Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = magneto functional response

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2359 KB  
Article
Magnetic Field Suppression of the Martensitic Transformation in Mn-Based MnNi(Fe)Sn Metamagnetic Shape Memory Heusler Alloys
by Patricia Lázpita, Natalia Ahiova Río-López, David Mérida, Emily (Leonie Quinlyn Nowalaja) Ammerlaan, Uli Zeitler, Volodymyr Chernenko and Jon Gutiérrez
Magnetism 2025, 5(4), 25; https://doi.org/10.3390/magnetism5040025 - 16 Oct 2025
Viewed by 362
Abstract
Heusler-type metamagnetic shape memory alloys (MMSMAs) exhibit a large functional response associated with a first-order martensitic transformation (MT). The strong magneto-structural coupling combined with the presence of mixed magnetic interactions enables controlling this MT by means of a magnetic field, resulting in different [...] Read more.
Heusler-type metamagnetic shape memory alloys (MMSMAs) exhibit a large functional response associated with a first-order martensitic transformation (MT). The strong magneto-structural coupling combined with the presence of mixed magnetic interactions enables controlling this MT by means of a magnetic field, resulting in different multifunctional properties, among them giant magnetoresistance, metamagnetic shape memory effect (MMSM), or inverse magnetocaloric effect (MCE). Not only the shift rate of MT as a function of the magnetic field but also its eventual suppression are key parameters in order to develop these effects. Here we present our findings concerning a detailed study of the magnetic field-induced MT and its suppression in MnNi(Fe)Sn MMSMAs, by applying strong steady magnetic fields up to 33 T. These measurements will lead to the creation of the T-μ0H phase diagrams of the MT. Moreover, we will also give light to the effect of Fe—content and, as a direct consequence, the magnetic coupling on the suppression of the magnetostructural transformation. Full article
Show Figures

Figure 1

14 pages, 2681 KB  
Article
Waveguide-Assisted Magneto-Optical Effects in 1D Garnet/Co/Au Plasmonic Crystals
by Tatiana Murzina, Andrey Dotsenko, Irina Kolmychek, Vladimir Novikov, Nikita Gusev, Ilya Fedotov and Sergei Gusev
Photonics 2025, 12(7), 728; https://doi.org/10.3390/photonics12070728 - 17 Jul 2025
Viewed by 497
Abstract
Magneto-plasmonic structures have been a subject of tremendous attention of researchers in recent decades as they provide unique approaches regarding the efficient control of optical, magneto-optical, and nonlinear-optical effects. Among others, magneto-plasmonic crystals (MPCs) have become one of the most studied structures, known [...] Read more.
Magneto-plasmonic structures have been a subject of tremendous attention of researchers in recent decades as they provide unique approaches regarding the efficient control of optical, magneto-optical, and nonlinear-optical effects. Among others, magneto-plasmonic crystals (MPCs) have become one of the most studied structures, known for their high-quality tunable resonant optical properties. Here, we present the results of experimental and numerical studies on the functional magneto-optical (MO) response of planar 1D plasmonic crystals composed of Co/Au stripes of submicron period on the surface of a 3 μm thick rare-earth garnet layer. The experimental and numerical studies confirm that the wavelength–angular spectra of such structures contain a set of tunable resonant features in their optical and magneto-optical response, associated with the excitation of (i) surface plasmon polaritons at the Co/Au grating–garnet interface, as well as (ii) waveguide (WG) modes propagating in the garnet slab. A comparison of the MO effects in the transversal and longitudinal magnetization of the plasmonic structures is presented. We show that the most efficient Fano-type MPC magneto-optical response is realized for the WG modes of the first order for the longitudinal magnetization of the structure. Further perspectives regarding the optimization of this type of plasmonic crystal are discussed. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

62 pages, 4192 KB  
Review
Advancements in Magnetorheological Foams: Composition, Fabrication, AI-Driven Enhancements and Emerging Applications
by Hesamodin Khodaverdi and Ramin Sedaghati
Polymers 2025, 17(14), 1898; https://doi.org/10.3390/polym17141898 - 9 Jul 2025
Viewed by 1374
Abstract
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while [...] Read more.
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while offering advantages like lightweight design, acoustic absorption, high energy harvesting capability, and tailored mechanical responses. Despite their potential, challenges such as non-uniform particle dispersion, limited durability under cyclic loads, and suboptimal magneto-mechanical coupling continue to hinder their broader adoption. This review systematically addresses these issues by evaluating the synthesis methods (ex situ vs. in situ), microstructural design strategies, and the role of magnetic particle alignment under varying curing conditions. Special attention is given to the influence of material composition—including matrix types, magnetic fillers, and additives—on the mechanical and magnetorheological behaviors. While the primary focus of this review is on MR foams, relevant studies on MR elastomers, which share fundamental principles, are also considered to provide a broader context. Recent advancements are also discussed, including the growing use of artificial intelligence (AI) to predict the rheological and magneto-mechanical behavior of MR materials, model complex device responses, and optimize material composition and processing conditions. AI applications in MR systems range from estimating shear stress, viscosity, and storage/loss moduli to analyzing nonlinear hysteresis, magnetostriction, and mixed-mode loading behavior. These data-driven approaches offer powerful new capabilities for material design and performance optimization, helping overcome long-standing limitations in conventional modeling techniques. Despite significant progress in MR foams, several challenges remain to be addressed, including achieving uniform particle dispersion, enhancing viscoelastic performance (storage modulus and MR effect), and improving durability under cyclic loading. Addressing these issues is essential for unlocking the full potential of MR foams in demanding applications where consistent performance, mechanical reliability, and long-term stability are crucial for safety, effectiveness, and operational longevity. By bridging experimental methods, theoretical modeling, and AI-driven design, this work identifies pathways toward enhancing the functionality and reliability of MR foams for applications in vibration damping, energy harvesting, biomedical devices, and soft robotics. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

19 pages, 29431 KB  
Article
Hybrid Magneto-Responsive Composites Made from Recyclable Components: Tunable Electrical Properties Under Magnetic and Mechanical Fields
by Ioan Bica, Eugen Mircea Anitas, Paula Sfirloaga, Liviu Chirigiu and Andrei Mihai Gavrilovici
J. Compos. Sci. 2025, 9(5), 219; https://doi.org/10.3390/jcs9050219 - 29 Apr 2025
Cited by 1 | Viewed by 911
Abstract
This study presents the fabrication and characterization of hybrid magneto-responsive composites (hMRCs), composed of recyclable components: magnetite microparticles (MMPs) as fillers, lard as a natural binding matrix, and cotton fabric for structural reinforcement. MMPs are obtained by in-house plasma-synthesis, a sustainable, efficient, and [...] Read more.
This study presents the fabrication and characterization of hybrid magneto-responsive composites (hMRCs), composed of recyclable components: magnetite microparticles (MMPs) as fillers, lard as a natural binding matrix, and cotton fabric for structural reinforcement. MMPs are obtained by in-house plasma-synthesis, a sustainable, efficient, and highly tunable method for producing high-performance MMPs. hMRCs are integrated into flat capacitors, and their electrical capacitance (C), resistance (R), dielectric permittivity (ϵ), and electrical conductivity (σ) are investigated under a static magnetic field, uniform force field, and an alternating electric field. The experimental results reveal that the electrical properties of hMRCs are dependent on the volume fractions of MMPs and microfibers in the fabric, as well as the applied magnetic flux density (B) and compression forces (F). C shows an increase with both B and F, while R decreases due to improved conductive pathways formed by alignment of MMPs. σ is found to be highly tunable, with increases of up to 300% under combined field effects. In the same conditions, C increases up to 75%, and R decreases up to 80%. Thus, by employing plasma-synthesized MMPs, and commercially available recyclable lard and cotton fabrics, this study demonstrates an eco-friendly, low-cost approach to designing multifunctional smart materials. The tunable electrical properties of hMRCs open new possibilities for adaptive sensors, energy storage devices, and magnetoelectric transducers. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

15 pages, 18343 KB  
Review
Sustainable Cooling, Layer by Layer, Shaping Magnetic Regenerators via Additive Manufacturing
by Vaibhav Sharma, Krishbold Bhandari and Radhika Barua
J. Compos. Sci. 2025, 9(3), 114; https://doi.org/10.3390/jcs9030114 - 27 Feb 2025
Cited by 3 | Viewed by 2052
Abstract
Additive manufacturing (AM) is revolutionizing magnetic heat pumping technology by enabling the design and production of highly optimized, customizable components that enhance efficiency, reduce costs, and accelerate innovation in thermal management systems. This review highlights recent advances in AM for magnetocaloric materials, emphasizing [...] Read more.
Additive manufacturing (AM) is revolutionizing magnetic heat pumping technology by enabling the design and production of highly optimized, customizable components that enhance efficiency, reduce costs, and accelerate innovation in thermal management systems. This review highlights recent advances in AM for magnetocaloric materials, emphasizing its role in fabricating heat exchange structures with complex geometries and unique microstructures to enhance thermal and magnetic performance. Key AM techniques, including material extrusion, binder jetting, laser powder bed fusion, and directed energy deposition, are compared, with an in-depth discussion of critical challenges such as achieving precise material composition, controlling porosity, and maintaining phase stability. Finally, the review offers guidelines for future research to overcome these challenges. These innovations are essential for transitioning from laboratory demonstrations to real-world applications, paving the way for sustainable cooling solutions that could replace traditional gas compression systems on an industrial scale. Full article
(This article belongs to the Special Issue 3D Printing and Additive Manufacturing of Composites)
Show Figures

Figure 1

15 pages, 4465 KB  
Article
Magnetic Silver Nanoparticles Stabilized by Superhydrophilic Polymer Brushes with Exceptional Kinetics and Catalysis
by Asghar Dolatkhah, Chandni Dewani, Masoud Kazem-Rostami and Lee D. Wilson
Polymers 2024, 16(17), 2500; https://doi.org/10.3390/polym16172500 - 2 Sep 2024
Cited by 4 | Viewed by 2050
Abstract
Stimuli-responsive catalysts with exceptional kinetics and complete recoverability for efficient recyclability are essential in, for example, converting pollutants and hazardous organic compounds into less harmful chemicals. Here, we used a novel approach to stabilize silver nanoparticles (NPs) through magneto/hydro-responsive anionic polymer brushes that [...] Read more.
Stimuli-responsive catalysts with exceptional kinetics and complete recoverability for efficient recyclability are essential in, for example, converting pollutants and hazardous organic compounds into less harmful chemicals. Here, we used a novel approach to stabilize silver nanoparticles (NPs) through magneto/hydro-responsive anionic polymer brushes that consist of poly (acrylic acid) (PAA) moieties at the amine functional groups of chitosan. Two types of responsive catalyst systems with variable silver loading (wt.%) of high and low (PAAgCHI/Fe3O4/Ag (H, L)) were prepared. The catalytic activity was evaluated by monitoring the reduction of organic dye compounds, 4-nitrophenol and methyl orange in the presence of NaBH4. The high dispersity and hydrophilic nature of the catalyst provided exceptional kinetics for dye reduction that surpassed previously reported nanocatalysts for organic dye reduction. Dynamic light scattering (DLS) measurements were carried out to study the colloidal stability of the nanocatalysts. The hybrid materials not only showed enhanced colloidal stability due to electrostatic repulsion among adjacent polymer brushes but also offered more rapid kinetics when compared with as-prepared Ag nanoparticles (AgNPs), which results from super-hydrophilicity and easy accumulation/diffusion of dye species within polymer brushes. Such remarkable kinetics, biodegradability, biocompatibility, low cost and facile magnetic recoverability of the Ag nanocatalysts reported here contribute to their ranking among the top catalyst systems reported in the literature. It was observed that the apparent catalytic rate constant for the reduction of methyl orange dye was enhanced, PAAgCHI/Fe3O4/Ag (H) ca. 35-fold and PAAgCHI/Fe3O4/Ag (L) ca. 23-fold, when compared against the as prepared AgNPs. Finally, the regeneration and recyclability of the nanocatalyst systems were studied over 15 consecutive cycles. It was demonstrated that the nanomaterials display excellent recyclability without a notable loss in catalytic activity. Full article
(This article belongs to the Special Issue Stimuli-Responsive Polymers: Advances and Prospects)
Show Figures

Graphical abstract

27 pages, 6729 KB  
Article
Thermal Contact Response of a Transversely Isotropic Magneto-Electro-Elastic Coating
by Yutang Li, Cenbo Xiong, Qinghua Zhou, Wanyou Yang and Rongsong Yang
Materials 2024, 17(1), 128; https://doi.org/10.3390/ma17010128 - 26 Dec 2023
Cited by 1 | Viewed by 3013
Abstract
The magneto-electro-elastic (MEE) medium is a typical intelligent material with promising application prospects in sensors and transducers, whose thermal contact response is responsible for their sensitivity and stability. An effective thermal contact model between a moving sphere and a coated MEE medium with [...] Read more.
The magneto-electro-elastic (MEE) medium is a typical intelligent material with promising application prospects in sensors and transducers, whose thermal contact response is responsible for their sensitivity and stability. An effective thermal contact model between a moving sphere and a coated MEE medium with transverse isotropy is established via a semi-analytical method (SAM) to explore its thermal contact response. First, a group of frequency response functions for the magneto-electro-thermo-elastic field of a coated medium are derived, assuming that the coating is perfectly bonded to the substrate. Then, with the aid of the discrete convolution–fast Fourier transform algorithm and conjugate gradient method, the contact pressure and heat flux can be determined. Subsequently, the induced elastic, thermal, electric and magnetic fields in the coating and substrate can be obtained via influence coefficients relating the induced field and external loads. With the proposed method, parametric studies on the influence of the sliding velocity and coating property are conducted to investigate the thermal contact behavior and resulting field responses of the MEE material. The sliding velocity and thermal properties of the coating have a significant effect on the thermal contact response of the MEE material; the coupled multi-field response can be controlled by changing the coating thickness between ~0.1 a0 and a0. Full article
Show Figures

Figure 1

14 pages, 3486 KB  
Article
A Triplet/Singlet Ground-State Switch via the Steric Inhibition of Conjugation in 4,6-Bis(trifluoromethyl)-1,3-phenylene Bisnitroxide
by Nagito Haga and Takayuki Ishida
Molecules 2024, 29(1), 70; https://doi.org/10.3390/molecules29010070 - 21 Dec 2023
Cited by 3 | Viewed by 2043
Abstract
Ground triplet 4,6-bis(trifluoromethyl)-1,3-phenylene bis(tert-butyl nitroxide) (TF2PBN) reacted with [Y(hfac)3(H2O)2] (hfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dionate), affording a doubly hydrogen-bonded adduct [Y(hfac)3(H2O)2(TF2PBN)]. The biradical was recovered from the adduct through recrystallization. Crystallographic analysis [...] Read more.
Ground triplet 4,6-bis(trifluoromethyl)-1,3-phenylene bis(tert-butyl nitroxide) (TF2PBN) reacted with [Y(hfac)3(H2O)2] (hfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dionate), affording a doubly hydrogen-bonded adduct [Y(hfac)3(H2O)2(TF2PBN)]. The biradical was recovered from the adduct through recrystallization. Crystallographic analysis indicates that the torsion angles (|θ| ≤ 90°) between the benzene ring and nitroxide groups were 74.9 and 84.8° in the adduct, which are larger than those of the starting material TF2PBN. Steric congestion due to o-trifluoromethyl groups gives rise to the reduction of π-conjugation. Two hydrogen bonds enhance this deformation. Susceptometry of the adduct indicates a ground singlet with 2J/kB = −128(2) K, where 2J corresponds to the singlet–triplet gap. The observed magneto-structure relation is qualitatively consistent with Rajca’s pioneering work. A density functional theory calculation at the UB3LYP/6-311+G(2d,p) level using the atomic coordinates determined provided a result of 2J/kB = −162.3 K for the adduct, whilst the corresponding calculation on intact TF2PBN provided +87.2 K. After a comparison among a few known compounds, the 2J vs. |θ| plot shows a negative slope with a critical torsion of 65(3)°. The ferro- and antiferromagnetic coupling contributions are balanced in TF2PBN, being responsible for ground-state interconversion by means of small structural perturbation like hydrogen bonds. Full article
(This article belongs to the Special Issue Computational Studies of Novel Function Materials)
Show Figures

Graphical abstract

23 pages, 3993 KB  
Article
Cellulose Nanofiber–Alginate Biotemplated Cobalt Composite Multifunctional Aerogels for Energy Storage Electrodes
by Felita W. Zhang, Paul D. Trackey, Vani Verma, Galen T. Mandes, Rosemary L. Calabro, Anthony W. Presot, Claire K. Tsay, Timothy J. Lawton, Alexa S. Zammit, Edward M. Tang, Andrew Q. Nguyen, Kennedy V. Munz, Enoch A. Nagelli, Stephen F. Bartolucci, Joshua A. Maurer and F. John Burpo
Gels 2023, 9(11), 893; https://doi.org/10.3390/gels9110893 - 11 Nov 2023
Cited by 9 | Viewed by 5138
Abstract
Tunable porous composite materials to control metal and metal oxide functionalization, conductivity, pore structure, electrolyte mass transport, mechanical strength, specific surface area, and magneto-responsiveness are critical for a broad range of energy storage, catalysis, and sensing applications. Biotemplated transition metal composite aerogels present [...] Read more.
Tunable porous composite materials to control metal and metal oxide functionalization, conductivity, pore structure, electrolyte mass transport, mechanical strength, specific surface area, and magneto-responsiveness are critical for a broad range of energy storage, catalysis, and sensing applications. Biotemplated transition metal composite aerogels present a materials approach to address this need. To demonstrate a solution-based synthesis method to develop cobalt and cobalt oxide aerogels for high surface area multifunctional energy storage electrodes, carboxymethyl cellulose nanofibers (CNF) and alginate biopolymers were mixed to form hydrogels to serve as biotemplates for cobalt nanoparticle formation via the chemical reduction of cobalt salt solutions. The CNF–alginate mixture forms a physically entangled, interpenetrating hydrogel, combining the properties of both biopolymers for monolith shape and pore size control and abundant carboxyl groups that bind metal ions to facilitate biotemplating. The CNF–alginate hydrogels were equilibrated in CaCl2 and CoCl2 salt solutions for hydrogel ionic crosslinking and the prepositioning of transition metal ions, respectively. The salt equilibrated hydrogels were chemically reduced with NaBH4, rinsed, solvent exchanged in ethanol, and supercritically dried with CO2 to form aerogels with a specific surface area of 228 m2/g. The resulting aerogels were pyrolyzed in N2 gas and thermally annealed in air to form Co and Co3O4 porous composite electrodes, respectively. The multifunctional composite aerogel’s mechanical, magnetic, and electrochemical functionality was characterized. The coercivity and specific magnetic saturation of the pyrolyzed aerogels were 312 Oe and 114 emu/gCo, respectively. The elastic moduli of the supercritically dried, pyrolyzed, and thermally oxidized aerogels were 0.58, 1.1, and 14.3 MPa, respectively. The electrochemical testing of the pyrolyzed and thermally oxidized aerogels in 1 M KOH resulted in specific capacitances of 650 F/g and 349 F/g, respectively. The rapidly synthesized, low-cost, hydrogel-based synthesis for tunable transition metal multifunctional composite aerogels is envisioned for a wide range of porous metal electrodes to address energy storage, catalysis, and sensing applications. Full article
(This article belongs to the Special Issue International Perspectives on Aerogels)
Show Figures

Figure 1

27 pages, 6996 KB  
Article
Bovine Lactoferrin-Loaded Plasmonic Magnetoliposomes for Antifungal Therapeutic Applications
by Mélanie Pereira, Ana Rita O. Rodrigues, Leslie Amaral, Manuela Côrte-Real, Cátia Santos-Pereira and Elisabete M. S. Castanheira
Pharmaceutics 2023, 15(8), 2162; https://doi.org/10.3390/pharmaceutics15082162 - 19 Aug 2023
Cited by 6 | Viewed by 2290
Abstract
Bovine lactoferrin (bLf) is a milk-derived protein that exhibits potent broad-spectrum antifungal activity against multiple fungi. bLf is susceptible to degradation, while some of its properties depend on the tertiary structure. So, the encapsulation of bLf in stimuli-responsive therapeutic formulations provides an added [...] Read more.
Bovine lactoferrin (bLf) is a milk-derived protein that exhibits potent broad-spectrum antifungal activity against multiple fungi. bLf is susceptible to degradation, while some of its properties depend on the tertiary structure. So, the encapsulation of bLf in stimuli-responsive therapeutic formulations provides an added value to enhance its biological activities. Plasmonic magnetoliposomes (PMLs) arise as promising nanocarriers for dual hyperthermia (magneto-photothermia) and local chemotherapy, since the combination of magnetic and gold nanoparticles (NPs) in a single nanosystem (multifunctional liposomes) enables the targeting and controlled release of loaded drugs. In this work, plasmonic magnetoliposomes (PMLs) containing manganese ferrite nanoparticles (28 nm size) and gold nanoparticles (5–7.5 nm size), functionalized with 11-mercaptoundecanoic acid or octadecanethiol, were prepared and loaded with bLf. The NPs’ optical, magnetic and structural properties were measured via UV/vis/NIR absorption spectroscopy, SQUID and TEM, respectively. The Specific Absorption Rate (SAR) was calculated to assess the capabilities for magnetic and photothermal hyperthermia. Finally, the antifungal potential of bLf-loaded PMLs and their mechanism of internalization were assessed in Saccharomyces cerevisiae by counting the colony forming units and using fluorescence microscopy. The results demonstrate that PMLs are mainly internalized through an energy- and temperature-dependent endocytic process, though the contribution of a diffusion component cannot be discarded. Most notably, only bLf-loaded plasmonic magnetoliposomes display cytotoxicity with an efficiency similar to free bLf, attesting their promising potential for bLf delivery in the context of antifungal therapeutic interventions. Full article
(This article belongs to the Special Issue Stimuli-Responsive Therapeutic Formulations for Drug Release)
Show Figures

Figure 1

14 pages, 5196 KB  
Article
Composites Based on Cotton Microfibers Impregnated with Magnetic Liquid for Magneto-Tactile Sensors
by Ioan Bica and Gabriela-Eugenia Iacobescu
Materials 2023, 16(8), 3222; https://doi.org/10.3390/ma16083222 - 19 Apr 2023
Cited by 2 | Viewed by 1669
Abstract
In this paper, we report the preparation of two new composite materials based on cotton fibers and magnetic liquid consisting of magnetite nanoparticles and light mineral oil. Using the composites and two simple textolite plates plated with copper foil assembled with self-adhesive tape, [...] Read more.
In this paper, we report the preparation of two new composite materials based on cotton fibers and magnetic liquid consisting of magnetite nanoparticles and light mineral oil. Using the composites and two simple textolite plates plated with copper foil assembled with self-adhesive tape, electrical devices are manufactured. By using an original experimental setup, we measured the electrical capacitance and the loss tangent in a medium-frequency electric field superimposed on a magnetic field. We found that in the presence of the magnetic field, the electrical capacity and the electrical resistance of the device change significantly with the increase of the magnetic field, then, the electrical device is suitable to be used as a magnetic sensor. Furthermore, the electrical response functions of the sensor, for fixed values of the magnetic flux density, change linearly with the increase in the value of the mechanical deformation stress, which gives it a tactile function. When applying mechanical stresses of fixed values, by increasing the value of the magnetic flux density, the capacitive and resistive functions of the electrical device change significantly. So, by using the external magnetic field, the sensitivity of the magneto-tactile sensor increases, therefore the electrical response of this device can be amplified in the case of low values of mechanical tension. This makes the new composites promising candidates for the fabrication of magneto-tactile sensors. Full article
Show Figures

Figure 1

31 pages, 5961 KB  
Review
Smart Triboelectric Nanogenerators Based on Stimulus-Response Materials: From Intelligent Applications to Self-Powered Systems
by Xueqing Wang, Qinghao Qin, Yin Lu, Yajun Mi, Jiajing Meng, Zequan Zhao, Han Wu, Xia Cao and Ning Wang
Nanomaterials 2023, 13(8), 1316; https://doi.org/10.3390/nano13081316 - 8 Apr 2023
Cited by 27 | Viewed by 5598
Abstract
Smart responsive materials can react to external stimuli via a reversible mechanism and can be directly combined with a triboelectric nanogenerator (TENG) to deliver various intelligent applications, such as sensors, actuators, robots, artificial muscles, and controlled drug delivery. Not only that, mechanical energy [...] Read more.
Smart responsive materials can react to external stimuli via a reversible mechanism and can be directly combined with a triboelectric nanogenerator (TENG) to deliver various intelligent applications, such as sensors, actuators, robots, artificial muscles, and controlled drug delivery. Not only that, mechanical energy in the reversible response of innovative materials can be scavenged and transformed into decipherable electrical signals. Because of the high dependence of amplitude and frequency on environmental stimuli, self-powered intelligent systems may be thus built and present an immediate response to stress, electrical current, temperature, magnetic field, or even chemical compounds. This review summarizes the recent research progress of smart TENGs based on stimulus-response materials. After briefly introducing the working principle of TENG, we discuss the implementation of smart materials in TENGs with a classification of several sub-groups: shape-memory alloy, piezoelectric materials, magneto-rheological, and electro-rheological materials. While we focus on their design strategy and function collaboration, applications in robots, clinical treatment, and sensors are described in detail to show the versatility and promising future of smart TNEGs. In the end, challenges and outlooks in this field are highlighted, with an aim to promote the integration of varied advanced intelligent technologies into compact, diverse functional packages in a self-powered mode. Full article
(This article belongs to the Special Issue Nanoelectronics: Materials, Devices and Applications)
Show Figures

Figure 1

17 pages, 6628 KB  
Article
Free and Forced Vibration Behaviors of Magnetodielectric Effect in Magnetorheological Elastomers
by Hamid Jafari and Ramin Sedaghati
Vibration 2023, 6(1), 269-285; https://doi.org/10.3390/vibration6010017 - 3 Mar 2023
Cited by 5 | Viewed by 3291
Abstract
This paper is concerned with the free and forced vibration responses of a magneto/electroactive dielectric elastomer, emphasizing the chaotic phenomena. The dielectric elastomers under external magnetic and electrical excitations undergo large elastic deformation. The magnetodielectric elastomer is modeled based on the Gent–Gent strain [...] Read more.
This paper is concerned with the free and forced vibration responses of a magneto/electroactive dielectric elastomer, emphasizing the chaotic phenomena. The dielectric elastomers under external magnetic and electrical excitations undergo large elastic deformation. The magnetodielectric elastomer is modeled based on the Gent–Gent strain energy function to incorporate the influence of the second invariant and the strain stiffening. The viscoelasticity of the active polymer is also considered in the form of Rayleigh’s dissipation function. The equation of motion is governed with the aid of the Lagrangian equation in terms of a physical quantity, namely, the stretch of the elastomer. An energy-based approach is utilized to re-evaluate the static and DC voltage instabilities of the resonator. Time-stretch response (time history behavior), phase plane diagram, Poincaré map, and fast Fourier transform are numerically obtained and presented to explore the chaotic oscillation behavior of the active polymer actuators. The results reveal that the magnetic field may tune the stability and instability regions of the active polymeric membrane. It has also been shown that the applied magnetic field may lead to chaotic vibration responses when a sinusoidal voltage is applied simultaneously to the system. The results presented in this paper can be effectively used to design magnetic and electrical soft robotic actuators and elastomer membranes under electrical and magnetic stimulants. Full article
Show Figures

Figure 1

14 pages, 888 KB  
Article
A Magneto-Viscoelasticity Problem with Aging
by Sandra Carillo and Claudio Giorgi
Materials 2022, 15(21), 7810; https://doi.org/10.3390/ma15217810 - 5 Nov 2022
Cited by 2 | Viewed by 1633
Abstract
This study addresses a magneto-viscoelasticity problem, considering the one-dimensional case. The system under investigation is given by the coupling a non-linear partial differential equation with a linear integro-differential equation. The system models a viscoelastic body whose mechanical behavior, described by the linear integro-differential [...] Read more.
This study addresses a magneto-viscoelasticity problem, considering the one-dimensional case. The system under investigation is given by the coupling a non-linear partial differential equation with a linear integro-differential equation. The system models a viscoelastic body whose mechanical behavior, described by the linear integro-differential equation, is also influenced by an external magnetic field. The model here investigated aims to consider the concomitance of three different effects: viscoelasticity, aging and magnetization. In particular, the viscoelastic behavior is represented via an integro-differential equation whose kernel characterizes the properties of the material. In a viscoelastic material subject to the effects of aging, all changes in the response to deformation are due not only to the intrinsic memory of the material but also to deterioration with the age of the material itself. Thus, the relaxation function is not assumed to depend on the two times, present and past, via their difference, but to depend on both the present and past times as two independent variables. The sensibility to an external magnetic field is modeled by a non-linear partial differential equation taking its origin in the Landau–Lifschitz magnetic model. This investigation is part of a long-term research project aiming to provide new insight in the study of materials with memory and, in particular, viscoelastic materials. Specifically, the classical model of viscoelastic body introduced by Boltzmann represents the fundamental base from which a variety of generalizations have been considered in the literature. In particular, the effects on the viscoelastic body due to interaction with an external magnetic field are studied. The new aspect under investigation is the combined presence of the external magnetic field with the effect of aging. Indeed, the coupling of viscoelasticity, which takes into account the deterioration of the material with time, with the presence of an external magnetic field, was never considered in previous research. An existence and uniqueness result is proved under suitable regularity assumptions. Full article
(This article belongs to the Special Issue Modelling of Viscoelastic Materials and Mechanical Behavior)
Show Figures

Figure 1

17 pages, 2063 KB  
Article
Free Vibration Analysis of Thick Annular Functionally Graded Plate Integrated with Piezo-Magneto-Electro-Elastic Layers in a Hygrothermal Environment
by Faraz Kiarasi, Masoud Babaei, Kamran Asemi, Rossana Dimitri and Francesco Tornabene
Appl. Sci. 2022, 12(20), 10682; https://doi.org/10.3390/app122010682 - 21 Oct 2022
Cited by 32 | Viewed by 2921
Abstract
The present work aims at investigating the hygrothermal effect on the natural frequencies of functionally graded (FG) annular plates integrated with piezo-magneto-electro-elastic layers resting on a Pasternak elastic foundation. The formulation is based on a layer-wise (LW) theory, where the Hamiltonian principle is [...] Read more.
The present work aims at investigating the hygrothermal effect on the natural frequencies of functionally graded (FG) annular plates integrated with piezo-magneto-electro-elastic layers resting on a Pasternak elastic foundation. The formulation is based on a layer-wise (LW) theory, where the Hamiltonian principle is used to obtain the governing equation of the problem involving temperature- and moisture-dependent material properties. The differential quadrature method (DQM) is applied here as a numerical strategy to solve the governing equations for different boundary conditions. The material properties of FG annular plates are varied along the thickness based on a power law function. The accuracy of the proposed method is, first, validated for a limit-case example. A sensitivity study of the free vibration response is, thus, performed for different input parameters, such as temperature and moisture variations, elastic foundation, boundary conditions, electric and magnetic potential of piezo-magneto-electro-elastic layers and geometrical ratios, with useful insights from a design standpoint. Full article
(This article belongs to the Special Issue Latest Advances and Prospects of Functionally Graded Material)
Show Figures

Figure 1

Back to TopTop