Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = magnetron discharges

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2516 KiB  
Article
Study of the Friction Contact of HIPIMS Magnetron-Sputtered TiB2 Against Aluminium at Temperatures up to 300 °C
by Gonzalo G. Fuentes, Marya Baloch, José Fernández Palacio, Pablo Amezqueta, Rebeca Bueno, Jonathan Fernández de Ara, Herbert Gabriel, Cayetano Hernández, Pilar Prieto and Germán Alcalá
Materials 2025, 18(13), 2975; https://doi.org/10.3390/ma18132975 - 23 Jun 2025
Viewed by 631
Abstract
In this study, we investigated the frictional properties of TiB2 films produced by high-power impulse magnetron sputtering and compared them with those of TiN- and CrN-sputtered coatings also made using high-power pulsed discharges. The films were characterised by scanning electron microscopy, Electron [...] Read more.
In this study, we investigated the frictional properties of TiB2 films produced by high-power impulse magnetron sputtering and compared them with those of TiN- and CrN-sputtered coatings also made using high-power pulsed discharges. The films were characterised by scanning electron microscopy, Electron Probe Micro-Analysis, nanoindentation and friction tests. Sliding friction analyses were performed against aluminium surfaces at different temperatures, ranging from room temperature to 300 °C. The TiB2 coatings exhibited hardness values of about 39 GPa, regardless of the bias potential used between −50 V and −100 V, a low modulus of around 300 GPa and a dense compact columnar microstructure with grain sizes between 51 and 68 nm in diameter. The friction behaviour on aluminium produced the transfer of this element to the films, at rates that depended on the test temperature. The TiN and CrN coatings exhibited low–medium adhesion to aluminium at room temperature and severe transfer during the friction tests at 150 °C. In the case of the TiB2 films, the adhesion of aluminium during friction tests was low for temperatures up to 175 °C. In fact, a clear transition of the mild-to-severe adhesion of aluminium on TiB2 was observed in the temperature range of 175 °C to 200 °C for the testing conditions evaluated in this study, which was concomitant with the evolution observed for the friction coefficients. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

20 pages, 7633 KiB  
Article
Corrosion Performance of Chemically Passivated and Ion Beam-Treated Austenitic–Martensitic Steel in the Marine Environment
by Viktor Semin, Alexander Cherkasov, Konstantin Savkin, Maxim Shandrikov and Evgeniya Khabibova
J. Manuf. Mater. Process. 2025, 9(5), 167; https://doi.org/10.3390/jmmp9050167 - 20 May 2025
Viewed by 691
Abstract
In the present work, chemical and ion beam surface treatments were performed in order to modify the electrochemical behavior of industrial austenitic–martensitic steel VNS-5 in 3.5 wt. % NaCl. Immersion for 140 h in a solution containing 0.05 M potassium dichromate and 10% [...] Read more.
In the present work, chemical and ion beam surface treatments were performed in order to modify the electrochemical behavior of industrial austenitic–martensitic steel VNS-5 in 3.5 wt. % NaCl. Immersion for 140 h in a solution containing 0.05 M potassium dichromate and 10% phosphoric acid promotes formation of chromium hydroxides in the outer surface layer. By means of a new type of ion source, based on a high-current pulsed magnetron discharge with injection of electrons from vacuum arc plasma, ion implantation with Ar+ and Cr+ ions of the VNS-5 steel was performed. It has been found that the ion implantation leads to formation of an Fe- and Cr-bearing oxide layer with advanced passivation ability. Moreover, the ion beam-treated steel exhibits a lower corrosion rate (by ~7.8 times) and higher charge transfer resistance in comparison with an initial (mechanically polished) substrate. Comprehensive electrochemical and XPS analysis has shown that a Cr2O3-rich oxide film is able to provide an improved corrosion performance of the steel, while the chromium hydroxides may increase the specific conductivity of the surface layer. A scheme of a charge transfer between the microgalvanic elements was proposed. Full article
Show Figures

Figure 1

15 pages, 3176 KiB  
Article
Analysis of Metallic-to-Oxide Sputtering Mode Transition During Reactive Magnetron Deposition of Aluminum Oxide Coatings
by Andrey V. Kaziev, Alexander V. Tumarkin, Dobrynya V. Kolodko, Maksim M. Kharkov, Raghavendra Konaguru, Dmitry G. Ageychenkov, Nikolay N. Samotaev and Konstantin Yu. Oblov
Appl. Sci. 2025, 15(8), 4305; https://doi.org/10.3390/app15084305 - 14 Apr 2025
Viewed by 627
Abstract
Direct current (DC) reactive magnetron discharge in Ar + O2 mixtures with an aluminum (Al) target was investigated. Electrical measurements of the discharge voltage and current along with the deposition rate trends observed with varying the oxygen flow rate indicated the presence [...] Read more.
Direct current (DC) reactive magnetron discharge in Ar + O2 mixtures with an aluminum (Al) target was investigated. Electrical measurements of the discharge voltage and current along with the deposition rate trends observed with varying the oxygen flow rate indicated the presence of hysteresis, typical to when using a DC power supply. The transition between metallic and oxide (compound) modes was analyzed in more detail by measuring the mass-resolved fluxes of positively and negatively charged ions together with the optical emission spectra of plasma. The dependence of constituent ion fluxes (Ar+, Ar2+, Al+, O+, O2+, O, and O2) on the reactive oxygen gas flow rate was revealed, indicating the transition (in 1.2–1.8 sccm O2 flow range) from a metallic regime to a poisoned regime. The optical diagnostics indicated a nonlinear hysteresis loop pattern of dependence for various constituents (ions and neutrals) of the magnetron discharge plasma. The comparison between the particle and optical measurements, though exhibiting a pronounced correlation, demonstrated individual features of both methods, which need to be taken into account when interpreting the results. The hysteresis patterns were further discussed by comparing the experimental data with the calculation results from the Berg model. An approach of adapting the model results to the case of a power-regulated magnetron power supply is expressed. Full article
(This article belongs to the Special Issue Plasma Physics: Theory, Methods and Applications)
Show Figures

Figure 1

13 pages, 4020 KiB  
Article
Investigation on the Electron Emission Regularity of Sputtered Boron Nitride Thin Films and Microstructured Array Surfaces
by Yuqing Gu, Juannan Li and Dan Wang
Inorganics 2025, 13(4), 102; https://doi.org/10.3390/inorganics13040102 - 26 Mar 2025
Cited by 1 | Viewed by 469
Abstract
Boron nitride (BN) ceramic is an important support material in aerospace, arc discharge devices, and vacuum electronics. The electron emission properties of BN surfaces are of significance among various space applications. In this work, by preparing BN thin films and microstructured BN bulks, [...] Read more.
Boron nitride (BN) ceramic is an important support material in aerospace, arc discharge devices, and vacuum electronics. The electron emission properties of BN surfaces are of significance among various space applications. In this work, by preparing BN thin films and microstructured BN bulks, we have investigated the influence of the surface physical properties on the electron emission coefficient (EEC). The results showed that the surfaces of BN films, which were prepared by magnetron sputtering, produced serious gas adsorption and organic contamination when they were left for 10 days, and these surface modifications made the EEC of BN film surface decrease to a certain extent. The argon ion cleaning experiments indicated that the process of ion cleaning was able to partly eliminate the surface adsorption and contamination for the BN film. The EEC of the cleaned BN film surface was significantly improved compared to that of the original polluted BN film surface, with an EEC peak value of about 3.2 instead of 3.0 for the original polluted surfaces. By contrast, the EEC curves of the BN bulk show some difference, with the peak values of the EEC curves being 2.62 for the untreated BN bulk. The results of laser etching on the BN bulk surface to form microarray structures show that the EEC of BN bulk decreases significantly with the increase of the average aspect ratio of the microstructures. The EEC peak values of the BN bulks decrease from 2.62 to 1.16 when the porosity of the BN bulk reaches 49.11% and the aspect ratio reaches 1.36, indicating that constructing a surface microstructure is an effective method to achieve EEC reduction. By employing the electron trajectory tracking algorithm and the phenomenological model of electron emission, the effect of microstructure on EEC for BN bulk was quantitatively explained. The results of the study are of engineering application significance for vacuum devices involving the electron emission process of BN ceramic. Full article
(This article belongs to the Special Issue Boron-Based Low-Dimensional Nanoclusters and Nanomaterials)
Show Figures

Figure 1

19 pages, 23062 KiB  
Article
Effect of Annealing on LiCoO2 Thin Film Deposited by RF Magnetron Sputtering
by Zohra Benzarti, José David Castro, Edgar Carneiro, Lara Pacheco, Nelson Duarte, Sandra Carvalho, Ricardo Serra, Albano Cavaleiro, Cristiana Alves and Sandra Cruz
Materials 2025, 18(6), 1217; https://doi.org/10.3390/ma18061217 - 9 Mar 2025
Viewed by 1085
Abstract
This study investigates the properties of LiCoO2 coatings as cathodes for lithium-ion batteries, focusing on the effects of annealing on their structural, morphological, chemical, vibrational, and electrochemical characteristics. The LiCoO2 coatings were deposited on silicon and glass substrates using RF magnetron [...] Read more.
This study investigates the properties of LiCoO2 coatings as cathodes for lithium-ion batteries, focusing on the effects of annealing on their structural, morphological, chemical, vibrational, and electrochemical characteristics. The LiCoO2 coatings were deposited on silicon and glass substrates using RF magnetron sputtering at 100 W and subsequently annealed at 600 °C for 1 h. The films were characterized before and after annealing using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and electrochemical impedance spectroscopy (EIS). Annealing improved the crystallinity of LiCoO2, which is critical for enhancing lithium-ion diffusion. Furthermore, an XPS analysis revealed a layered structure with a Li-rich outer layer and a Co-rich underlayer, indicating a more uniform distribution of Li and Co, along with increased oxygen content. Additionally, the annealing process refined the microstructure of the LiCoO2 coating, positively impacting its electrochemical performance. A comparative analysis of cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) results demonstrated a significant improvement in the charge/discharge capacity post-annealing. This study successfully highlights the beneficial effects of annealing on LiCoO2 thin-film cathodes, offering valuable insights for developing more efficient and sustainable lithium-ion batteries through sputter-deposition processes. Full article
Show Figures

Figure 1

17 pages, 12746 KiB  
Article
Antibacterial Activity of Polypropylene Meshes for Hernioplasty with Ag and (Ag,Cu) Coatings Deposited via Magnetron Sputtering
by Catherine Sotova, Alexander Metel, Alexey Vereschaka, Sergey Fyodorov, Filipp Milovich, Raisa Terekhova, Pavel Stepanov, Tatiana Ramanouskaya and Sergey Grigoriev
Sci 2025, 7(1), 16; https://doi.org/10.3390/sci7010016 - 10 Feb 2025
Viewed by 1188
Abstract
This article compares the antibacterial properties of single-layer (Ag) and two-layer (Ag,Cu) coatings deposited onto a polypropylene mesh (endoprostheses for hernioplasty) in various gaseous environments (argon or nitrogen) via magnetron sputtering. The microstructure and elemental composition of the coatings were studied via SEM [...] Read more.
This article compares the antibacterial properties of single-layer (Ag) and two-layer (Ag,Cu) coatings deposited onto a polypropylene mesh (endoprostheses for hernioplasty) in various gaseous environments (argon or nitrogen) via magnetron sputtering. The microstructure and elemental composition of the coatings were studied via SEM and TEM. The antimicrobial activity of sterile samples was investigated using the Staphylococcus aureus strain. To prevent the overheating of the polymer samples during the coating process, it is advisable to carry out pulse processing (the total coating formation time is divided into cycles of switching the magnetron on and off for equal periods). All the samples, with both single- and double-layer coatings, exhibited good antibacterial properties; however, the Cu–Ag coating enhanced the antimicrobial effect, increasing it from 97.00 to 99.97%. The glow-discharge plasma etching of the samples with a double-layer coating led to the mixing of the copper and silver layers and an increase in the surface copper content, though this did not affect the antibacterial properties of the samples. Full article
(This article belongs to the Section Chemistry Science)
Show Figures

Figure 1

16 pages, 2648 KiB  
Article
Raman Spectroscopy of Graphene/CNT Layers Deposited on Interdigit Sensors for Application in Gas Detection
by Stefan-Marian Iordache, Ana-Maria Iordache, Ana-Maria Florea (Raduta), Stefan Caramizoiu, Catalin Parvulescu, Flaviu Baiasu, Irina Negut and Bogdan Bita
C 2025, 11(1), 9; https://doi.org/10.3390/c11010009 - 20 Jan 2025
Cited by 1 | Viewed by 1404
Abstract
Graphene/CNT layers were deposited onto platinum electrodes of an interdigitated sensor using radio-frequency magnetron sputtering. The graphene/CNTs were synthesized in an Argon atmosphere at a pressure of (2 × 10−2–5 × 10−3) mbar, with the substrate maintained at 300 [...] Read more.
Graphene/CNT layers were deposited onto platinum electrodes of an interdigitated sensor using radio-frequency magnetron sputtering. The graphene/CNTs were synthesized in an Argon atmosphere at a pressure of (2 × 10−2–5 × 10−3) mbar, with the substrate maintained at 300 °C either through continuous heating with an electronically controlled heater or by applying a −200 V bias using a direct current power supply throughout the deposition process. The study compares the surface morphology, carbon atom arrangement within the layer volumes, and electrical properties of the films as influenced by the different methods of substrate heating. X-ray diffraction and Raman spectroscopy confirmed the formation of CNTs within the graphene matrix. Additionally, scanning electron microscopy revealed that the carbon nanotubes are aligned and organized into cluster-like structure. The graphene/CNT layers produced at higher pressures present exponential I–V characteristics that ascertain the semiconducting character of the layers and their suitability for applications in gas sensing. Full article
(This article belongs to the Special Issue New Advances in Graphene Synthesis and Applications)
Show Figures

Graphical abstract

12 pages, 5023 KiB  
Article
Carbon Nanotube–Carbon Nanocoil Hybrid Film Decorated by Amorphous Silicon as Anodes for Lithium-Ion Batteries
by Huan Chen, Chen Wang, Zeng Fan, Chuanhui Cheng, Liang Hao and Lujun Pan
J. Compos. Sci. 2024, 8(9), 350; https://doi.org/10.3390/jcs8090350 - 6 Sep 2024
Cited by 1 | Viewed by 1453
Abstract
Silicon (Si) as the anode material for lithium-ion batteries (LIBs) has attracted much attention due to its high theoretical specific capacity (4200 mAh/g). However, the specific capacity and cycle stability of the LIBs are reduced due to the pulverization caused by the expansion [...] Read more.
Silicon (Si) as the anode material for lithium-ion batteries (LIBs) has attracted much attention due to its high theoretical specific capacity (4200 mAh/g). However, the specific capacity and cycle stability of the LIBs are reduced due to the pulverization caused by the expansion of Si coated on Cu (copper) foil during cycles. In order to solve this problem, researchers have used an ultra-thin Si deposition layer as the electrode, which improves cyclic stability and obtains high initial coulomb efficiency of LIBs. However, suitable substrate selection is crucial to fabricate an ultrathin Si deposition layer electrode with excellent performance, and a substrate with a three-dimensional porous structure is desirable to ensure the deposition of an ultrathin Si layer on the whole surface of the substrate. In this paper, the Si thin layer has been deposited on a binder-free hybrid film of carbon nanotubes (CNTs) and carbon nanocoils (CNCs) by magnetron sputtering. Compared with densely packed CNT film and flat Cu foil, the loose and porous film provides a large surface area and space for Si deposition, and Si can be deposited not only on the surface but also in the interior part of the film. The film provides a large number of channels for the diffusion and transmission of Li+, resulting in the rapid diffusion rate of Li+, which improves the effective lithium storage utilization of Si. Furthermore, the CNC itself is super elastic, and film provides an elastic skeleton for the Si deposition layer, which eases its volume expansion during charge and discharge processes. Electrochemical tests have showed that the Si/CNT–CNC film electrode has excellent performance as anode for LIBs. After 200 cycles, the Si/CNT–CNC film electrode still had possessed a specific capacity of 2500 mAh/g, a capacity retention of 92.8% and a coulomb efficiency of 99%. This paper provides an effective way to fabricate high performance Si-nanocarbon composite electrodes for LIBs. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

10 pages, 11567 KiB  
Article
Deposition of W Nanoparticles by Magnetron Sputtering Gas Aggregation Using Different Amounts of H2/Ar and Air Leaks
by Tomy Acsente, Elena Matei, Valentina Marascu, Anca Bonciu, Veronica Satulu and Gheorghe Dinescu
Coatings 2024, 14(8), 964; https://doi.org/10.3390/coatings14080964 - 1 Aug 2024
Viewed by 1864
Abstract
This work presents the synthesis of tungsten nanoparticles (W NPs) using a cluster source based on magnetron sputtering combined with gas aggregation (MSGA), operated with up to 81% H2 in the hydrogen/argon mixture used as a working gas. The results show that, [...] Read more.
This work presents the synthesis of tungsten nanoparticles (W NPs) using a cluster source based on magnetron sputtering combined with gas aggregation (MSGA), operated with up to 81% H2 in the hydrogen/argon mixture used as a working gas. The results show that, with up to 41% H2 in discharge, the synthesis rate increases by more than 60 times, rapidly decreasing for over 50% H2 in discharge. The W dust is still produced for H2-dominated discharges (81%), and its deposition rate is small but not negligible (0.02 mg/h). The obtained W NPs are isolated, with the diameter decreasing from 50 nm to 15 nm when the amount of H2 in discharge is smaller than 41%. Over this value, the particles tend to agglomerate, forming structures similar to film-like deposits. Also, the diameter of the dust spots deposited on substrates depends on the H2 content of the discharge. This allows the efficient coating of substrates up to 26 mm wide by translating them in front of the MSGA cluster source exit aperture. Additionally, for 41% H2 in discharge, the influence of synthetic air leaks (0%–8.2%) in discharge was investigated. The deposition rate decreases rapidly (ceasing for around 6% air in discharge), and the obtained nanoparticles tend to agglomerate on the substrate (at 3.3% air content, the dust deposit has the aspect of a near-continuous film). Chemical composition investigations show a pronounced tendency for oxidation, nitridation, and oxynitride formation in the presence of air leaks. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Figure 1

14 pages, 3736 KiB  
Article
Tungsten Molecular Species in Deuterium Plasmas in Contact with Sputtered W Surfaces
by Gheorghe Dinescu, Cristina Craciun, Silviu Daniel Stoica, Catalin Constantin, Bogdana Maria Mitu and Tomy Acsente
Molecules 2024, 29(15), 3539; https://doi.org/10.3390/molecules29153539 - 27 Jul 2024
Cited by 1 | Viewed by 1113
Abstract
We show that in plasmas generated in deuterium in the presence of sputtered W surfaces, various molecular tungsten species are formed, whose chemical composition depends on the presence of gaseous impurities, namely, nitrogen, oxygen, and hydrogen. A magnetron discharge was used for plasma [...] Read more.
We show that in plasmas generated in deuterium in the presence of sputtered W surfaces, various molecular tungsten species are formed, whose chemical composition depends on the presence of gaseous impurities, namely, nitrogen, oxygen, and hydrogen. A magnetron discharge was used for plasma sustaining, and the species were investigated by mass spectrometry and optical emission spectroscopy. The identified tungsten-containing molecules are described by the chemical formula WOxNyDzHt, where x = 0–4, y = 0–3, z = 0–3, t = 0–5. Presumptively, even higher mass tungsten molecular species are present in plasma, which were not detected because of the limitation of the spectrometer measurement range to 300 amu. The presence of these molecules will likely impact the W particle balance and dust formation mechanisms in fusion plasmas. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

14 pages, 5493 KiB  
Article
Study of Heat Flow at Substrate during Sputtering of Copper–Titanium Sandwich Target
by Viktor I. Shapovalov and Daniil S. Sharkovskii
Materials 2024, 17(14), 3599; https://doi.org/10.3390/ma17143599 - 21 Jul 2024
Cited by 2 | Viewed by 886
Abstract
The purpose of this work is to study the kinetics of the heat flow heating the substrate, which is generated by a two-layer sandwich magnetron target when sputtered in argon. Its novelty resides in the application of the COMSOL Multiphysics to study the [...] Read more.
The purpose of this work is to study the kinetics of the heat flow heating the substrate, which is generated by a two-layer sandwich magnetron target when sputtered in argon. Its novelty resides in the application of the COMSOL Multiphysics to study the kinetics of thermal processes during sputtering of a target of the new type. The analysis was performed for a sandwich target with internal copper and external titanium plates when the discharge power varied in the range of 400–1200 W. The heating of the external target plate is described by a two-dimensional homogeneous Fourier equation. The solution to the equation reveals how the kinetics of the external plate’s surface temperature distribution depends on the discharge power. To study the heat flow heating the substrate, the external plate is presented in the form of an additive set of small-sized surface heat sources. Previously unknown features of the thermal process are established. It is shown that numerical modeling adequately describes the experimental results. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

15 pages, 4635 KiB  
Article
Facile Fabrication of Large-Area CuO Flakes for Sodium-Ion Energy Storage Applications
by Xiaolei Sun and Feng Luo
Molecules 2024, 29(11), 2528; https://doi.org/10.3390/molecules29112528 - 28 May 2024
Cited by 2 | Viewed by 1433
Abstract
CuO is recognized as a promising anode material for sodium-ion batteries because of its impressive theoretical capacity of 674 mAh g−1, derived from its multiple electron transfer capabilities. However, its practical application is hindered by slow reaction kinetics and rapid capacity [...] Read more.
CuO is recognized as a promising anode material for sodium-ion batteries because of its impressive theoretical capacity of 674 mAh g−1, derived from its multiple electron transfer capabilities. However, its practical application is hindered by slow reaction kinetics and rapid capacity loss caused by side reactions during discharge/charge cycles. In this work, we introduce an innovative approach to fabricating large-area CuO and CuO@Al2O3 flakes through a combination of magnetron sputtering, thermal oxidation, and atomic layer deposition techniques. The resultant 2D CuO flakes demonstrate excellent electrochemical properties with a high initial reversible specific capacity of 487 mAh g−1 and good cycling stability, which are attributable to their unique architectures and superior structural durability. Furthermore, when these CuO flakes are coated with an ultrathin Al2O3 layer, the integration of the 2D structures with outer nanocoating leads to significantly enhanced electrochemical properties. Notably, even after 70 rate testing cycles, the CuO@Al2O3 materials maintain a high capacity of 525 mAh g−1 at a current density of 50 mA g−1. Remarkably, at a higher current density of 2000 mA g−1, these materials still achieve a capacity of 220 mAh g−1. Moreover, after 200 cycles at a current density of 200 mA g−1, a high charge capacity of 319 mAh g−1 is sustained. In addition, a full cell consisting of a CuO@Al2O3 anode and a NaNi1/3Fe1/3Mn1/3O2 cathode is investigated, showcasing remarkable cycling performance. Our findings underscore the potential of these innovative flake-like architectures as electrode materials in high-performance sodium-ion batteries, paving the way for advancements in energy storage technologies. Full article
(This article belongs to the Special Issue Novel Materials for Ion Batteries)
Show Figures

Figure 1

14 pages, 4372 KiB  
Article
Effects of HiPIMS Duty Cycle on Plasma Discharge and the Properties of Cu Film
by Yongjie Ren, Heda Bai, Xincheng Liu, Jin Li and Xiangli Liu
Materials 2024, 17(10), 2311; https://doi.org/10.3390/ma17102311 - 13 May 2024
Cited by 2 | Viewed by 2141
Abstract
In this paper, Cu thin films were deposited on Si (100) substrates by the high−power impulse magnetron sputtering (HiIPMS) technique, and the effects of different duty cycles (from 2.25% to 5.25%) on the plasma discharge characteristics, microstructure, and electrical properties of Cu thin [...] Read more.
In this paper, Cu thin films were deposited on Si (100) substrates by the high−power impulse magnetron sputtering (HiIPMS) technique, and the effects of different duty cycles (from 2.25% to 5.25%) on the plasma discharge characteristics, microstructure, and electrical properties of Cu thin films were investigated. The results of the target current test show that the peak target current remains stable under 2.25% and 3% duty cycle conditions. Under the conditions of a 4.5% and 5.25% duty cycle, the target peak current shows a decreasing trend. The average power of the target shows a rising trend with the increase in the duty cycle, while the peak power of the target shows a decreasing trend with the increase in the duty cycle. The results of OES show that with the increase in the duty cycle, the total peak intensity of copper and argon emissions shows an overall increasing trend. The duty cycle from 3% to 4.5% change in copper and argon emission peak total intensity change is not obvious. The deposition rate and surface morphology of the copper film were investigated by scanning electron microscopy, and the deposition rate of the copper film increased with the increase in the duty cycle, which was mainly due to the increase in the average power. The surface roughness of the copper film was evaluated by atomic force microscopy. X−ray diffraction (XRD) was used to analyze the grain size and texture of the Cu film, and the results showed that the average grain size of the Cu film increased from 38 nm to 59 nm on the (111) and (200) crystal planes. Four−probe square resistance test copper film resistivity in 2.25%, 3% low duty cycle conditions of the copper film resistivity is generally higher than 4.5%, 5.25% high duty cycle conditions, the copper film resistivity shows the trend of change is mainly affected by the copper film grain size and the (111) face of the double effect of the optimal orientation. The lowest resistivity of the copper film measured under the 4.5% duty cycle condition is 1.7005 μΩ·cm, which is close to the intrinsic resistivity of the copper film of 1.67 μΩ·cm. Full article
Show Figures

Figure 1

14 pages, 9071 KiB  
Article
Synergistic Effect of He for the Fabrication of Ne and Ar Gas-Charged Silicon Thin Films as Solid Targets for Spectroscopic Studies
by Asunción Fernández, Vanda Godinho, José Ávila, M. Carmen Jiménez de Haro, Dirk Hufschmidt, Jennifer López-Viejobueno, G. Eduardo Almanza-Vergara, F. Javier Ferrer, Julien L. Colaux, Stephane Lucas and M. Carmen Asensio
Nanomaterials 2024, 14(8), 727; https://doi.org/10.3390/nano14080727 - 21 Apr 2024
Cited by 1 | Viewed by 1560
Abstract
Sputtering of silicon in a He magnetron discharge (MS) has been reported as a bottom-up procedure to obtain He-charged silicon films (i.e., He nanobubbles encapsulated in a silicon matrix). The incorporation of heavier noble gases is demonstrated in this work with a synergistic [...] Read more.
Sputtering of silicon in a He magnetron discharge (MS) has been reported as a bottom-up procedure to obtain He-charged silicon films (i.e., He nanobubbles encapsulated in a silicon matrix). The incorporation of heavier noble gases is demonstrated in this work with a synergistic effect, producing increased Ne and Ar incorporations when using He–Ne and He–Ar gas mixtures in the MS process. Microstructural and chemical characterizations are reported using ion beam analysis (IBA) and scanning and transmission electron microscopies (SEM and TEM). In addition to gas incorporation, He promotes the formation of larger nanobubbles. In the case of Ne, high-resolution X-ray photoelectron and absorption spectroscopies (XPS and XAS) are reported, with remarkable dependence of the Ne 1s photoemission and the Ne K-edge absorption on the nanobubble’s size and composition. The gas (He, Ne and Ar)-charged thin films are proposed as “solid” targets for the characterization of spectroscopic properties of noble gases in a confined state without the need for cryogenics or high-pressure anvils devices. Also, their use as targets for nuclear reaction studies is foreseen. Full article
Show Figures

Figure 1

13 pages, 10209 KiB  
Article
Plasma Bombardment-Induced Amorphization of (TiNbZrCr)Nx High-Entropy Alloy Nitride Films
by Yantao Li, Donglin Ma, Jun Liang, Deming Huang, Libo Wang, Diqi Ren, Xin Jiang and Yongxiang Leng
Coatings 2024, 14(4), 505; https://doi.org/10.3390/coatings14040505 - 19 Apr 2024
Cited by 5 | Viewed by 1741
Abstract
The (TiNbZrCr)Nx high-entropy nitride films (HENFs) were prepared by high-power pulsed magnetron sputtering (HPPMS). The effect of the N2 flow rate (FN) on the HPPMS plasma discharge, film composition, microstructure, residual stress, tribological properties, and corrosion resistance was investigated. [...] Read more.
The (TiNbZrCr)Nx high-entropy nitride films (HENFs) were prepared by high-power pulsed magnetron sputtering (HPPMS). The effect of the N2 flow rate (FN) on the HPPMS plasma discharge, film composition, microstructure, residual stress, tribological properties, and corrosion resistance was investigated. Results show that, with the increase in FN, plasma discharge is enhanced. Firstly, the introduced N atoms react with Ti, Nb, Cr, and Zr to form an FCC nitride phase structure. Then, with the increase in plasma bombardment on the deposited film, the HENFs undergo amorphization to form an FCC+ amorphous structure, accompanied by a decrease in grain size and a change in the preferred orientation from (1 1 1) to (2 0 0). The HENFs deposited at FN = 8 sccm show the highest hardness of 27.8 GPa. The HENFs deposited at FN = 12 sccm present the best tribological properties, with a low wear rate of 4.0 × 10−6 mm3N−1m−1. The corrosion resistance of the (TiNbZrCr)Nx HENFs shows a strong correlation with the amorphous phase. The corrosion resistance of the FCC nitride film is the worst, and the corrosion resistance gradually increases with the amorphous transformation of the film. Based on the above results, nanocomposite high-entropy films can be prepared using HPPMS technology and exhibit excellent, comprehensive performance. Full article
(This article belongs to the Special Issue Strong, Ductile and Corrosion-Resistant High-Entropy Alloys)
Show Figures

Figure 1

Back to TopTop