the widely distributed mangrove tree, [...] Read more.
Mangrove ecosystems are renowned for their rich fungal diversity, housing a plethora of multicellular fungi and yeasts. In this investigation, we examined the yeast diversity associated with various compartments (rhizospheric soil, stems, roots, leaves, barks, and flowers) of the widely distributed mangrove tree, Avicennia officinalis, from the Kumbalam and Puthuvype mangroves in central Kerala, India. Our study revealed that the yeast strains were not uniformly distributed in various compartments. The highest abundance of yeasts was found in leaves (42%), followed by sediment (21%), and the lowest in flowers (5%). Among the 45 isolates, 27% comprised red yeasts. Dominant genera included Rhodotorula (27.5%), Debaryomyces (17.6%), Kluyveromyces (5.9%), Cryptococcus (9.8%), and Candida (7.8%), while genera such as Geotrichum, Lodderomyces, Ogataea, Galactomyces, and Saitozyma were represented by single isolates. Certain yeast species, such as C. tropicalis and Rhodotorula paludegina, exhibited a cosmopolitan distribution in various plant compartments of A. officinalis. An analysis of the proximate composition of different plant compartments of A. officinalis revealed variations in C, N, S, H, Ca, K, and the C/N ratio. Interestingly, these variations were positively correlated with the yeast community composition, suggesting a potential role of the elemental composition of plants in shaping the yeast biome of A. officinalis. However, our understanding of the inter-relationships among yeast communities in different plant compartments remains limited, highlighting the need for further comprehensive investigations in this field. Full article
Show Figures

Figure 1

22 pages, 14341 KiB  
Article
Hidden Microbial Diversity in Mangrove Depths: New Cyanobacterial Species of Picosynechococcus and Two New Records of Sirenicapillaria and Allocoleopsis from the Andaman Coast of Thailand
by Billy Lim Chun Ginn, Faradina Merican, Jantana Praiboon, Sinchai Maneekat and Narongrit Muangmai
Diversity 2025, 17(5), 319; https://doi.org/10.3390/d17050319 - 27 Apr 2025
Viewed by 636
Abstract
In Thailand, mangrove forests form a major component of the Andaman coastal ecosystems in the southern provinces. However, studies on their microbial assemblage largely revolved around groups of bacteria, fungi, and eukaryotic microalgae, while the diversity of cyanobacteria in these regions remains almost [...] Read more.
In Thailand, mangrove forests form a major component of the Andaman coastal ecosystems in the southern provinces. However, studies on their microbial assemblage largely revolved around groups of bacteria, fungi, and eukaryotic microalgae, while the diversity of cyanobacteria in these regions remains almost unknown. This taxonomic study applied the polyphasic approach to examine seven cyanobacterial strains collected from different mangrove environments (including soil crust, tree bark, wood, and rock surface) across Ranong, Phang-Nga, and Phuket provinces. The comprehensive analysis combining morphology, ecology, 16S rRNA phylogenetic relationships, genetic identity, ITS secondary structure, and ITS dissimilarity resulted in the first records of the genera Picosynechococcus, Allocoleopsis, and Sirenicapillaria in Thailand, and led to the description of a new species, Picosynechococcus mangrovensis sp. nov. This new species was differentiated from the type species P. fontinalis based on the distinct 16S rRNA gene phylogenetic position, low 16S rRNA genetic similarity, its slightly halophilic nature, and ability to form pseudo-filaments with up to 160 cells. Our research significantly expands the documented cyanobacterial diversity of Southeast Asian mangrove ecosystems, establishing a critical foundation for future ecological and biotechnological investigations in these understudied yet vital tropical habitats. Full article
Show Figures

Figure 1

26 pages, 55686 KiB  
Article
Geographic Object-Oriented Analysis of UAV Multispectral Images for Tree Distribution Mapping in Mangroves
by Luis Américo Conti, Roberto Lima Barcellos, Priscila Oliveira, Francisco Cordeiro Nascimento Neto and Marília Cunha-Lignon
Remote Sens. 2025, 17(9), 1500; https://doi.org/10.3390/rs17091500 - 24 Apr 2025
Viewed by 840
Abstract
Mangroves are critical ecosystems that provide essential environmental services, such as climate regulation, carbon storage, biodiversity conservation, and shoreline protection, making their conservation vital. High-resolution remote sensing using unmanned aerial vehicles (UAVs) offers a powerful tool for detailed mapping of mangrove species and [...] Read more.
Mangroves are critical ecosystems that provide essential environmental services, such as climate regulation, carbon storage, biodiversity conservation, and shoreline protection, making their conservation vital. High-resolution remote sensing using unmanned aerial vehicles (UAVs) offers a powerful tool for detailed mapping of mangrove species and structure. This study applies geographic object-based image analysis (GEOBIA) combined with machine learning (ML) to classify mangrove species at two ecologically distinct sites in Brazil: Cardoso Island (São Paulo State) and Suape (Pernambuco State). UAV flights at 50 m and 120 m altitudes captured multispectral data, enabling species-level classification of Laguncularia racemosa, Rhizophora mangle, and Avicennia schaueriana. By integrating field measurements and advanced metrics such as texture and spectral indices, the workflow achieved precise delineation of tree crowns and spatial distribution mapping. The results demonstrate the superiority of this approach over traditional methods, offering scalable and adaptable tools for ecological monitoring and conservation. The findings highlight the potential of UAV-based multispectral imaging to improve mangrove conservation efforts by delivering actionable, fine-scale data for policymakers and stakeholders. Full article
(This article belongs to the Special Issue Remote Sensing in Coastal Vegetation Monitoring)
Show Figures

Graphical abstract

18 pages, 607 KiB  
Review
Fungi in Mangrove: Ecological Importance, Climate Change Impacts, and the Role in Environmental Remediation
by Juliana Britto Martins de Oliveira, Dario Corrêa Junior, Cláudio Ernesto Taveira Parente and Susana Frases
Microorganisms 2025, 13(4), 878; https://doi.org/10.3390/microorganisms13040878 - 11 Apr 2025
Viewed by 1301
Abstract
Mangroves are coastal ecosystems of great ecological importance, located in transition areas between marine and terrestrial environments, predominantly found in tropical and subtropical regions. In Brazil, these biomes are present along the entire coastline, playing essential environmental roles such as sediment stabilization, coastal [...] Read more.
Mangroves are coastal ecosystems of great ecological importance, located in transition areas between marine and terrestrial environments, predominantly found in tropical and subtropical regions. In Brazil, these biomes are present along the entire coastline, playing essential environmental roles such as sediment stabilization, coastal erosion control, and the filtration of nutrients and pollutants. The unique structure of the roots of some mangrove tree species facilitates sediment deposition and organic matter retention, creating favorable conditions for the development of rich and specialized biodiversity, including fungi, bacteria, and other life forms. Furthermore, mangroves serve as important nurseries for many species of fish, crustaceans, and birds, being fundamental to maintaining trophic networks and the local economy, which relies on fishing resources. However, these ecosystems have been significantly impacted by anthropogenic pressures and global climate change. In recent years, the increase in average global temperatures, rising sea levels, changes in precipitation patterns, and ocean acidification have contributed to the degradation of mangroves. Additionally, human activities such as domestic sewage discharge, pollution from organic and inorganic compounds, and alterations in hydrological regimes have accelerated this degradation process. These factors directly affect the biodiversity present in mangrove sediments, including the fungal community, which plays a crucial role in the decomposition of organic matter and nutrient cycling. Fungi, which include various taxonomic groups such as Ascomycota, Basidiomycota, and Zygomycota, are sensitive to changes in environmental conditions, making the study of their diversity and distribution relevant for understanding the impacts of climate change and pollution. In particular, fungal bioremediation has gained significant attention as an effective strategy for mitigating pollution in these sensitive ecosystems. Fungi possess unique abilities to degrade or detoxify environmental pollutants, including heavy metals and organic contaminants, through processes such as biosorption, bioaccumulation, and enzymatic degradation. This bioremediation potential can help restore the ecological balance of mangrove ecosystems and protect their biodiversity from the adverse effects of pollution. Recent studies suggest that changes in temperature, salinity, and the chemical composition of sediments can drastically modify microbial and fungal communities in these environments, influencing the resilience of the ecosystem. The objective of this narrative synthesis is to point out the diversity of fungi present in mangrove sediments, emphasizing how the impacts of climate change and anthropogenic pollution influence the composition and functionality of these communities. By exploring these interactions, including the role of fungal bioremediation in ecosystem restoration, it is expected that this study would provide a solid scientific basis for the conservation of mangroves and the development of strategies to mitigate the environmental impacts on these valuable ecosystems. Full article
Show Figures

Figure 1

22 pages, 12795 KiB  
Review
A Review of Land Use and Land Cover in Mainland Southeast Asia over Three Decades (1990–2023)
by Jia Liu, Yunfeng Hu, Zhiming Feng and Chiwei Xiao
Land 2025, 14(4), 828; https://doi.org/10.3390/land14040828 - 10 Apr 2025
Cited by 3 | Viewed by 914
Abstract
The intensification of economic globalization and the growing scarcity of global land resources have magnified the complexity of future land use and land cover (LULC) changes. In Mainland Southeast Asia (MSEA), these transformations are particularly pronounced, yet comprehensive, targeted, and systematic reviews are [...] Read more.
The intensification of economic globalization and the growing scarcity of global land resources have magnified the complexity of future land use and land cover (LULC) changes. In Mainland Southeast Asia (MSEA), these transformations are particularly pronounced, yet comprehensive, targeted, and systematic reviews are scant. This research employs bibliometrics and critical literature review methodologies to scrutinize 1956 relevant publications spanning from 1990–2023, revealing key insights into the contributors to land use studies in MSEA, which include not only local researchers from countries like Thailand and Vietnam but also international scholars from the United States, China, Japan, and France. Despite this, the potential for global collaboration has not been fully tapped. This study also notes a significant evolution in data analysis methods, transitioning from reliance on single data sources to employing sophisticated multi-source data fusion, from manual feature extraction to leveraging automated deep learning processes, and from simple temporal change detection to comprehensive time series analysis using tools like Google Earth Engine (GEE). This shift encompasses the progression from small-scale case studies to extensive multi-scale system analyses employing advanced spatial statistical models and integrated technologies. Moreover, the thematic emphasis of research has evolved markedly, transitioning from traditional practices like slash-and-burn agriculture and deforestation logging to the dynamic monitoring of specialized tree species such as rubber plantations and mangroves. Throughout this period, there has been a growing focus on the broad environmental impacts of land cover change, encompassing soil degradation, carbon storage, climate change responses, ecosystem services, and biodiversity. This research not only offers a comprehensive understanding of the LULC research landscape in MSEA but also provides critical scientific references that can inform future policy-making and land management strategies. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

17 pages, 2164 KiB  
Article
Stand Structures and Carbon Storage Potential of Mangroves in Chaungkaphee Protected Public Forest, Tanintharyi Coastal Region, Myanmar
by Aung Wunna Tun, Xiaojuan Tong, Wai Nyein Aye and Jun Li
Forests 2025, 16(3), 554; https://doi.org/10.3390/f16030554 - 20 Mar 2025
Viewed by 1092
Abstract
Coastal ecosystems, particularly mangroves, are essential for ecological stability and human livelihoods, yet they face significant degradation from natural and anthropogenic pressures. This study focuses on the Chaungkaphee Protected Public Forest (PPF) in the Tanintharyi region of Myanmar, which hosts diverse mangrove species [...] Read more.
Coastal ecosystems, particularly mangroves, are essential for ecological stability and human livelihoods, yet they face significant degradation from natural and anthropogenic pressures. This study focuses on the Chaungkaphee Protected Public Forest (PPF) in the Tanintharyi region of Myanmar, which hosts diverse mangrove species critical for carbon storage. Between 2010 and 2020, mangrove forest cover in Myanmar decreased from 540,000 ha to 431,228 ha, resulting in a loss of 108,772 ha. This decline is primarily attributed to illegal logging and agricultural expansion. Our research aims to assess the structural characteristics, biomass, and carbon storage potential of mangrove ecosystems within the Chaungkaphee PPF. Field data collected in early 2024 applied non-destructive sampling methods to gather information on tree structure, species composition, and soil carbon stocks. We identified six dominant mangrove species, with Rhizophora apiculata Blume showing the highest biomass and carbon storage potential. The total biomass was measured at 493.91 Mg ha⁻1, yielding a carbon stock of 218.76 Mg C ha⁻1. Soil carbon assessments revealed an average organic carbon stock of 921.09 Mg C ha⁻1, underscoring the vital role of soil in carbon sequestration. Our findings highlight the significant contribution of mangrove ecosystems to climate change mitigation, emphasizing the urgent need for effective conservation strategies and community involvement in restoration efforts. This study enhances the understanding of mangrove resilience and sustainability, advocating for the protection of these crucial ecosystems amidst ongoing environmental challenges. By recognizing the ecological functions and services provided by mangroves, we can better address the threats they face and promote their restoration for future generations. Full article
(This article belongs to the Special Issue Advances in Forest Carbon, Water Use and Growth Under Climate Change)
Show Figures

Figure 1

24 pages, 8557 KiB  
Article
Unravelling Mangrove Storm Damage Resistance for Sustainable Flood Defense Safety Using 3D-Printed Mimics
by Rosanna van Hespen, Alejandra Gijón Mancheño, Maarten Kleinhans, Jim van Belzen, Celine E. J. van Bijsterveldt, Jaco de Smit, Zhan Hu, Bas W. Borsje, Bas Hofland and Tjeerd J. Bouma
Sustainability 2025, 17(6), 2602; https://doi.org/10.3390/su17062602 - 15 Mar 2025
Viewed by 741
Abstract
Mangrove forests are vital for flood reduction, yet their failure mechanisms during storms are poorly known, hampering their integration into engineered coastal protection. In this paper, we aimed to unravel the relationship between the resistance of mangrove trees to overturning and root distribution [...] Read more.
Mangrove forests are vital for flood reduction, yet their failure mechanisms during storms are poorly known, hampering their integration into engineered coastal protection. In this paper, we aimed to unravel the relationship between the resistance of mangrove trees to overturning and root distribution and the properties of the soil, while avoiding damage to natural mangrove forests. We therefore (i) tested the stability of 3D-printed tree mimics that imitate typical shallow mangrove root systems, mimicking both damaged and intact root systems, in sediments representing the soil properties of contrasting mangrove sites, and subsequently (ii) tested if the existing stability models for terrestrial trees are applicable for mangrove tree species, which have unique shallow root systems to survive waterlogged soils. Root systems of different complexities were modeled after Avicennia alba, Avicennia germinans, and Rhizophora stylosa, and printed at a 1:100 scale using material densities matching those of natural tree roots, to ensure the geometric scaling of overturning moments. The mimic stability increased with the soil shear strength and root plate surface area. The optimal root configuration for mimic stability depended on the sediment properties: spreading root systems performed better in softer sediments, while concentrating root biomass near the trunk improved stability in stronger sediments. An adapted terrestrial tree resistance model reproduced our measurements well, suggesting that such models could be adapted to predict the stability of shallow-rooted mangroves living in waterlogged soils. Field tree-pulling experiments are needed to further confirm our conclusions with real-world data, examine complicating factors like root intertwining, and consider mangrove tree properties like aerial roots. Overall, this work establishes a foundation for incorporating mangrove storm damage into hybrid coastal protection systems. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

Back to TopTop