Study of Heat Flow at Substrate during Sputtering of Copper–Titanium Sandwich Target
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niu, X.; Dong, G.; Wei, S.; Wang, Y.; Wang, B.; Tian, H. Effects of nitrogen flow rate on the microstructure and mechanical and tribological properties of TiAlN films prepared via reactive magnetron sputtering. Ceram. Int. 2023, 49, 19885–19894. [Google Scholar] [CrossRef]
- Martins, B.; Patacas, C.; Cavaleiro, A.; Faia, P.; Bondarchuk, O.; Fernandes, F. Electrical properties and thermistor behavior of TiAlN thin films deposited by combinatorial sputtering. Sur. Coat. Technol. 2023, 464, 129545. [Google Scholar] [CrossRef]
- Yang, Y.; Shang, H.; Shao, T. Influence of nitrogen implantation on adhesion strength of TiAlN film on γ-TiAl alloy. Appl. Surf. Sci. 2020, 508, 145141. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Lee, H.; Ogura, A.; Masuda, A.; Ohshita, Y. Fabrication of tantalum-doped titanium-oxide electron-selective contacts with high passivation quality. ECS J. Solid State Sci. Technol. 2021, 10, 045009. [Google Scholar] [CrossRef]
- Fan, H.-P.; Yang, X.-X.; Lu, F.-H. Air-based deposition of titanium-aluminum oxynitride thin films by reactive magnetron sputtering. Surf. Coat. Technol. 2022, 436, 128287. [Google Scholar] [CrossRef]
- Liu, H.D.; Yang, B.; Mao, M.R.; Liu, Y.; Chen, Y.M.; Cai, Y.; Fu, D.J.; Ren, F.; Wan, Q.; Hu, X.J. Enhanced thermal stability of solar selective absorber based on nano-multilayered TiAlON films deposited by cathodic arc evaporation. Appl. Surf. Sci. 2020, 501, 144025. [Google Scholar] [CrossRef]
- Zhang, Z.; Cheng, M.; Zou, Z.; Xu, J.; Liu, Y.; Lu, Z.; Xiong, R. Transported properties and low-temperature magnetic behaviors of TixCr1−xO2 films. J. Phys. D Appl. Phys. 2021, 54, 135004. [Google Scholar] [CrossRef]
- Magkoev, T.T.; Mustafaeva, D.G.; Zaalishvili, V.B.; Ashkhotov, O.G.; Sozaev, Z.T. Preparation of Aluminum–Molybdenum Alloy Thin Film Oxide and Study of Molecular CO + NO Conversion on Its Surface. Materials 2022, 15, 2245. [Google Scholar] [CrossRef] [PubMed]
- Kosari Mehr, A. Reactive grid-assisted co-sputtering of titanium and chromium in a pure nitrogen atmosphere: Uniformity, optics, and structure of the Ti–Cr–N films. Ceram. Int. 2022, 48, 4921–4929. [Google Scholar] [CrossRef]
- Klimashin, F.F.; Riedl, H.; Primetzhofer, D.; Paulitsch, J.; Mayrhofer, P.H. Composition driven phase evolution and mechanical properties of Mo–Cr–N hard coatings. J. Appl. Phys. 2015, 118, 025305. [Google Scholar] [CrossRef]
- Jbara, H.B.; Aubry, E.; Kanzari, M.; Billard, A.; Yazdi, M.A.P. Effect of thermal annealing on the optoelectronic properties of Cu-Fe-O thin films deposited by reactive magnetron co-sputtering. Thin Solid Film. 2021, 721, 138538. [Google Scholar] [CrossRef]
- Yeung, G.; Wolden, C.A. Controlling conduction band alignment and carrier concentration in gallium-doped magnesium zinc oxide by reactive cosputtering, Journal of Vacuum Science & Technology A: Vacuum. Surf. Film. 2021, 39, 022802. [Google Scholar] [CrossRef]
- Mercs, D.; Perry, F.; Billard, A. Hot target sputtering: A new way for high-rate deposition of stoichiometric ceramic films. Surf. Coat. Technol. 2006, 201, 2276–2281. [Google Scholar] [CrossRef]
- Tesař, J.; Martan, J.; Rezek, J. On surface temperatures during high power pulsed magnetron sputtering using a hot target. Surf. Coat. Technol. 2011, 206, 1155–1159. [Google Scholar] [CrossRef]
- Shapovalov, V.I.; Komlev, A.E.; Bondarenko, A.S.; Baykov, P.B.; Karzin, V.V. Substrate heating and cooling during magnetron sputtering of copper target. Phys. Lett. A 2016, 380, 882–885. [Google Scholar] [CrossRef]
- Minzhulina, E.A.; Smirnov, V.V.; Shapovalov, V.I. Influence of argon pressure and current density on substrate temperature during magnetron sputtering of hot titanium target. Appl. Phys. A 2018, 124, 48. [Google Scholar] [CrossRef]
- Kozin, A.A.; Shapovalov, V.I. Modeling of thermal processes in magnetrons with single hot target and “sandwich-target”. Surf. Coat. Technol. 2019, 359, 451–458. [Google Scholar] [CrossRef]
- Shapovalov, V.I. Deposition of solid solution films using reactive magnetron sputtering of a sandwich target. J. Phys. Conf. Ser. 2021, 1954, 012041. [Google Scholar] [CrossRef]
- Thornton, J.A. Substrate heating in cylindrical magnetron sputtering sources. Thin Solid Film. 1978, 54, 23–31. [Google Scholar] [CrossRef]
- Drüsedau, T.P.; Bock, T.; John, T.-M. Energy transfer into the growing film during sputter deposition: An investigation by calorimetric measurements and Monte Carlo simulations. J. Vac. Sci. Technol. A 1999, 17, 2896–2905. [Google Scholar] [CrossRef]
- Kersten, H.; Deutsch, H.; Steffen, H. The energy balance at substrate surfaces during plasma processing. Vacuum 2001, 63, 385–431. [Google Scholar] [CrossRef]
- Ekpe, S.D.; Dew, S.K. Measurement of energy flux at the substrate in a magnetron sputter system using an integrated sensor. J. Vac. Sci. Technol. A 2004, 2, 1420–1424. [Google Scholar] [CrossRef]
- Čada, M.; Bradley, J.W.; Clarke GC, B.; Kelly, P.J. Measurement of energy transfer at an isolated substrate in a pulsed dc magnetron discharge. J. Appl. Phys. 2007, 102, 063301. [Google Scholar] [CrossRef]
- Lundin, D.; Stahl, M.; Kersten, H. Energy flux measurements in high power impulse magnetron sputtering. J. Phys. D Appl. Phys. 2009, 42, 185202. [Google Scholar] [CrossRef]
- Cormier, P.-A.; Stahl, M.; Thomann, A.-L.; Dussart, R.; Wolter, M.; Semmar, N.; Mathias, J.; Kersten, H. On the measurement of energy fluxes in plasmas using a calorimetric probe and a thermopile sensor. J. Phys. D Appl. Phys. 2010, 43, 465201. [Google Scholar] [CrossRef]
- Jouhara, H.; Saloum, S.; Alsous, M.B. A novel thermal probe design for the measurement of energy influx in RF remote plasma. Vacuum 2012, 86, 1898–1904. [Google Scholar] [CrossRef]
- Cormier, P.-A.; Thomann, A.-L.; Dolique, V.; Balhamri, A.; Dussart, R.; Semmar, N.; Lecas, T.; Brault, P.; Snyders, R.; Konstantinidis, S. IR emission from the target during plasma magnetron sputter deposition. Thin Solid Film. 2013, 545, 44–49. [Google Scholar] [CrossRef]
- Caillard, A.; El’Mokh, M.; Semmar, N.; Dussart, R.; Lecas, T.; Thomann, A.-L. Energy Transferred from a Hot Nickel Target During Magnetron Sputtering. IEEE Trans. Plasma Sci. 2014, 42, 2802–2803. [Google Scholar] [CrossRef]
- Wiese, R.; Kersten, H.; Wiese, G. Energy influx measurements with an active thermal probe in plasma-technological processes. EPJ Technol. Instrum. 2015, 2, 1–10. [Google Scholar] [CrossRef]
- Graillot-Vuillecot, R.; Thomann, A.-L.; Lecas, T.; Cachoncinlle, C.; Millon, E.; Caillard, A. Hot target magnetron sputtering process: Effect of infrared radiation on the deposition of titanium and titanium oxide thin films. Vacuum 2020, 181, 109734. [Google Scholar] [CrossRef]
- Schlichting, F.; Thormählen, L.; Cipo, J.; Meyners, D.; Kersten, H. Energy-dependent film growth of Cu and NiTi from a tilted DC magnetron sputtering source determined by calorimetric probe analysis. Surf. Coat. Technol. 2022, 450, 129000. [Google Scholar] [CrossRef]
- Hansen, L.; Kohlmann, N.; Kienle, L.; Kersten, H. Correlations between energy flux and thin film modifications in an atmospheric pressure direct current microplasma. Thin Solid Film. 2023, 765, 139633. [Google Scholar] [CrossRef]
- Shapovalov, V.I.; Ahmedov, H.; Kozin, A.A.; Demir, A.; Korutlu, B. Simulation of the effect of argon pressure on thermal processes in the sputtering unit of a magnetron with a hot target. Vacuum 2021, 192, 110421. [Google Scholar] [CrossRef]
- Adamiak, B.; Wiatrowski, A.; Domaradzki, J.; Kaczmarek, D.; Wojcieszak, D.; Mazur, M. Preparation of multicomponent thin films by magnetron co-sputtering method: The Cu-Ti case study. Vacuum 2019, 161, 419–428. [Google Scholar] [CrossRef]
- Lin, P.C.; Chen, H.; Hsieh, H.-C.; Wu, A.T. Effect of phase separation on mechanical strength of co-sputtering Cu(Ti) thin film in chip-level 3DIC bonding. Mater. Lett. 2017, 189, 93–96. [Google Scholar] [CrossRef]
- Souza, A.L.R.; Correa, M.A.; Bohn, F.; Castro, H.; Fernandes, M.M.; Vaz, F.; Ferreira, A. High Performance of Metallic Thin Films for Resistance Temperature Devices with Antimicrobial Properties. Sensors 2022, 22, 7665. [Google Scholar] [CrossRef]
- Pottlacher, G.; Boboridis, K.; Cagran, C.; Hüpf, T.; Seifter, A.; Wilthan, B. Normal spectral emissivity near 680 nm at melting and in the liquid phase for 18 metallic elements. AIP Confer. Proc. 2013, 1552, 704. [Google Scholar] [CrossRef]
- Feingold, A. Radiant-interchange configuration factors between various selected plane surfaces. Proc. R. Soc. Lond. A 1966, 292, 51–60. [Google Scholar] [CrossRef]
- Anders, A. Deposition rates of high power impulse magnetron sputtering: Physics and economics. J. Vac. Sci. Technol. A Vac. Surf. Film. 2010, 28, 783–790. [Google Scholar] [CrossRef]
- Depla, D.; Mahieu, S.; De Gryse, R. Magnetron sputter deposition: Linking discharge voltage with target properties. Thin Solid Film. 2009, 517, 2825–2839. [Google Scholar] [CrossRef]
i | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 65 |
φi, 10−3 | 2.62 | 2.59 | 2.52 | 2.42 | 2.42 | 2.15 | 1.99 | 1.93 |
I, A | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 |
A, °C/s | 0.43 | 0.88 | 1.34 | 1.76 | 2.31 |
Qsens, W | 0.15 | 0.30 | 0.46 | 0.60 | 0.79 |
I, A | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 |
Qsput, W | 0.04 | 0.06 | 0.08 | 0.10 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shapovalov, V.I.; Sharkovskii, D.S. Study of Heat Flow at Substrate during Sputtering of Copper–Titanium Sandwich Target. Materials 2024, 17, 3599. https://doi.org/10.3390/ma17143599
Shapovalov VI, Sharkovskii DS. Study of Heat Flow at Substrate during Sputtering of Copper–Titanium Sandwich Target. Materials. 2024; 17(14):3599. https://doi.org/10.3390/ma17143599
Chicago/Turabian StyleShapovalov, Viktor I., and Daniil S. Sharkovskii. 2024. "Study of Heat Flow at Substrate during Sputtering of Copper–Titanium Sandwich Target" Materials 17, no. 14: 3599. https://doi.org/10.3390/ma17143599
APA StyleShapovalov, V. I., & Sharkovskii, D. S. (2024). Study of Heat Flow at Substrate during Sputtering of Copper–Titanium Sandwich Target. Materials, 17(14), 3599. https://doi.org/10.3390/ma17143599