Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (334)

Search Parameters:
Keywords = maize emergence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 1120 KiB  
Review
From Morphology to Multi-Omics: A New Age of Fusarium Research
by Collins Bugingo, Alessandro Infantino, Paul Okello, Oscar Perez-Hernandez, Kristina Petrović, Andéole Niyongabo Turatsinze and Swarnalatha Moparthi
Pathogens 2025, 14(8), 762; https://doi.org/10.3390/pathogens14080762 (registering DOI) - 1 Aug 2025
Abstract
The Fusarium genus includes some of the most economically and ecologically impactful fungal pathogens affecting global agriculture and human health. Over the past 15 years, rapid advances in molecular biology, genomics, and diagnostic technologies have reshaped our understanding of Fusarium taxonomy, host–pathogen dynamics, [...] Read more.
The Fusarium genus includes some of the most economically and ecologically impactful fungal pathogens affecting global agriculture and human health. Over the past 15 years, rapid advances in molecular biology, genomics, and diagnostic technologies have reshaped our understanding of Fusarium taxonomy, host–pathogen dynamics, mycotoxin biosynthesis, and disease management. This review synthesizes key developments in these areas, focusing on agriculturally important Fusarium species complexes such as the Fusarium oxysporum species complex (FOSC), Fusarium graminearum species complex (FGSC), and a discussion on emerging lineages such as Neocosmospora. We explore recent shifts in species delimitation, functional genomics, and the molecular architecture of pathogenicity. In addition, we examine the global burden of Fusarium-induced mycotoxins by examining their prevalence in three of the world’s most widely consumed staple crops: maize, wheat, and rice. Last, we also evaluate contemporary management strategies, including molecular diagnostics, host resistance, and integrated disease control, positioning this review as a roadmap for future research and practical solutions in Fusarium-related disease and mycotoxin management. By weaving together morphological insights and cutting-edge multi-omics tools, this review captures the transition into a new era of Fusarium research where integrated, high-resolution approaches are transforming diagnosis, classification, and management. Full article
(This article belongs to the Special Issue Current Research on Fusarium: 2nd Edition)
Show Figures

Figure 1

25 pages, 1258 KiB  
Review
Seed Priming Beyond Stress Adaptation: Broadening the Agronomic Horizon
by Mujo Hasanović, Adaleta Durmić-Pašić and Erna Karalija
Agronomy 2025, 15(8), 1829; https://doi.org/10.3390/agronomy15081829 - 28 Jul 2025
Viewed by 151
Abstract
Seed priming, traditionally viewed as a method for enhancing crop resilience to abiotic stress, has evolved into a multifaceted agronomic strategy. This review synthesizes the current findings demonstrating that priming influences plant development, metabolic regulation, and yield enhancement even under optimal conditions. By [...] Read more.
Seed priming, traditionally viewed as a method for enhancing crop resilience to abiotic stress, has evolved into a multifaceted agronomic strategy. This review synthesizes the current findings demonstrating that priming influences plant development, metabolic regulation, and yield enhancement even under optimal conditions. By covering a wide range of crops, including cereals (e.g., wheat, maize, rice, and barley) as well as vegetables and horticultural species (e.g., tomato, carrot, spinach, and lettuce), we highlight the broad applicability of priming across agricultural systems. The underlying mechanisms include hormonal modulation, altered source–sink dynamics, accelerated phenology, and epigenetic memory. Various priming techniques are discussed, including hydropriming, osmopriming, biopriming, chemopriming, and nanopriming, with attention to their physiological and molecular effects. Special focus is given to the role of seed priming in advancing climate-smart and precision agriculture. By shifting the narrative from stress mitigation to holistic crop performance optimization, seed priming emerges as a key tool for sustainable agriculture in the face of global challenges. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

32 pages, 1770 KiB  
Article
Regional Patterns in Weed Composition of Maize Fields in Eastern Hungary: The Balance of Environmental and Agricultural Factors
by Mihály Zalai, Erzsébet Tóth, János György Nagy and Zita Dorner
Agronomy 2025, 15(8), 1814; https://doi.org/10.3390/agronomy15081814 - 26 Jul 2025
Viewed by 407
Abstract
The primary aim of this study was to explore the influence of abiotic factors on weed development in maize fields, with the goal of informing more effective weed management practices. We focused on identifying key environmental, edaphic, and agricultural variables that contribute to [...] Read more.
The primary aim of this study was to explore the influence of abiotic factors on weed development in maize fields, with the goal of informing more effective weed management practices. We focused on identifying key environmental, edaphic, and agricultural variables that contribute to weed infestations, particularly before the application of spring herbicide treatments. Field investigations were conducted from 2018 to 2021 across selected maize-growing regions in Hungary. Over the four-year period, a total of 51 weed species were recorded, with Echinochloa crus-galli, Chenopodium album, Portulaca oleracea, and Hibiscus trionum emerging as the most prevalent taxa. Collectively, these four species accounted for more than half (52%) of the total weed cover. Altogether, the 20 most dominant species contributed 95% of the overall weed coverage. The analysis revealed that weed cover, species richness, and weed diversity were significantly affected by soil properties, nutrient levels, geographic location, and tillage systems. The results confirm that the composition of weed species was influenced by several environmental and management-related factors, including soil parameters, geographical location, annual precipitation, tillage method, and fertilizer application. Environmental factors collectively explained a slightly higher proportion of the variance (13.37%) than farming factors (12.66%) at a 90% significance level. Seasonal dynamics and crop rotation history also played a notable role in species distribution. Nutrient inputs, particularly nitrogen, phosphorus, and potassium, influenced both species diversity and floristic composition. Deep tillage practices favored the proliferation of perennial species, whereas shallow cultivation tended to promote annual weeds. Overall, the composition of weed vegetation proved to be a valuable indicator of site-specific soil conditions and agricultural practices. These findings underscore the need to tailor weed management strategies to local environmental and soil contexts for sustainable crop production. Full article
(This article belongs to the Special Issue State-of-the-Art Research on Weed Populations and Community Dynamics)
Show Figures

Figure 1

20 pages, 1243 KiB  
Article
Comparison of Capillary Electrophoresis and HPLC-Based Methods in the Monitoring of Moniliformin in Maize
by Sara Astolfi, Francesca Buiarelli, Francesca Debegnach, Barbara De Santis, Patrizia Di Filippo, Donatella Pomata, Carmela Riccardi and Giulia Simonetti
Foods 2025, 14(15), 2623; https://doi.org/10.3390/foods14152623 - 26 Jul 2025
Viewed by 157
Abstract
Over the past few decades, scientific interest in mycotoxins—fungal metabolites that pose serious concern to food safety, crop health, and both human and animal health—has increased. While major mycotoxins such as aflatoxins, ochratoxins, deoxynivalenol, fumonisins, zearalenone, citrinin, patulin, and ergot alkaloids are well [...] Read more.
Over the past few decades, scientific interest in mycotoxins—fungal metabolites that pose serious concern to food safety, crop health, and both human and animal health—has increased. While major mycotoxins such as aflatoxins, ochratoxins, deoxynivalenol, fumonisins, zearalenone, citrinin, patulin, and ergot alkaloids are well studied, emerging mycotoxins remain underexplored and insufficiently investigated. Among these, moniliformin (MON) is frequently detected in maize-based food and feed; however, the absence of regulatory limits and standardized detection methods limits effective monitoring and comprehensive risk assessment. The European Food Safety Authority highlights insufficient occurrence and toxicological data as challenges to regulatory development. This study compares three analytical methods—CE-DAD, HPLC-DAD, and HPLC-MS/MS—for moniliformin detection and quantification in maize, evaluating linear range, correlation coefficients, detection and quantification limits, accuracy, and precision. Results show that CE-DAD and HPLC-MS/MS provide reliable and comparable sensitivity and selectivity, while HPLC-DAD is less sensitive. Application to real samples enabled deterministic dietary exposure estimation based on consumption, supporting preliminary risk characterization. This research provides a critical comparison that supports the advancement of improved monitoring and risk assessment frameworks, representing a key step toward innovating the detection of under-monitored mycotoxins and laying the groundwork for future regulatory and preventive measures targeting MON. Full article
(This article belongs to the Special Issue Recent Advances in the Detection of Food Contaminants and Pollutants)
Show Figures

Figure 1

23 pages, 3773 KiB  
Article
Spatiotemporal Differentiation of Carbon Emission Efficiency and Influencing Factors in the Five Major Maize Producing Areas of China
by Zhiyuan Zhang and Huiyan Qin
Agriculture 2025, 15(15), 1621; https://doi.org/10.3390/agriculture15151621 - 26 Jul 2025
Viewed by 187
Abstract
Understanding the carbon emission efficiency (CEE) of maize production and its determinants is critical to supporting China’s dual-carbon goals and advancing sustainable agriculture. This study employs a super-efficiency slack-based measure model (SBM) to evaluate the CEE of five major maize-producing regions in China [...] Read more.
Understanding the carbon emission efficiency (CEE) of maize production and its determinants is critical to supporting China’s dual-carbon goals and advancing sustainable agriculture. This study employs a super-efficiency slack-based measure model (SBM) to evaluate the CEE of five major maize-producing regions in China from 2001 to 2022. Kernel density estimation and the Dagum Gini coefficient are used to analyze spatiotemporal disparities, while a geographically and temporally weighted regression (GTWR) model explores the underlying drivers. Results indicate that the national average maize CEE was 0.86, exhibiting a “W-shaped” fluctuation with turning points in 2009 and 2016. From 2001 to 2015, the Southwestern Mountainous Region led with an average efficiency of 0.76. Post-2015, the Northern Spring Maize Region emerged as the most efficient area, reaching 0.90. Efficiency levels have generally become more concentrated across regions, though the Southern Hilly and Northwest Irrigated Regions showed higher volatility. Inter-regional differences were the primary source of overall CEE disparity, with an average annual contribution of 46.66%, largely driven by the efficiency gap between the Northwest Irrigated Region and other areas. Spatial heterogeneity was evident in the impact of key factors. Agricultural mechanization, cropping structure, and environmental regulation exhibited region-specific effects. Rural economic development and agricultural fiscal support were positively associated with CEE, while urbanization had a negative correlation. These findings provide a theoretical foundation and policy reference for region-specific emission reduction strategies and the green transition of maize production in China. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

17 pages, 1473 KiB  
Article
Stimulation of Maize Growth and Development and Improvement of Soil Properties Using New Specialised Organic-Mineral Materials
by Marzena S. Brodowska, Mirosław Wyszkowski and Ryszard Grzesik
Molecules 2025, 30(14), 3050; https://doi.org/10.3390/molecules30143050 - 21 Jul 2025
Viewed by 196
Abstract
The use of mineral fertilisers has increased in recent years, but this has had a negative effect on the environment, including causing the water in rivers and lakes to become too rich in nutrients, a process known as eutrophication. Current research focuses on [...] Read more.
The use of mineral fertilisers has increased in recent years, but this has had a negative effect on the environment, including causing the water in rivers and lakes to become too rich in nutrients, a process known as eutrophication. Current research focuses on producing fertiliser materials that are environmentally friendly. The aim of this study was to examine the impact of novel specialised organic-mineral fertilisers (OMFs: NP 24-12, NP 10-10, and NP 10-10 Zn+) on the yield and chemical composition of maize. These fertilisers were compared with a control (no fertiliser) and with other fertilisers (mixture of commercial fertilisers (MCFs): NP 24-12 and NP 10-10) that were used as a reference. All fertilisers increased the SPAD index at the fifth leaf unfolded stage of maize, with the majority (apart from OMF NP 10-10) also increasing it at the panicle emergence stage. MCF NP 10-10 had the most positive effect on the plant height, while OMF NP 10-10 had the least positive effect. All fertilisers had a positive effect on maize growth and development, with MCFs NP 10-10 and NP 24-12 having by far the strongest effect on increasing crop yields. The yield of plants fertilised with OMFs NP 24-12, NP 10-10, and NP 10-10 Zn+ was lower than the yields of plants fertilised with MCF NP 24-12 and MCF NP 10-10. OMF NP 10-10 caused a greater increase in the contents of all elements, and OMF NP 24-12 caused a greater increase in most elements (except P and Ca) in maize than MCFs did at an identical NP ratio. OMF NP 10-10 Zn+ was found to have a significant impact on the mineral composition of maize, resulting in a decline in Ca and P levels, along with a notable increase in Mg, Zn, and Cu concentrations. The most significant differences were observed for Cu and Zn. The OMFs, notably NP 24-12 and NP 10-10, exhibited a comparatively diminished acidifying impact in comparison with the MCFs. The application of fertilisers resulted in a significant increase in soil nutrient levels, with most fertilisers increasing the soil N, P, and Zn contents. Additionally, the OMFs led to an increase in Cu. However, MCFs NP 24-12 and NP 10-10 reduced the soil Cu and Mn contents. Studies should include other species as they have different needs. Field experiments are also needed. Full article
(This article belongs to the Special Issue Applied Chemistry in Europe)
Show Figures

Figure 1

17 pages, 3958 KiB  
Article
ZmNLR-7-Mediated Synergistic Regulation of ROS, Hormonal Signaling, and Defense Gene Networks Drives Maize Immunity to Southern Corn Leaf Blight
by Bo Su, Xiaolan Yang, Rui Zhang, Shijie Dong, Ying Liu, Hubiao Jiang, Guichun Wu and Ting Ding
Curr. Issues Mol. Biol. 2025, 47(7), 573; https://doi.org/10.3390/cimb47070573 - 21 Jul 2025
Viewed by 218
Abstract
The rapid evolution of pathogens and the limited genetic diversity of hosts are two major factors contributing to the plant pathogenic phenomenon known as the loss of disease resistance in maize (Zea mays L.). It has emerged as a significant biological stressor [...] Read more.
The rapid evolution of pathogens and the limited genetic diversity of hosts are two major factors contributing to the plant pathogenic phenomenon known as the loss of disease resistance in maize (Zea mays L.). It has emerged as a significant biological stressor threatening the global food supplies and security. Based on previous cross-species homologous gene screening assays conducted in the laboratory, this study identified the maize disease-resistance candidate gene ZmNLR-7 to investigate the maize immune regulation mechanism against Bipolaris maydis. Subcellular localization assays confirmed that the ZmNLR-7 protein is localized in the plasma membrane and nucleus, and phylogenetic analysis revealed that it contains a conserved NB-ARC domain. Analysis of tissue expression patterns revealed that ZmNLR-7 was expressed in all maize tissues, with the highest expression level (5.11 times) exhibited in the leaves, and that its transcription level peaked at 11.92 times 48 h post Bipolaris maydis infection. Upon inoculating the ZmNLR-7 EMS mutants with Bipolaris maydis, the disease index was increased to 33.89 and 43.33, respectively, and the lesion expansion rate was higher than that in the wild type, indicating enhanced susceptibility to southern corn leaf blight. Physiological index measurements revealed a disturbance of ROS metabolism in ZmNLR-7 EMS mutants, with SOD activity decreased by approximately 30% and 55%, and POD activity decreased by 18% and 22%. Moreover, H2O2 content decreased, while lipid peroxide MDA accumulation increased. Transcriptomic analysis revealed a significant inhibition of the expression of the key genes NPR1 and ACS6 in the SA/ET signaling pathway and a decrease in the expression of disease-related genes ERF1 and PR1. This study established a new paradigm for the study of NLR protein-mediated plant immune mechanisms and provided target genes for molecular breeding of disease resistance in maize. Overall, these findings provide the first evidence that ZmNLR-7 confers resistance to southern corn leaf blight in maize by synergistically regulating ROS homeostasis, SA/ET signal transduction, and downstream defense gene expression networks. Full article
(This article belongs to the Special Issue Molecular Mechanisms in Plant Stress Tolerance)
Show Figures

Graphical abstract

21 pages, 4782 KiB  
Article
The Transcription Factor ZmMYBR24 Gene Is Involved in a Variety of Abiotic Stresses in Maize (Zea mays L.)
by Liangliang Bao, Wen Sun, Jiaxin Wang, Yuyang Zhou, Jiahao Wang, Qi Wang, Dequan Sun, Hong Lin, Jinsheng Fan, Yu Zhou, Lin Zhang, Zhenhua Wang, Chunxiang Li and Hong Di
Plants 2025, 14(13), 2054; https://doi.org/10.3390/plants14132054 - 4 Jul 2025
Viewed by 387
Abstract
MYB transcription factors constitute a diverse and functionally versatile family, playing central roles in regulating plant responses to a range of abiotic stressors. Based on previous research, we identified and characterized a maize MYB transcription factor gene, ZmMYBR24, which is involved in [...] Read more.
MYB transcription factors constitute a diverse and functionally versatile family, playing central roles in regulating plant responses to a range of abiotic stressors. Based on previous research, we identified and characterized a maize MYB transcription factor gene, ZmMYBR24, which is involved in responses to salt, alkali, and low-temperature stress. This study aimed to investigate the function and mechanism of ZmMYBR24 in response to salt, alkali, and low-temperature stresses. We hypothesized that ZmMYBR24 regulates biosynthetic pathways to influence maize resistance to multiple abiotic stresses. The results indicate that ZmMYBR24 expression was markedly upregulated (p < 0.01) and the fold-change in gene expression ranged from 1.54 to 25.69 when plants were exposed to these combined stresses. Phenotypically, the zmmybr24 mutant line exhibited more pronounced inhibition of seedling and root growth under stress compared to the wild-type B73 line. Based on a correlation expression pattern analysis and mutant line evaluation, ZmMYBR24 was confirmed to be a positive regulatory transcription factor for multiple types of abiotic stress resistance. An RNA-seq analysis of both lines revealed differentially expressed genes (DEGs), with gene ontology (GO) and KEGG enrichment analyses indicating that ZmMYBR24 may mediate stress responses by modulating the expression of genes involved in flavonoid biosynthesis. Notable differences were observed in the expression of pathway-associated genes between the mutant and wild-type plants. A haplotype analysis across 80 inbred maize lines revealed 16 ZmMYBR24 coding region haplotypes—comprising 25 SNPs and 17 InDels—with HAP12 emerging as a superior haplotype. These results demonstrate that ZmMYBR24 enhances maize yields by regulating the flavonoid biosynthesis pathway in response to adverse climatic conditions including salt, alkaline conditions, and low temperatures. Collectively, these findings offer novel insights into the molecular mechanisms underlying maize adaptation to combined abiotic stresses and lay the groundwork for breeding programs targeting multi-stress resistance. Full article
Show Figures

Figure 1

22 pages, 3055 KiB  
Article
Susceptibility of Different Crops to Simulated Clomazone Carry-Over and Its Degradation Dynamics in Sandy Loam Soil
by Katarina Jovanović-Radovanov
Agronomy 2025, 15(7), 1538; https://doi.org/10.3390/agronomy15071538 - 25 Jun 2025
Viewed by 291
Abstract
A bioassay study was conducted to determine the differences in the sensitivity of selected crops to simulated clomazone residues (nine concentrations were used ranging from 5.625 to 1440 μg a.i./kg soil). White mustard was the most susceptible as measured by shoot fresh weight [...] Read more.
A bioassay study was conducted to determine the differences in the sensitivity of selected crops to simulated clomazone residues (nine concentrations were used ranging from 5.625 to 1440 μg a.i./kg soil). White mustard was the most susceptible as measured by shoot fresh weight (SFW) and shoot dry weight (SDW) inhibition, with EC50 values of 94.6 and 128.2 μg a.i./kg soil, respectively. Regarding the EC50 values for the inhibition of pigment content (carotenoids, chlorophyll a and chlorophyll b), sugar beet and white mustard showed a high sensitivity, as the EC50 values for all three pigments were in the range of 45.8–47.4 and 57.5–63.3 μg a.i./kg soil, respectively. However, as the SFW and SDW of sugar beet were only reduced at the three highest clomazone concentrations applied, white mustard proved to be the most sensitive crop. Wheat was less sensitive (EC50 = 214.4–243.8 μg a.i./kg soil, for all three pigments), while sunflower and maize were the least sensitive (EC50 = 359.7–417.5 and 456.1–535.8 μg a.i./kg soil, respectively). Field trials were conducted for two years in the Srem region to study the dynamics of clomazone degradation in sandy loam soil. Clomazone was applied pre-plant incorporated (PPI) and post-emergence (POST-EM) in three doses: 480, 720 and 960 g a.i./ha. Soil samples were taken at regular intervals from the day of herbicide application until one year after application and residue concentrations were determined using the white mustard bioassay (based on the measurement of carotenoid content inhibition). The application rate had no consistent effect on the persistence of clomazone. Slower degradation was observed in the PPI treatment than in the POST-EM treatment (8.5 and 15 days longer average half-lives in the first and second year, respectively). Persistence was affected by lower rainfall, resulting in a longer half-life in the second year (12 days on average). Herbicide residues caused no visible injury to white mustard one year after application, while the reduction in carotenoid content ranged from 0.37 to 22.89%, indicating that no injury can occur to any of the tested crops one year after application of clomazone in sandy loam soil. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

16 pages, 17089 KiB  
Article
Tar Spot on Maize: Impact of Soil Types and Environmental Conditions on the Survival of Phyllachora maydis in the Subtropical Climate of Florida
by Vitor A. S. Moura, Larissa C. Ferreira, Marcio F. R. Resende and Katia V. Xavier
J. Fungi 2025, 11(6), 443; https://doi.org/10.3390/jof11060443 - 11 Jun 2025
Viewed by 2865
Abstract
Tar spot, caused by Phyllachora maydis, is an established maize disease in the Midwest of the United States but remains an emerging concern in Florida. While this pathogen can overwinter on plant residue, its survival in Florida’s subtropical environment is not well [...] Read more.
Tar spot, caused by Phyllachora maydis, is an established maize disease in the Midwest of the United States but remains an emerging concern in Florida. While this pathogen can overwinter on plant residue, its survival in Florida’s subtropical environment is not well understood. This study evaluated how environmental factors affect the germination of P. maydis ascospores and stroma integrity. Symptomatic maize leaves were incubated under four conditions: Histosol soil (muck), Krome soil (rocky), 4 °C, and 23 °C. Extensive leaf decomposition occurred in both soil types, with most plant material degraded after eight weeks, while the stroma maintained its structure. Despite this, ascospore germination declined across all conditions. After eight weeks, ascospores incubated at 4 °C retained 25% viability, while those at 23 °C had the lowest germination (0.7%). Ascospores from leaves buried in soil exhibited low viability (1–6%), with no significant differences between soil types (p=0.9944). Weather analysis revealed that increased temperature reduced germination rates, while higher humidity enhanced them. These findings suggest that P. maydis displays limited survivability under Florida-like conditions, with germination rates declining over time. Therefore, cultural practices such as tillage, already employed by corn producers in Florida, may be effective in reducing sources of P. maydis inoculum. Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
Show Figures

Figure 1

20 pages, 3069 KiB  
Article
Assessing the Synergy of Spring Strip Tillage and Straw Mulching to Mitigate Soil Degradation and Enhance Productivity in Black Soils
by Zhihong Yang, Lanfang Bai, Tianhao Wang, Zhipeng Cheng, Zhen Wang, Yongqiang Wang, Fugui Wang, Fang Luo and Zhigang Wang
Agronomy 2025, 15(6), 1415; https://doi.org/10.3390/agronomy15061415 - 9 Jun 2025
Viewed by 429
Abstract
To address the critical challenges of wind erosion mitigation and sustainable soil management in the fragile agroecosystem of the black soil region in the foothills of the Daxing’anling Mountains, this study evaluated five tillage practices—conventional ridge tillage (CP), no tillage with straw removal [...] Read more.
To address the critical challenges of wind erosion mitigation and sustainable soil management in the fragile agroecosystem of the black soil region in the foothills of the Daxing’anling Mountains, this study evaluated five tillage practices—conventional ridge tillage (CP), no tillage with straw removal (NT), no tillage with straw mulching (R+NT), autumn strip tillage with straw mulching (R+STA), and spring strip tillage with straw mulching (R+STS)—across two landforms: gently sloped uplands and flat depressions. The results demonstrated that R+STS achieved superior performance across both landscapes, exhibiting a 42.99% reduction in the wind erosion rate, a 48.88% decrease in soil sediment discharge, and a 52.26% reduction in the soil creep amount compared to CP. These improvements were mechanistically linked to the enhanced surface microtopography (aerodynamic roughness increased by 1.8–2.3 fold) and optimized straw coverage (68–72%). R+STS also enhanced the topsoil fertility, increasing the total nitrogen (TN), soil organic carbon (SOC), alkaline nitrogen (AN), available phosphorus (AP), and rapidly available potassium (AK) by 22.07%, 12.94%, 14.92%, 32.94%, and 9.52%, respectively. Furthermore, it improved maize emergence and its yield by 10.04% and 9.99% compared to R+NT. Mantel tests and SEM revealed strong negative correlations between erosion and nutrients, identifying nitrogen availability as the key yield driver. R+STS offers a sustainable strategy for erosion control and productivity improvement in the black soil region. Full article
Show Figures

Figure 1

16 pages, 1810 KiB  
Article
Occurrence and Genetic Variation of Monolepta hieroglyphica (Motschulsky, 1858) (Coleoptera: Chrysomelidae), a Newly Emerging Pest, Among Hosts in Northeast China
by Wei Sun, Xiuhua Zhang, Jiachun Zhou and Yuebo Gao
Insects 2025, 16(6), 605; https://doi.org/10.3390/insects16060605 - 8 Jun 2025
Viewed by 1097
Abstract
The northeast region of China plays a crucial role in crop production. The leaf beetle Monolepta hieroglyphica (Motschulsky, 1858) (Coleoptera: Chrysomelidae) has emerged as a potential threat to food security in the region. With a wide distribution spanning Asia and Russia, this beetle [...] Read more.
The northeast region of China plays a crucial role in crop production. The leaf beetle Monolepta hieroglyphica (Motschulsky, 1858) (Coleoptera: Chrysomelidae) has emerged as a potential threat to food security in the region. With a wide distribution spanning Asia and Russia, this beetle affects various crops. However, limited information is available regarding its occurrence patterns and genetic diversity among major crops in the region. Based on systematic observations across various hosts, coupled with genetic variation analysis using mitochondrial DNA markers, the main results were as follows. Leaf beetle occurrence varied among hosts, peaking from late July to mid-August, with maize and soybean fields exhibiting higher infestation rates compared with other crops. Notably, late-cultivated maize fields harbored the highest beetle numbers due to the species’ preference for young leaves. The host transfer trajectory may have originated in soybean and weeds, with subsequent alternation between host plants and other crops, before the final migration to cabbage and late-cultivated maize fields. Genetic analysis revealed nine COI haplotypes, four COII haplotypes, eleven Cytb haplotypes, and twenty-one combined haplotypes. No clear relationship existed between genetic diversity and occurrence, and no distinct host-based genetic patterns emerged from neighbor-joining tree and haplotype network analyses. High gene flow rates were observed, likely contributing to decreased genetic variation. An analysis of molecular variance results indicated major genetic variation within populations, although genetic distance and haplotype distribution indicated divergence among host populations. These results provide foundational data for developing effective M. hieroglyphica pest management strategies. Full article
(This article belongs to the Special Issue Corn Insect Pests: From Biology to Control Technology)
Show Figures

Figure 1

23 pages, 49734 KiB  
Article
Integrating Remote Sensing, Landscape Metrics, and Random Forest Algorithm to Analyze Crop Patterns, Factors, Diversity, and Fragmentation in a Kharif Agricultural Landscape
by Surajit Banerjee, Tuhina Nandi, Vishwambhar Prasad Sati, Wiem Mezlini, Wafa Saleh Alkhuraiji, Djamil Al-Halbouni and Mohamed Zhran
Land 2025, 14(6), 1203; https://doi.org/10.3390/land14061203 - 4 Jun 2025
Viewed by 1006
Abstract
Despite growing importance, agricultural landscapes face threats, like fragmentation, shrinkage, and degradation, due to climate change. Although remote sensing and GIS are widely used in monitoring croplands, integrating machine learning, remote sensing, GIS, and landscape metrics for the holistic management of this landscape [...] Read more.
Despite growing importance, agricultural landscapes face threats, like fragmentation, shrinkage, and degradation, due to climate change. Although remote sensing and GIS are widely used in monitoring croplands, integrating machine learning, remote sensing, GIS, and landscape metrics for the holistic management of this landscape remains underexplored. Thus, this study monitored crop patterns using random forest (94% accuracy), the role of geographical factors (such as elevation, aspect, slope, maximum and minimum temperature, rainfall, cation exchange capacity, NPK, soil pH, soil organic carbon, soil type, soil water content, proximity to drainage, proximity to market, proximity to road, population density, and profit per hectare production), diversity, combinations, and fragmentation using landscape metrics and a fragmentation index. Findings revealed that slope, rainfall, temperature, and profit per hectare production emerged as significant drivers in shaping crop patterns. However, anthropogenic drivers became deciding factors during spatial overlaps between crop suitability zones. Rice belts were the least fragmented and highly productive with a risk of monoculture. Croplands with a combination of soybean, black grams, and maize were highly fragmented, despite having high diversity with comparatively less production per field. These diverse fields were providing higher profits and low risks of crop failure due to the crop combinations. Equally, intercropping balanced the nutrient uptakes, making the practice sustainable. Thus, it can be suggested that productivity and diversity should be prioritized equally to achieve sustainable land use. The development of the PCA-weighted fragmentation index offers an efficient tool to measure fragmentation across similar agricultural regions, and the integrated approach provides a scalable framework for holistic management, sustainable land use planning, and precision agriculture. Full article
(This article belongs to the Special Issue Digital Earth and Remote Sensing for Land Management)
Show Figures

Figure 1

15 pages, 6315 KiB  
Article
Assessing Global Agricultural Greenhouse Gas Emissions: Key Drivers and Mitigation Strategies
by Shuo Zhou, Boyu Liu, Jianquan Wang, Dian Jin and Hailin Zhang
Agronomy 2025, 15(6), 1336; https://doi.org/10.3390/agronomy15061336 - 29 May 2025
Viewed by 573
Abstract
Climate change has emerged as one of the most pressing global challenges in recent decades. Agricultural activities significantly influence climate dynamics, necessitating thorough investigation of their emission patterns. Using the FAO datasets, the objectives of this study were to assess agricultural GHG emissions, [...] Read more.
Climate change has emerged as one of the most pressing global challenges in recent decades. Agricultural activities significantly influence climate dynamics, necessitating thorough investigation of their emission patterns. Using the FAO datasets, the objectives of this study were to assess agricultural GHG emissions, identify influencing factors, and explore potential mitigation strategies. The results show that emissions related to crop production are strongly correlated with the yields of predominant crops. Maize production had the largest impact on crop emissions (0.023), followed by potato (0.021) and rice (0.007). Notably, these three crops accounted for substantial portions of total crop-related emissions, with maize contributing 11.70%, potatoes (Solanum tuberosum L.) 10.21%, and rice 9.25%. In the livestock sector, cattle herds generated 10.75% of emissions, with pigs and sheep contributing 9.82% and 10.03%, respectively. Multivariate analysis revealed the cattle/buffalo population as the dominant emission driver (0.32), followed by sheep/goat (0.21) and swine (0.10) populations. Simultaneously, emissions from livestock operations were closely associated with the populations of key livestock species. Thus, from a climate mitigation perspective, prioritizing yield-optimized agronomic approaches for maize and potato cultivation, along with strategic population management of cattle and sheep, represents a critical pathway toward achieving emission reduction targets in global agricultural systems. Full article
Show Figures

Figure 1

12 pages, 5823 KiB  
Article
The Ultrastructure of Olfactory Sensilla Across the Antenna of Monolepta signata (Oliver)
by Jiyu Cao, Wanjie He, Huiqin Li, Jiangyan Zhu, Xiaoge Li, Jiahui Tian, Mengdie Luo and Jing Chen
Insects 2025, 16(6), 573; https://doi.org/10.3390/insects16060573 - 29 May 2025
Viewed by 508
Abstract
The antennal sensilla serve as a crucial olfactory organ, enabling insects to detect semiochemicals and adjust their host-seeking and oviposition behaviors accordingly. Monolepta signata (Oliver) (Coleoptera: Chrysomelidae), has emerged as a significant agricultural pest that affects key economic crops such as maize and [...] Read more.
The antennal sensilla serve as a crucial olfactory organ, enabling insects to detect semiochemicals and adjust their host-seeking and oviposition behaviors accordingly. Monolepta signata (Oliver) (Coleoptera: Chrysomelidae), has emerged as a significant agricultural pest that affects key economic crops such as maize and cotton. Despite the development of various control methods based on volatile stimulation, there is still limited documentation on the sensilla involved in olfaction. In this study, the ultrastructure of the sensilla, especially the olfactory sensilla on the antennae of both males and females, was investigated with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Three types of olfactory sensillum types, including trichodea, basiconica, and coeloconica, and four non-olfactory sensilla including chaetica, campaniformia, auricillica, and Böhm bristle were observed. Sensilla trichodea and basiconica on the antennae of M. signata were further classified into two subtypes according to their morphology. For the first time, the pores on the sensilla trichodea, basiconica, and coeloconica cuticular walls were observed in this species, suggesting that they are involved in semiochemical perception. This study contributes new insights into the olfactory system of M. signata, which can be integrated with other molecular, genetic, and behavioral research to establish a comprehensive understanding of its physiological functions. Full article
(This article belongs to the Collection Insect Sensory Biology)
Show Figures

Figure 1

Back to TopTop