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Abstract: The magneto-electro-elastic (MEE) medium is a typical intelligent material with promising
application prospects in sensors and transducers, whose thermal contact response is responsible
for their sensitivity and stability. An effective thermal contact model between a moving sphere
and a coated MEE medium with transverse isotropy is established via a semi-analytical method
(SAM) to explore its thermal contact response. First, a group of frequency response functions for
the magneto-electro-thermo-elastic field of a coated medium are derived, assuming that the coating
is perfectly bonded to the substrate. Then, with the aid of the discrete convolution–fast Fourier
transform algorithm and conjugate gradient method, the contact pressure and heat flux can be
determined. Subsequently, the induced elastic, thermal, electric and magnetic fields in the coating
and substrate can be obtained via influence coefficients relating the induced field and external loads.
With the proposed method, parametric studies on the influence of the sliding velocity and coating
property are conducted to investigate the thermal contact behavior and resulting field responses
of the MEE material. The sliding velocity and thermal properties of the coating have a significant
effect on the thermal contact response of the MEE material; the coupled multi-field response can be
controlled by changing the coating thickness between ~0.1 a0 and a0.

Keywords: thermal contact; magneto-electro-elasticity; coating; semi-analytical method

1. Introduction

Owing to the multiple excellent coupled properties of mechanics, electricity and mag-
netism, a magneto-electro-elastic (MEE) material can convert energy from one to the other,
making it widely used in sensors, transducers, generators, and medical equipment as an
intelligent structure [1–4]. In practical engineering applications, the MEE material is usually
applied in sensing and driving devices in the form of a thin film or layered structure [5–7],
where friction contact occurs inevitably on its surface [8]. Friction contact is frequently
accompanied by friction heat, making it necessary to take the physical discontinuity of the
layered structure and the material’s transverse isotropy [9] into consideration, which affects
its mechanical and electromagnetic coupling properties significantly [10,11]. Therefore,
an effective thermal contact model of a coated MEE medium is valuable in analyzing the
multi-physical field response, providing theoretical guidance for engineering applications
of the MEE layered structure.

Research on layered MEE materials has been ongoing for a long time, and many
attempts at theoretical general solution derivation, contact modeling, and damage analysis
have been made. A general solution is an effective method of evaluating the field response
of an MEE material, with high calculation efficiency and solid mathematical bases. For
instance, Mousavi and Paavola analytically obtained closed-form expressions of the shear
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stress, electric displacement and magnetic induction in a functionally graded, coated
MEE medium by using Fourier transform technology, which was applied to solve the
damage problem of the coated MEE medium [12]. Li and Pan derived the analytical
solution for an anisotropic multilayer MEE medium and studied the multi-field coupling
response caused by the traction force and dislocation in a multilayer structure [13]. In
addition to the analytical method used in the work mentioned above [12,13], the asymptotic
homogenization method is another effective method of deriving a general solution for MEE
materials [14]. With the asymptotic homogenization method, Sixto-Camacho et al. [15]
developed the formal asymptotic solution for the linear magneto-electro-thermo-elastic
field of heterogeneous media. Combining the asymptotic homogenization method and the
cell-based smoothed finite element method, Zhou et al. [16] established a multi-physics
coupling model for an MEE structure and the transient responses under dynamic loads
were investigated. Different from those focusing on the multi-physical field, Chaki and
Bravo-Castillero [17] studied wave propagation in an MEE laminated structure via dynamic
asymptotic homogenization. Once the tribological behavior between bodies is considered,
contact modeling is necessary to analyze the effects of friction. Some studies have focused
on the contact responses due to the mechanical load and material parameters. For example,
Zhang et al. established a semi-analytical model of the dynamic contact between a rigid
ball and MEE film, and they analyzed the effect of the loading speed, film thickness and
ball radius on the dynamic magneto-electro-elastic response [18]. Zhang et al. proposed a
contact model of a functionally graded, coated MEE medium and studied the effects of the
coating thickness and coating parameters on the elastic, electric and magnetic fields of the
coated medium [19]. Some have also paid attention to the effects of the electromagnetic
field on the contact response. Sui et al. [20] established a semi-analytical contact model for
a 3D MEE material and found that the electric field can control the magnetic field via strain
transfer but not vice versa. Under external loading, stress concentration means that damage
to the material unavoidably occurs, becoming a concern for some researchers. Wan et al.
studied the periodic interface damage problem of multilayer piezoelectric/piezomagnetic
composites subjected to electric and magnetic loads, and they analyzed the effect of the
material parameters on the stress intensity factor [21]. Arhani and Ayatollahi [22] derived
an analytical solution for MEE dislocation in a cracked, functionally graded MEE material
and investigated the dynamic stress intensity factor.

Sliding contact is usually accompanied by frictional heating on the contact interface;
however, the thermal effect on the MEE material was not taken into account in the previous
work mentioned above. It has been found that the thermal effect also affects the multi-field
coupling effect of the MEE material [23–25], attracting increasing attention. Chen et al.
derived the general solution for the elastic, electric, magnetic and temperature fields of an
MEE material by considering the thermal effect, and the solution was used to solve the crack
problem in infinite space [26]. Zhou et al. carried out research on the multi-field coupled
response of an MEE cylindrical shell and plate structure undergoing a thermal effect and
revealed the static characteristic of the MEE plate structure under a thermal load using the
finite element method [27]. Similarly, Ni et al. deduced the analytical solution for an MEE
cylindrical shell with a thermal effect and studied the influence of the geometric parameters,
material volume fraction and external electric/magnetic/thermal loads on the buckling
stresses and mode shapes of the shell structure [28]. Further considering the existence of a
crack in the cylinder, Chang et al. [29] obtained exact solutions for the prediction of magneto-
electro-thermo-elastic fields under thermal shock. The asymptotic homogenization method
is also a good candidate for a solution for MEE materials when considering the thermal
effect. Bravo-Castillero et al. [30] used the asymptotic homogenization method to study
the three-dimensional boundary values of MEE composites when considering the thermal
effect. Similar to the asymptotic homogenization method, a symbolic mathematics approach
was used to derive quasi-harmonic solutions for MEE materials with transverse isotropy by
Marmo and Francesco [31]. Regarding thermal contact for the MEE material, Çömez [32]
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developed a thermal contact model for a two-dimensional MEE layer, where the punches
were treated as thermal insulators.

The above research on MEE materials considering the thermal effect has mainly fo-
cused on the mechanical and the electric and magnetic responses of the cylindrical and disk
structures. Few studies have focused on the thermal contact behavior of the MEE coating.
Although a thermal contact model for the two-dimensional MEE layer has been reported,
this is still a problem for the half plane, where the heat partition at the contact interface
has not been considered. Therefore, this paper puts forward an effective three-dimensional
thermal contact model of the coated MEE medium considering heat partition, aiming to
reveal the effects of the sliding velocity, thermal parameters and coating thickness on the
coupled multiple physical fields (mechanics, electricity, magnetism and temperature). The
main content of this work includes (a) the derivation of the frequency response functions
(FRFs) of the coupled physical fields of the coated MEE medium considering the thermal
effects; (b) the establishment of the thermal contact model between a sliding ball and the
coated MEE medium considering heat partition; (c) the verification of the proposed model
by comparing the results obtained from the finite element method; (d) the investigation of
the effects of the sliding velocity and coating parameters on the mechanical, electromagnetic
and temperature rise responses of the coated MEE medium.

2. Basic Formulation
2.1. Problem Description

Figure 1 presents a thermal contact model between a loaded sliding ball and a trans-
versely isotropic coated infinite half-space composed of the magneto-electro-elastic (MEE)
material. A Cartesian coordinate system is established, where the coating surface is set as
the x–y plane. Rb represents the radius of the sliding ball, and h represents the thickness
of the thin solid film that is perfectly bonded on the substrate. Both of the two contact
bodies are composed of the MEE material, and the material properties of the ball are set
to be the same as those of the substrate, while the material parameters of the coating are
alterable. The contact ball is subjected to a normal load P sliding on the coating surface
with a velocity vs along the x axis. Due to the friction contact effects, the contact pressure pz,
the traction px and the heat flux q are thus generated on the coating surface. It is assumed
that all of the frictional work is converted to heat completely, and then flows into the ball
(q1) and the coated MEE medium (q2) through the contact area without heat dissipation. qb,
gb are the electric and the magnetic charge distributed on the coating surface, respectively.
Here, the transversely isotropic coated MEE medium is subjected to multiple surface loads
(pz, px, q2, qb and gb), resulting in elastic, thermal, electric and magnetic coupled multi-field
responses in both the coating and substrate.

2.2. Basic Formulation

Both the coating and the substrate are composed of the transversely isotropic MEE
material, and their constitutive relations are given as follows [18]:

σxx = c11
∂ux
∂x + c12

∂uy
∂y + c13

∂uz
∂z + e31

∂ϕ
∂z + d31

∂ψ
∂z − β1T,

σyy = c12
∂ux
∂x + c11

∂uy
∂y + c13

∂uz
∂z + e31

∂ϕ
∂z + d31

∂ψ
∂z − β1T,

σzz = c13
∂ux
∂x + c13

∂uy
∂y + c33

∂uz
∂z + e33

∂ϕ
∂z + d33

∂ψ
∂z − β3T,

σxz = c44

(
∂ux
∂z + ∂uz

∂x

)
+ e15

∂ϕ
∂x + d15

∂ψ
∂x ,

σyz = c44

(
∂uy
∂z + ∂uz

∂y

)
+ e15

∂ϕ
∂y + d15

∂ψ
∂y , σxy = c66

(
∂ux
∂y +

∂uy
∂x

)
,

(1)
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Dx = e15

(
∂ux
∂z + ∂uz

∂x

)
− ε11

∂ϕ
∂x − g11

∂ψ
∂x ,

Dy = e15

(
∂uy
∂z + ∂uz

∂y

)
− ε11

∂ϕ
∂y − g11

∂ψ
∂y ,

Dz = e31
∂ux
∂x + e31

∂uy
∂y + e33

∂uz
∂z − ε33

∂ϕ
∂z − g33

∂ψ
∂y + p3T,

(2)

Bx = d15

(
∂ux
∂z + ∂uz

∂x

)
− g11

∂ϕ
∂x − µ11

∂ψ
∂x ,

By = d15

(
∂uy
∂z + ∂uz

∂y

)
− g11

∂ϕ
∂y − µ11

∂ψ
∂y ,

Bz = d31
∂ux
∂x + d31

∂uy
∂y + d33

∂uz
∂z − g33

∂ϕ
∂z − µ33

∂ψ
∂y + λ3T,

(3)

where σ, D and B denote the mechanical stresses, the electric displacement and the magnetic
induction, respectively; u, ϕ, ψ and T are the displacement, electric potential, magnetic
potential and temperature rise; cij, εij, eij, qij, dij, µij, p3 and λ3 represent the elastic, dielectric,
piezoelectric, piezomagnetic, magnetoelectric, magnetic, pyroelectric and pyromagnetic
constants of the material, respectively. Note that βi stands for the thermal modulus related
to the thermal expansion αi in Ref. [25], and c11 = c12 + 2c66.

Figure 1. Thermal contact model between a loaded sliding ball and the coated MEE medium.

In the absence of body sources, the equilibrium equations, the Maxwell equations and
the heat conduction equations [33] are

∂σx
∂x +

∂τxy
∂y + ∂τxz

∂z = 0,

∂τxy
∂x +

∂σy
∂y +

∂τyz
∂z = 0,

∂τxz
∂x +

∂τyz
∂y + ∂σz

∂z = 0,

(4)

∂Dx
∂x +

∂Dy
∂y + ∂Dz

∂z = 0,

∂Bx
∂x +

∂By
∂y + ∂Bz

∂z = 0,
(5)

(
∂2

∂x2 +
∂2

∂y2 +
k33

k11

∂2

∂z2 + Pe
∂

∂x

)
T = 0, (6)

where kij are the heat conductivities, Pe = vsls/(k11/ch) is the Peclet number, ls is the
characteristic contact length, and ch represents the volumetric specific heat.
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Substituting Equations (1)–(3) into Equations (4)–(6), the equilibrium equations can be
expressed in terms of Ψ, G, uz, ϕ, ψ, T:(

c66∆ + c44
∂2

∂z2

)
Ψ = 0, (7)

D


G
uz
ϕ
ψ
T

 =


0
0
0
0
0

, (8)

D =



c11∆ + c44
∂2

∂z2 −(c13 + c44)
∂
∂z −(e15 + e31)

∂
∂z −(d15 + d31)

∂
∂z β1

−(c13 + c44)∆ ∂
∂z c44∆ + c33

∂2

∂z2 e15∆ + e33
∂2

∂z2 d15∆ + d33
∂2

∂z2 −β3
∂
∂z

(e15 + e31)∆ ∂
∂z −

(
e15∆ + e33

∂2

∂z2

)
ε11∆ + ε33

∂2

∂z2 g11∆ + g33
∂2

∂z2 −p3
∂
∂z

(d15 + d31)∆ ∂
∂z −

(
d15∆ + d33

∂2

∂z2

)
g11∆ + g33

∂2

∂z2 µ11∆ + µ33
∂2

∂z2 −λ3
∂
∂z

0 0 0 0 ∆ + k33
k11

∂2

∂z2 + Pe ∂
∂x


(9)

in which ∆ = ∂2/∂x2 + ∂2/∂y2 is the two-dimensional Laplacian operator, D represents a
differential operator matrix, and Ψ and G are two intermediate functions to simplify the
expressions of Equations (1)–(3), defined as

ux =
∂Ψ

∂y
− ∂G

∂x
, uy = −∂Ψ

∂x
− ∂G

∂y
. (10)

Following the work of Chen et al. [18], the general solutions of the displacement,
electric potential, magnetic potential and temperature rise can be obtained by operator
theory as follows:

ux = ∂ψ
∂y −

[
a1

∂6

∂z6 + b1∆ ∂4

∂z4 + f1∆2 ∂2

∂z2 + g1∆3
]

∂F
∂x ,

uy = ∂ψ
∂x −

[
a1

∂6

∂z6 + b1∆ ∂4

∂z4 + f1∆2 ∂2

∂z2 + g1∆3
]

∂F
∂y ,

uz =
[

a2
∂6

∂z6 + b2∆ ∂4

∂z4 + f2∆2 ∂2

∂z2 + g2∆3
]

∂F
∂z ,

ϕ =
[

a3
∂6

∂z6 + b3∆ ∂4

∂z4 + f3∆2 ∂2

∂z2 + g3∆3
]

∂F
∂z ,

φ =
[

a4
∂6

∂z6 + b4∆ ∂4

∂z4 + f4∆2 ∂2

∂z2 + g4∆3
]

∂F
∂z ,

T =
[
n0

∂8

∂z8 + n1∆ ∂6

∂z6 + n2∆2 ∂4

∂z4 + n3∆3 ∂2

∂z2 + n4∆4
]

F,

(11)

where the coefficients ai, bi, fi, gi and ni can be found in Ref. [18], and the functions Ψ and F
need to satisfy the following equations:(

∆ +
∂2

∂s2
0z2

)
Ψ = 0, (12)

(
∆ +

∂2

∂s2
1z2

)(
∆ +

∂2

∂s2
2z2

)(
∆ +

∂2

∂s2
3z2

)(
∆ +

∂2

∂s2
4z2

)(
∆+

∂

∂x
+ Pe

∂2

∂s2
5z2

)
F = 0, (13)
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where s0 =
√

c66/c44, s5 =
√

k11/k33, and sk (k = 1, 2, 3, 4) are the four roots (real positive
parts) of the following algebraic equation:

n0s8 − n1s6 + n2s4 − n3s2 + n4 = 0. (14)

2.3. Frequency Response Functions (FRFs)

To obtain the functions Ψ and F, the Fourier transform is performed on Equations (12)
and (13), and it can be derived as

˜̃Ψ = A0e−αs0z + A0eαs0z

˜̃F =
4
∑

k=1

(
Ake−αskz + Akeαskz)+ A5e−rs5z + A5ers5z

(15)

in which r =
√

α2 − imPe, where i denotes the imaginary unit; α =
√

m2 + n2 with the
frequency variables m and n corresponding to x and y in the time domain, respectively; and
the unknowns Ak (k = 1, 2, . . ., 5) are determined by the specific boundary conditions.

Furthermore, solutions (in Equation (11)) for the displacement u, electric potential ϕ,
magnetic potential ψ and temperature T in the frequency domain are given by

˜̃u(j) = in
(

A(j)
0 e−αs(j)

0 zj + A(j)
0 eαs(j)

0 zj

)
− im

4
∑

k=1
ϖ
(j)
1k

(
A(j)

k e−αs(j)
k zj + A(j)

k eαs(j)
k zj

)

−imϖ
(j)
15

(
A(j)

5 e−r(j)s(j)
5 zj + A(j)

5 er(j)s(j)
5 zj

)
,

˜̃v(j) = −im
(

A(j)
0 e−αs(j)

0 zj + A(j)
0 eαs(j)

0 zj

)
− in

4
∑

k=1
ϖ
(j)
1k

(
A(j)

k e−αs(j)
k zj + A(j)

k eαs(j)
k zj

)

−inϖ
(j)
15

(
A(j)

5 e−r(j)s(j)
5 zj + A(j)

5 er(j)s(j)
5 zj

)
,

˜̃w(j) = −
4
∑

k=1
αs(j)

k ϖ
(j)
2k

(
A(j)

k e−αs(j)
k zj − A(j)

k eαs(j)
k zj

)
− r(j)s(j)

5 ϖ
(j)
25

(
A(j)

5 e−r(j)s(j)
5 zj − A(j)

5 er(j)s(j)
5 zj

)
,

˜̃ϕ(j) = −
4
∑

k=1
αs(j)

k ϖ
(j)
3k

(
A(j)

k e−αs(j)
k zj − A(j)

k eαs(j)
k zj

)
− r(j)s(j)

5 ϖ
(j)
35

(
A(j)

5 e−r(j)s(j)
5 zj − A(j)

5 er(j)s(j)
5 zj

)
,

˜̃φ(j) = −
4
∑

k=1
αs(j)

k ϖ
(j)
4k

(
A(j)

k e−αs(j)
k zj − A(j)

k eαs(j)
k zj

)
− r(j)s(j)

5 ϖ
(j)
45

(
A(j)

5 e−r(j)s(j)
5 zj − A(j)

5 er(j)s(j)
5 zj

)
,

˜̃T(j) = ϖ
(j)
55

(
A(j)

5 e−r(j)s(j)
5 zj + A(j)

5 er(j)s(j)
5 zj

)
,

(16)

where j represents the coating (j = 1) and the substrate (j = 2), ‘≈’ denotes the double
Fourier transform operation, and the coefficients ϖ1k, . . . , ϖ5k (k = 1, 2, . . ., 5) are listed in
Appendix A.

After performing the Fourier transform on the constitutive relations in Equation (1),
and substituting Equation (15) into Equation (1), general solutions in the frequency domain
of the mechanical stresses σij, the electric displacement Di and the magnetic induction Bi
are obtained:
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˜̃σ(j)
xx = −2c(j)

66 mn
(

A(j)
0 e−αs(j)

0 zj + A(j)
0 eαs(j)

0 zj

)

+
4
∑

k=1

[(
m2c(j)

11 + n2c(j)
12

)
ϖ
(j)
1k + κ

(j)
1k

](
A(j)

k e−αs(j)
k zj + A(j)

k eαs(j)
k zj

)

+
[(

m2c(j)
11 + n2c(j)

12

)
ϖ
(j)
15 + κ

(j)
15 − β

(j)
1 ϖ

(j)
55

](
A(j)

5 e−r(j)s(j)
5 zj + A(j)

5 er(j)s(j)
5 zj

)
,

˜̃σ(j)
yy = 2c(j)

66 mn
(

A(j)
0 e−αs(j)

0 zj + A(j)
0 eαs(j)

0 zj

)

+
4
∑

k=1

[(
m2c(j)

12 + n2c(j)
11

)
ϖ
(j)
1k + κ

(j)
1k

](
A(j)

k e−αs(j)
k zj + A(j)

k eαs(j)
k zj

)

+
[(

m2c(j)
12 + n2c(j)

11

)
ϖ
(j)
15 + κ

(j)
15 − β

(j)
1 ϖ

(j)
55

](
A(j)

5 e−r(j)s(j)
5 zj + A(j)

5 er(j)s(j)
5 zj

)
,

˜̃σ(j)
zz =

4
∑

k=1
κ
(j)
2k

(
A(j)

k e−αs(j)
k zj + A(j)

k eαs(j)
k zj

)
+
(

κ
(j)
25 − β

(j)
3 ϖ

(j)
55

)(
A(j)

5 e−r(j)s(j)
5 zj + A(j)

5 er(j)s(j)
5 zj

)
,

(17)

˜̃σ(j)
xy = −c(j)

66
(
n2 − m2)(A(j)

0 e−αs(j)
0 zj + A(j)

0 eαs(j)
0 zj

)

+
4
∑

k=1
2c(j)

66 mnϖ
(j)
1k

(
A(j)

k e−αs(j)
k zj + A(j)

k eαs(j)
k zj

)
+ 2c(j)

66 mnϖ
(j)
15

(
A(j)

5 e−r(j)s(j)
5 zj + A(j)

5 er(j)s(j)
5 zj

)
,

˜̃σ(j)
zx = −c(j)

44 inαs(j)
0

(
A(j)

0 e−αs(j)
0 zj − A(j)

0 eαs(j)
0 zj

)

+im
4
∑

k=1
κ
(j)
3k

(
A(j)

k e−αs(j)
k zj − A(j)

k eαs(j)
k zj

)
+ imκ

(j)
35

(
A(j)

5 e−r(j)s(j)
5 zj − A(j)

5 er(j)s(j)
5 zj

)
,

˜̃σ(j)
zy = c(j)

44 imαs(j)
0

(
A(j)

0 e−αs(j)
0 zj − A(j)

0 eαs(j)
0 zj

)

+in
4
∑

k=1
κ
(j)
3k

(
A(j)

k e−αs(j)
k zj − A(j)

k eαs(j)
k zj

)
+ inκ

(j)
35

(
A(j)

5 e−r(j)s(j)
5 zj − A(j)

5 er(j)s(j)
5 zj

)
.

(18)

˜̃D(j)
x = −e(j)

15 inαs(j)
0

(
A(j)

0 e−αs(j)
0 zj − A(j)

0 eαs(j)
0 zj

)

+im
4
∑

k=1
κ
(j)
4k

(
A(j)

k e−αs(j)
k zj − A(j)

k eαs(j)
k zj

)
+ imκ

(j)
45

(
A(j)

5 e−r(j)s(j)
5 zj − A(j)

5 er(j)s(j)
5 zj

)
,

˜̃D(j)
y = e(j)

15 imαs(j)
0

(
A(j)

0 e−αs(j)
0 zj − A(j)

0 eαs(j)
0 zj

)

+in
4
∑

k=1
κ
(j)
4k

(
A(j)

k e−αs(j)
k zj − A(j)

k eαs(j)
k zj

)
+ inκ

(j)
45

(
A(j)

5 e−r(j)s(j)
5 zj − A(j)

5 er(j)s(j)
5 zj

)
,

˜̃D(j)
z =

4
∑

k=1
κ
(j)
5k

(
A(j)

k e−αs(j)
k zj + A(j)

k eαs(j)
k zj

)
+
(

κ
(j)
55 + p(j)

3 ϖ
(j)
55

)(
A(j)

5 e−r(j)s(j)
5 zj + A(j)

5 er(j)s(j)
5 zj

)
,

(19)
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˜̃B(j)
x = −q(j)

15 inαs(j)
0

(
A(j)

0 e−αs(j)
0 zj − A(j)

0 eαs(j)
0 zj

)

+im
4
∑

k=1
κ
(j)
6k

(
A(j)

k e−αs(j)
k zj − A(j)

k eαs(j)
k zj

)
+ imκ

(j)
65

(
A(j)

5 e−r(j)s(j)
5 zj − A(j)

5 er(j)s(j)
5 zj

)
,

˜̃B(j)
y = q(j)

15 imαs(j)
0

(
A(j)

0 e−αs(j)
0 zj − A(j)

0 eαs(j)
0 zj

)

+in
4
∑

k=1
κ
(j)
6k

(
A(j)

k e−αs(j)
k zj − A(j)

k eαs(j)
k zj

)
+ inκ

(j)
65

(
A(j)

5 e−r(j)s(j)
5 zj − A(j)

5 er(j)s(j)
5 zj

)
,

˜̃B(j)
z =

4
∑

k=1
κ
(j)
7k

(
A(j)

k e−αs(j)
k zj + A(j)

k eαs(j)
k zj

)
+
(

κ
(j)
75 + λ

(j)
3 ϖ

(j)
55

)(
A(j)

5 e−r(j)s(j)
5 zj + A(j)

5 er(j)s(j)
5 zj

)
,

(20)

where the expressions of the shear stress, electric displacement, magnetic induction and
the coefficients κ1k, κ2k, . . . , κ5k (k = 1, 2, . . ., 5) in Equation (16) are listed in Appendix A.

In order to solve the unknowns A0, A1, . . . , A5 and A0, A1, . . . , A5, the boundary con-
ditions of the coating surface and the interface between the coating and the substrate are
employed. At the coating surface (z1 = 0), the normal pressure p and the heat flow q are
applied and the boundary conditions can be prescribed as

˜̃σ(1)
zz

∣∣∣
z1=0

= − ˜̃p, ˜̃σ(1)
xz

∣∣∣
z1=0

= −µ f ˜̃p, ˜̃σ(1)
yz

∣∣∣
z1=0

= 0,

˜̃D(1)
z

∣∣∣
z1=0

= − ˜̃qb, ˜̃B(1)
z

∣∣∣
z1=0

= − ˜̃gb, k(1)33
∂
∂z

˜̃T(1)
∣∣∣
z1=0

= − ˜̃q.
(21)

In the present study, the displacement and the stress across the interfaces between the
coating and the substrate are regarded as continuously transmitted; therefore, the stresses,
displacement, electric potential, magnetic potential, electric displacements and magnetic
induction should be transmitted continuously at the interface between the coating and the
substrate as

˜̃σ(1)
zz

∣∣∣
z1=h1

= ˜̃σ(2)
zz

∣∣∣
z2=0

, ˜̃σ(1)
xz

∣∣∣
z1=h1

= ˜̃σ(2)
xz

∣∣∣
z2=0

,

˜̃σ(1)
yz

∣∣∣
z1=h1

= ˜̃σ(2)
yz

∣∣∣
z2=0

, ˜̃u(1)
zz

∣∣∣
z1=h1

= ˜̃u(2)
zz

∣∣∣
z2=0

,

˜̃u(1)
xz

∣∣∣
z1=h1

= ˜̃u(2)
xz

∣∣∣
z2=0

, ˜̃u(1)
yz

∣∣∣
z1=h1

= ˜̃u(2)
yz

∣∣∣
z2=0

,

˜̃ϕ(1)
z

∣∣∣
z1=h1

= ˜̃ϕ(2)
z

∣∣∣
z2=0

, ˜̃φ(1)
z

∣∣∣
z1=h1

= ˜̃φ(2)
z

∣∣∣
z2=0

,

˜̃T(1)
∣∣∣
z1=h1

= ˜̃T(2)
∣∣∣
z2=0

, ˜̃D(1)
z

∣∣∣
z1=h1

= ˜̃D(2)
z

∣∣∣
z2=0

,

˜̃B(1)
z

∣∣∣
z1=h1

= ˜̃B(2)
z

∣∣∣
z2=0

, k(1)33
∂
∂z

˜̃T(1)
∣∣∣
z1=h1

= k(2)33
∂
∂z

˜̃T(2)
∣∣∣
z2=0

.

(22)

In addition, for the infinite half-space, the stress, displacement, electric displacement,
magnetic induction and temperature are treated as zero at infinity ( z2 → ∞ ), which can be
described as

˜̃σ(2)
ij

∣∣∣
z2→∞

= 0, ˜̃u(2)
i

∣∣∣
z2→∞

= 0, ˜̃D(2)
i

∣∣∣
z2→∞

= 0, ˜̃B(2)
i

∣∣∣
z2→∞

= 0,

˜̃ϕ(2)
∣∣∣
z2→∞

= 0, ˜̃φ(2)
∣∣∣
z2→∞

= 0, ˜̃T(2)
∣∣∣
z2→∞

= 0,
(23)
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and A(2)
k = 0(k = 1, . . . , 5) can be obtained by substituting Equations (16)–(20) into the

boundary conditions (Equation (23)). Therefore, based on the boundary conditions in
Equations (21) and (22), the eighteen unknown coefficients for the one-layered MEE material
can be determined by the following steps.

Firstly, we substitute a general solution of the temperature in the frequency domain
(Equation (15)) to the boundary condition that relates to the temperature. They can be
written in matrix form as follows:

1 −1 0

ϖ
(1)
55 θ5

ϖ
(2)
55

ϖ
(1)
55

ϖ
(2)
55 θ5

−1

χ2θ5 −χ2/θ5 −1




A(1)
5

A(1)
5

A(2)
5

 =


˜̃q

k(1)33 r1s(1)5 ϖ
(1)
55

0

0

 (24)

χ2 =
k(1)33 r1s(1)5 ϖ

(1)
55

k(2)33 r2s(2)5 ϖ
(2)
55

, θ5 = e−r1s(1)5 h1 (25)

Equation (24) only contains the unknown coefficients A(1)
5 , A(1)

5 , and A(2)
5 , which can

be obtained independently.

A(1)
5 =

˜̃q
(

ϖ
(1)
55 +ϖ

(2)
55 χ2

)
k(1)33 r1s(1)5 ϖ

(1)
55

[
ϖ
(1)
55 +ϖ

(2)
55 χ2+

(
ϖ
(1)
55 −ϖ

(2)
55 χ2

)
θ2

5

]

A(1)
5 = −

(
ϖ
(1)
55 −ϖ

(2)
55 χ2

)
θ2

5

ϖ
(1)
55 +ϖ

(2)
55 χ2

A(1)
5

A(2)
5 = χ2θ5 A(1)

5 − χ2
θ5

A(1)
5

. (26)

Then, by performing some operations, undetermined coefficients A(j)
k and A(j)

k (k = 1, . . . , 5)

in the equations can be eliminated, and only A(1)
0 , A(2)

0 , and A(1)
0 are left in the follow-

ing equations:


1 −1 0

θ0 1/θ0 −1

χ1θ0 −χ1/θ0 −1




A(1)
0

A(1)
0

A(2)
0

 =


−inµ f ˜̃p

c(1)44 α3s(1)0

0

0

, (27)

χ1 =
c(1)44 s(1)0

c(2)44 s(2)0

, θ0 = e−αs(1)0 h1 . (28)

By solving Equation (27), the expressions of A(1)
0 , A(2)

0 , and A(1)
0 can be obtained:

A(1)
0 =

−inµ f ˜̃p(1+χ1)

c(1)44 α3s(1)0 [(1+χ1)+(1−χ1)θ
2
0]

A(1)
0 = − (1−χ1)θ

2
0

(1+χ1)
A(1)

0

A(2)
0 = χ1θ0 A(1)

0 − χ1
θ0

A(1)
0

(29)

Thus far, the unknowns are reduced from eighteen to twelve. Similar to the above, to
solve A(1)

0 , A(2)
0 , and A(1)

0 , a set of equations that only include A(j)
k and A(j)

k (k = 1, . . . , 4)
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can be obtained. Combining other equations in the boundary conditions to calculate A(j)
k

and A(j)
k (k = 1, . . . , 4), the matrix can be written as

N(1)
1k UN(1)

1k 0

N(1)
1k θ

(1)
k UN(1)

1k /θ
(1)
k N(2)

1k

N(1)
2k θ

(1)
k −UN(1)

2k /θ
(1)
k N(2)

2k




A(1)
k

A(1)
k

A(2)
k

 =


W1

W2

W3

 (30)

where the submatrices U, N(j)
1k , N(j)

2k , W0, W1, and W2 are listed in Appendix B (the expres-

sions of A(1)
5 , A(1)

5 , and A(2)
5 contained in W0, W1, and W2 are shown in Equation (26)).

A(j)
k =

[
A(j)

1 A(j)
2 A(j)

3 A(j)
4

]T
(j = 1, 2) and A(1)

k =
[

A(1)
1 A(1)

2 A(1)
3 A(1)

4

]T
are the

submatrices of the undetermined coefficients. Hence, the remaining undetermined coeffi-
cients can be obtained by solving the linear equations in Equation (30).

The FRFs of the general solutions for the magneto-electro-thermo-elastic field of
the layered material considering transverse isotropy have been obtained. Using this
solution, the mechanical stresses, displacement, electric potential, magnetic potential and
temperature rise can be obtained for a given load. The advantage of the general solution is
that the FRFs can be determined efficiently based on the fast Fourier transform algorithm,
and it is an elementary solution for a unit load that can be used for a distributed load by
summarizing the effects from all loading units. The disadvantage of the general solution is
that the interfacial defects and the inhomogeneity of the coating–substrate system are not
considered. The general solution obtained in this section plays an important role in the semi-
analytical model. For example, in the contact model, the surface displacement is necessary
to calculate the contact equilibrium, and the thermal contact response (mechanical stresses,
displacement, electric potential, magnetic potential and temperature rise) under a contact
load is finally obtained by the general solution.

3. Semi-Analytical Model for Thermal Contact Problem

In the contact model, as shown in Figure 1, the elastic contact problem in the vertical
direction between the sliding ball and the half-space can be described with the following
system of equations and inequalities [34]:∫

Ac
p(x, y)dxdy = P,

g(x, y) = 0, p(x, y) > 0 ⇒ ∀(x, y) ∈ Ac,

g(x, y) > 0, p(x, y) = 0 ⇒ ∀(x, y) /∈ Ac,

(31)

where Ac is the contact area, p(x, y) is the vertical pressure in the z direction within the
contact area, P represents the normal load acting on the ball, and g(x, y) denotes the gap
between the two contact bodies. Zhang et al. [35] further introduced the effect of the surface
charge and magnetic charge during contact processes, namely∫

Ac
qbdxdy = Qb,∫

Ac
gbdxdy = Gb

(32)

where qb and gb denote the surface electric and magnetic charge densities, respectively; Qb
and Gb are the surface total electric and magnetic charges. Note that the electric and the
magnetic charges are assumed to be uniformly distributed on the surface of the half-space.

Sliding contact usually results in frictional heat generation, where all of the work
generated by friction resulting from the sliding of the contact ball is ideally converted into
heat, and the total heat flux in the contact area can be determined by q = pµfvs. Based on
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the hypothesis of an equal temperature on the surfaces between the two contact bodies [36],
the total heat flux can be partitioned by the sliding ball and the half-space as follows:

˜̃q = ˜̃q1 + ˜̃q2,(
ˆ
Cq

1 +
ˆ
Cq

2

)
˜̃q1 =

ˆ
Cq

2
˜̃q2,

(33)

where q1 and q2 are the heat fluxes flowing into the ball and the half-space;
ˆ
Cq

1 and
ˆ
Cq

2 are
the influence coefficient matrices of the temperature rise of the two contact bodies.

The surface gap g between the two contact bodies in Equation (31) includes the initial
vertical gap g0, the relative rigid approach δ and the surface normal displacement caused
by multiple loads that have the form of

g = g0 + up
z + uq

z(x, y) + uqb
z (x, y) + u

qg
z (x, y)− δ, (34)

where up
z , uq

z, upb
z , and upb

z are the surface normal displacement caused by the surface
pressure, the heat flux and the electric and the magnetic charges. Furthermore, the contact
equilibrium equation (Equation (31)) and the heat partition equation (Equation (33)) can
be solved via the conjugate gradient method (CGM) [34]. The whole numerical thermal
contact analysis procedure of the MEE material should include the following steps.

(1) Parameter initialization. The material parameters, including the elastic, electric,
magnetic, and thermal parameters; the surface topography of the contact ball and the
half-space, the multiple loads (normal force, sliding velocity, surface electric and magnetic
charges); the calculation area; and the mesh size, need to be determined.

(2) Contact pressure calculation. CGM is adopted to solve the contact equilibrium
equation (Equation (31)), thus obtaining the surface contact pressure p(x, y) with the effects
of a normal load, and the surface electric and magnetic charges. The surface tangential
force can be obtained by px(x, y) = µf p(x, y).

(3) Surface heat flux calculation. The total heat flux can be evaluated by q(x, y) = µf
p(x, y) vs and further divided into the two contact bodies by Equation (33). With the aid of
CGM, the surface heat fluxes q1 and q2 can be determined.

(4) Surface topography update. The surface displacements caused by multiple loads (up
z ,

uq
z, upb

z and upb
z ) are calculated by the DC-FFT algorithm to address the gap in Equation (34),

which is constantly updated by looping steps (3) and (4) until the multiple surface
loads converge.

(5) Results calculation. The temperature rise, stress, electric potential and magnetic
potential can be obtained by the DC-FFT algorithm with ICs. The specific implementation
can be found in Ref [37].

4. Results and Discussion

A particular multi-ferroic composite material, BaTiO3-CoFe2O4, is selected, whose
material constants are given in Ref. [38]. Note that the volumetric specific heat ch is obtained
using the method described in Ref. [39], with a volume fraction of 50% for BaTiO3 and
CoFe2O4. The substrate is composed of multi-ferroic composite material BaTiO3-CoFe2O4
for all simulations in this section, unless otherwise indicated. The radius of the loaded
sliding ball is 50 mm, and the material constants are the same as in the substrate. The
coating material constants and thickness are set according to different needs. In addition,
the maximum Hertzian contact radius r, pressure p0 for transversely isotropic contact,
equivalent electric potential ϕ0, equivalent magnetic potential φ0, and maximum surface
temperature T0 are used to normalize the numerical results, which can be calculated
as [33,35]

a0 = 0.9086 3

√√√√ 2

∑
l=1

ζl PRb (35)
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ph = 0.5784
3

√√√√√√ P(
2
∑

l=1
ζl

)2

R2
b

(36)

ϕ0 = p0a0/e33, φ0 = p0a0/q33, T0 = p0µ f v0a0/k33 (37)

ζl =
1
2

[
(s1 + s2)c11

s1s2
(
c11c33 − c2

13
)]

l

, l = 1, 2 (38)

where P is the normal load, Rb is the radius of the elastic ball, v0 = 1 m/s is the sliding
speed, and µf = 0.2 is the friction coefficient. Subscript l represents the ball (l = 1) and the
half-space (l = 2), respectively.

4.1. Model Verification

In order to verify the effectiveness of the thermal contact modeling of the transversely
isotropic MEE coating, comparative analyses are carried out by using the proposed model
and FEM (provided by ABAQUS v2017). Note that for the existing commercial FEM
software, there is no complete module to conduct the magneto-electro-thermo-elastic simu-
lation. Therefore, comparative studies for piezoelectric and thermoelastic cases obtained
with the degenerate solution of the proposed method and the FEM are implemented.
Here, the coated material surface is subjected to an assumed Hertzian-type load p(x, y)
(piezoelectric case) or a heat flux q(x, y) (thermoelastic case) as follows:

p(x, y) =
√

1 − x2

r2 − y2

r2 ,

q(x, y) = 1000
√

1 − x2

r2 − y2

r2 ,

(39)

where the radius of the load distribution r is set to be 1, and the coating thickness h = 0.5 r.
Different coatings characterized by varying elastic constants cij and heat conductivities kij
are employed within the contexts of the piezoelectric and thermoelastic cases, and other
material properties can be found in Ref. [38]. In addition, in the piezoelectric case, except
for the elastic constants cij and the electric constants eij, εij, the remaining parameters are

set to be zero; two types of coatings are designed, namely a soft coating (c(1)ij /c(2)ij = 0.5)

and hard coating (c(1)ij /c(2)ij = 2), for the piezoelectric case, while the rest of the coating
parameters are the same as for the substrate. In the thermoelastic case, except for the elastic
and thermal constants cij, kij, and βi, the remaining parameters are set to be zero; two types

of coatings of different thermal conductivities, k(1)ij /k(2)ij = 2 and k(1)ij /k(2)ij = 0.5, are also
designed, while the remining coating parameters are identical to those of the substrate.

The whole calculation domain is chosen as 4 r× 4 r× 2 r and meshed into 128 × 128 × 256
cuboidal elements sharing an identical size. Accordingly, a corresponding example is given
via the axisymmetric model of FEM as a benchmark. A larger calculation domain is
selected as 30 r × 30 r × 30 r to simulate the half-space substrate accurately. At the bot-
tom, the displacement and the potential/temperature are set to zero. The number of
discretized quad-dominated piezoelectric/temperature–displacement elements is 88,020.
The calculated results for the piezoelectric case and the thermoelastic case are illustrated in
Figures 2–5, respectively.
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Figure 2. Subsurface electric potential, von Mises stress, and their relative error for different coating
materials obtained with the proposed model and FEM for piezoelectric case. (a) Electric potential,
(b) relative error, electric potential, (c) von Mises stress along the z axis, (d) relative error, von
Mises stress.
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Figure 3. Electric potential and von Mises stress in the x–z plane for different coating materials
for piezoelectric case. (a) Electric potential obtained by the proposed model, (b) electric potential
obtained by the FEM, (c) von Mises stress obtained by the proposed model, (d) von Mises stress
obtained by the FEM (the non-English words in the figure mean “average”).

Figure 2 exhibits the obtained electric potential, the von Mises stress along the z axis,
and their relative error utilizing the proposed model and the FEM. The relative error is
defined as the ratio of the absolute difference in the values obtained with the two methods
to the value obtained by the proposed method. In the coating, the electric potential is higher
in the case with a soft coating (c(1)ij /c(2)ij = 0.5) than that with a hard coating (c(1)ij /c(2)ij = 2).
The von Mises stress has a noticeable difference at the boundary between the coating and
substrate, and its value in the case with a hard coating fluctuates more significantly than
that with a soft coating. The reason for this phenomenon is that the material dissimilarity
between the coating and the substrate leads to stress jumping at the interface. It is known
that stress is the product of the elastic constants and strain. For the interface belonging
to both the coating and the substrate, the strain is the same, while the stress is different
due to the disparate elastic constants. The relative error for the electric potential and the
von Mises stress obtained with the two methods is less than 3%, demonstrating the good
accuracy of the proposed method. Both the electric potential and von Mises stress within
the substrate are slightly affected by the coating material’s properties.
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Figure 4. Subsurface temperature rise, von Mises stress, and their relative error for different coating
materials obtained with the proposed method and FEM for the thermoelastic case. (a) Temperature
rise along the z axis, (b) relative error, temperature rise, (c) von Mises stress along the z axis, (d) relative
error, von Mises stress.

Figure 3 shows the calculation results of the electric potential and the von Mises stress
in the x–z plane. When the coating material is softer than the substrate (c(1)ij /c(2)ij = 0.5), the
electric potential is more concentrated near the surface, while the stress is more concentrated
near the interface in the hard coating case. The distribution of the von Mises stress is
discontinuous between the coating and the substrate, and the maximum stress occurs at
the interface of the hard coating side.

The temperature rise, the von Mises stress along the z axis, and their relative error
for the coatings of different heat conductivity are shown in Figure 4. Lower coating heat
conductivity leads to a larger temperature rise near the surface. In the coating (z < h), the
thermal stress caused by heat flux in the case of low heat conductivity is greater than that
in the case of high heat conductivity. The relative error of the temperature rise and the von
Mises stress obtained with the two methods is less than 2%, providing a verification of the
good accuracy of the proposed method.

Figure 5 depicts the temperature rise and the von Mises stress contours for different
coating thermal conductivities. The main stress concentration region in the case of low
coating thermal conductivity is closer to the surface than that in the case of high coating
thermal conductivity. All of the results obtained by the proposed model and FEM (both the
piezoelectric and thermoelastic cases), illustrated in Figures 2–5, agree well with each other,
verifying the effectiveness of the proposed model.
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Figure 5. Temperature rise and von Mises stress in the x–z plane for different coating materials for
the thermoelastic case. (a) Temperature rise obtained by the proposed model, (b) temperature rise
obtained by the FEM, (c) von Mises stress obtained by the proposed model, (d) von Mises stress
obtained by the FEM (the non-English words in the figure mean “average”).

4.2. Effect of Sliding Speed

The relative sliding velocity of the loaded ball is one of the key factors determining
frictional heat flux. Its effects on the thermal contact behavior of the MEE material are
explored, including the temperature rise, stress, and electric and magnetic potential dis-
tributions. Two types of coatings with different material parameters, c(1)ij /c(2)ij = 0.5 and

c(1)ij /c(2)ij = 2, are designed, while the remaining material parameters are set to be the same
as those of the substrate. The relative sliding velocity of the loaded ball is allowed to vary
from 0.1 v0 to 5 v0. The frictional coefficient µf = 0.2 and the simulated results are illustrated
in Figures 6–9.

It can be seen from Figure 6 that as the relative sliding velocity of the loaded ball
increases, the frictional heat flux grows, which leads to an augmentation in the surface
temperature rise and contact pressure for both the soft (c(1)ij /c(2)ij = 0.5) and hard coating

(c(1)ij /c(2)ij = 2) cases. The temperature rise of the hard coating surface is slightly larger than
that of the soft coating. This may be due to the higher contact pressure in the hard coating,
accompanied by greater heat flux.
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Figure 6. Temperature rise and contact pressure at the coating surface (the x axis) under different

sliding speeds for “soft/hard” coating. (a) Temperature rise, c(1)ij /c(2)ij = 0.5, (b) temperature rise,

c(1)ij /c(2)ij = 2, (c) contact pressure c(1)ij /c(2)ij = 0.5, (d) contact pressure, c(1)ij /c(2)ij = 2.

Figure 7. Temperature rise and von Mises stress on the x–z plane under different sliding speeds for
“soft/hard” coating. (a) Temperature rise, (b) von Mises stress.
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Figure 8. Electric and magnetic potentials at the coating surface (the x axis) under different slid-

ing speeds for “soft/hard” coating. (a) Electric potential, c(1)ij /c(2)ij = 0.5, (b) electric potential,

c(1)ij /c(2)ij = 2, (c) magnetic potential c(1)ij /c(2)ij = 0.5, (d) magnetic potential c(1)ij /c(2)ij = 2.

Figure 9. Electric and magnetic potentials of half-space on the x–z plane under different sliding
speeds for “soft/hard” coating. (a) Electric potential, (b) magnetic potential.
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Figure 7 shows the temperature rise and contact pressure distribution for soft/hard
coatings subjected to different sliding speeds. The faster the sliding speed, the more the
surface temperature rises. The difference in the temperature rise distribution in different
coatings is not obvious in the present cases, while some remarkable differences can be
noticed in the von Mises stress contours for dissimilar coating materials. Stress discon-
tinuity at the interface between the coating and the substrate exists for all cases. Stress
concentration occurs in the coating in the soft coating case, but across the interface in the
hard coating case.

The effects of the sliding speed on the electric and magnetic fields are shown in
Figures 8 and 9. In both the soft and hard coating cases, as the sliding speed increases, the
contact pressure becomes higher, resulting in a rise in the surface electric and magnetic
potentials within the contact area. The soft coating has higher electric and magnetic
potentials than the hard coating, which means that the former has better piezomagnetic and
piezoelectric performance. Regarding those outside of the contact area (x ≥ |a0|), in the
soft coating case, an augmentation in the temperature rise makes the surface electric and
magnetic potentials decrease slightly. However, the magnetic potential gradually increases
at x ≥ a0 (see Figure 8). As shown in Figure 9, the electric and magnetic potentials in the
coating material increase gradually with the sliding speed. Moreover, in the soft coating
case, the electric potential is more concentrated on the contact surface, while, in the hard
coating case, the magnetic potential is more concentrated on the contact surface.

4.3. Effect of Heat Conductivity and Thermal Modulus of Coating

The effect of the heat conductivity of the coating on the contact performance is investi-
gated by changing the thermal conductivity ratio of the coating to the substrate, k(1)ij /k(2)ij ,
from 0.2 to 2, while the other material properties of the coating are identical to those of the
substrate. The loaded ball slides on the coating surface with a velocity of vs = 5 v0 = 5 m/s.
Figure 10 demonstrates the temperature, pressure, and electric and magnetic potential
distributions on the coating surface with different coating thermal conductivities. The
surface temperature decreases when the coating thermal conductivity becomes larger, as
well as the contact pressure. Similar to the sliding speed, the surface thermal expansion
resulting from the larger temperature rise leads to a slight increase in the contact pressure
when the coating thermal conductivity is small (see Figure 10b). The temperature rise
decreases with the coating thermal conductivity, which causes the surface electric potential
(−a0 < x < 0) and the magnetic potential (x < 0) to decrease slightly, while they scarcely
change in other regions, as exhibited in Figure 10c,d.

The ratio of the thermal modulus of the coating to the substrate β
(1)
ij /β

(2)
ij ranges from

0.2 to 2. The effects of the coating thermal modulus on the temperature, pressure, and
electric and magnetic potential are portrayed in Figure 11. As the coating thermal modulus
increases, the surface temperature and the contact pressure are augmented remarkably for
the latter part of the contact area along the sliding direction, while the variation trend is
the opposite and slight in the former part of the contact area. Although the surface electric
potential shares similar regularity with the temperature and the contact pressure, the effect
of the coating thermal modulus is more obvious in the former part of the contact area. It is
noted that the increase in the coating thermal modulus leads to a reduction in the magnetic
potential across the whole surface.
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Figure 10. Contact behavior at the coating surface (the x axis) for MEE coatings of different thermal
conductivities. (a) Temperature rise, (b) contact pressure, (c) electric potential, (d) magnetic potential.

4.4. Effect of Film Thickness

In order to study the effect of the coating thickness on the thermal contact behavior
of the MEE material, the thicknesses of the soft and hard coatings are set to be 0.001 a0
to 14 a0, and the sliding speed vs = v0 = 1 m/s. The rest of the coating parameters are
set to be the same as those of the substrate. The calculation results of the maximum
temperature rise, contact pressure, and electric potential and magnetic potential in the
coating surface are shown in Figure 12. When the coating thickness is between ~0.1 a0 and
1 a0, the maximum surface temperature rise and the contact pressure are greatly affected
by the thickness changes. Both the temperature rise and contact pressure in the hard
coating case (c(1)ij /c(2)ij = 2) are higher than those in the soft coating case (c(1)ij /c(2)ij = 0.5).
Correspondingly, when adjusting the thickness between ~0.003 a0 and 10 a0, the amplitudes
of the electric potential and the magnetic potential change prominently. The electric
potential and magnetic potential of the soft coating are higher than those of the hard coating.
This phenomenon indicates that the temperature rise, contact pressure, electric potential,
and magnetic potential on the surface of the MEE material can be controlled by adjusting
the thickness of the coating material within a certain range (0.1 a0–1a0 for the temperature
rise and the contact pressure; 0.003 a0–14 a0 for the electric and magnetic potential).
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Figure 11. Contact behavior at the coating surface (the x axis) for MEE coatings of different thermal
moduli. (a) Temperature rise, (b) contact pressure, (c) electric potential, (d) magnetic potential.

Figure 12. Effect of coating thickness on the contact behavior of MEE coating. (a) The maximum
temperature rise; (b) the maximum contact pressure; (c) the maximum electric potential; (d) the
maximum magnetic potential.
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5. Conclusions

In the present work, a thermal contact model between a sliding ball and a coated MEE
medium is established. To this end, the Fourier transform is performed on the general
solutions of the magneto-electro-thermo-elastic field and then a set of analytical FRFs for
the coated medium are derived. CGM and the DC-FFT algorithm are employed to enhance
the proposed model. Furthermore, the proposed model is verified by comparing the results
with those from the FEM (thermal case and piezoelectric case). A series of parametric
studies are carried out with the proposed model, leading to the following conclusions.

1. As the sliding velocity increases, there is almost no difference in the temperature rise
between the soft and hard coatings. The contact pressure increases more acutely for
the material with a hard coating. For the electric and magnetic fields, both the electric
and magnetic potentials increase gradually in the contact area. Outside of the contact
area, the electric potential and the magnetic potential in the soft coating surface
decrease slightly, but, in the hard coating surface, the electric potential decreases
and the magnetic potential increases. In addition, the temperature and electric and
magnetic potentials are continuous, and they are more concentrated in the soft coating.
Meanwhile, the von Mises stress is discontinuous and is higher in the hard coating.

2. The greater the ratio of the thermal conductivity of the coating to that of the substrate,
the lower the surface temperature rise, contact pressure, and electric and magnetic
potentials. However, when the ratio increases, the surface temperature rise and the
contact pressure increase, the magnetic potential decreases, and the electric potential
only shifts slightly, with its value almost unchanged.

3. When the coating thickness increases within a certain range, the surface’s maximum
temperature rises, and the contact pressure of the soft coating gradually decreases and
is lower than that of the hard coating. The maximum electric and magnetic potentials
in the soft coating case are augmented and are higher than those in the hard coating
case. Moreover, when the coating thickness is smaller or greater than a certain range,
the change in coating thickness has almost no effect on the MEE system.
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Appendix A

The intermediate variables defined in Equation (16) have the following forms:

ϖ1k = a1α6s6
k − b1α6s4

j + f1α6s2
j − g1α6,

ϖ15 = a1r6s6
5 − b1α4r4s4

5 + f1α6r2s2
5 − g1α6,

ϖ2k = a2α6s6
k − b2α6s4

k + f2α6s2
k − g2α6,

ϖ25 = a2r6s6
5 − b2α4r4s4

5 + f2α6r2s2
5 − g2α6,

ϖ3k = a3α6s6
k − b3α6s4

k + f3α6s2
k − g3α6,

ϖ35 = a3r6s6
5 − b3α4r4s4

5 + f3α6r2s2
5 − g3α6,

ϖ4k = a4α6s6
k − b4α6s4

k + f4α6s2
k − g4α6,

ϖ45 = a4r6s6
5 − b4α4r4s4

5 + f4α6r2s2
5 − g4α6,

ϖ55 = n0r8s8
5 − n1α2r6s6

5 + n2α4r4s4
5 − n3α6r2s2

5 + n4α8,

(A1)

The constants in Equations (17)–(20) are expressed as follows:

κ1k = c13α2s2
kϖ2k + e31α2s2

kϖ3k + q31α2s2
kϖ4k,

κ15 = c13r2s2
5ϖ25 + e31r2s2

5ϖ35 + q31r2s2
5ϖ45,

κ2k = c13α2ϖ1k + c33α2s2
kϖ2k + e33α2s2

kϖ3k + q33α2s2
kϖ4k,

κ25 = c13α2ϖ15 + c33r2s2
5ϖ25 + e33r2s2

5ϖ35 + q33r2s2
5ϖ45,

κ3k = c44αskϖ1k − c44αskϖ2k − e15αskϖ3k − q15αskϖ4k,

κ35 = c44rs5ϖ15 − c44rs5ϖ25 − e15rs5ϖ35 − q15rs5ϖ45,

κ4k = e15αskϖ1k − e15αskϖ2k + ε11αskϖ3k + d11αskϖ4k,

κ45 = e15rs5ϖ15 − e15rs5ϖ25 + ε11rs5ϖ35 + d11rs5ϖ45,

κ5k = e31α2ϖ2k + e33α2s2
kϖ2k − ε33α2s2

kϖ3k − d33α2s2
kϖ4k,

κ55 = e31α2ϖ25 + e33r2s2
5ϖ25 − ε33r2s2

5ϖ35 − d33r2s2
5ϖ45,

κ6k = q15αskϖ1k − q15αskϖ2k + d11αskϖ3k + µ11αskϖ4k,

κ65 = q15rs5ϖ15 − q15rs5ϖ25 + d11rs5ϖ35 + µ11rs5ϖ45,

κ7k = q31α2ϖ2k + q33α2s2
kϖ2k − d33α2s2

kϖ3k − µ33α2s2
kϖ4k,

κ75 = q31α2ϖ2j + q33r2s2
5ϖ25 − d33r2s2

5ϖ35 − µ33r2s2
5ϖ45,

(A2)

The constant submatrices in Equation (30) are given as follows:

U =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

, N(j)
1k =



κ
(j)
21 κ

(j)
22 κ

(j)
23 κ

(j)
24

κ
(j)
51 κ

(j)
52 κ

(j)
53 κ

(j)
54

κ
(j)
71 κ

(j)
72 κ

(j)
73 κ

(j)
74

κ
(j)
31 κ

(j)
32 κ

(j)
33 κ

(j)
34


(A3)
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N(j)
2k =



s(j)
1 ϖ

(j)
21 s(j)

2 ϖ
(j)
22 s(j)

3 ϖ
(j)
23 s(j)
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(j)
24

s(j)
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31 s(j)

2 ϖ
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32 s(j)

3 ϖ
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33 s(j)
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4 ϖ
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ϖ
(j)
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(j)
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(j)
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(A4)

W0 =



− ˜̃p −
(

κ
(1)
25 − β

(1)
3 ϖ

(1)
55

)(
A(1)

5 + A(1)
5

)
− ˜̃qb −

(
κ
(1)
55 + p(1)3 ϖ

(1)
55

)(
A(1)

5 + A(1)
5

)
− ˜̃gb −

(
κ
(1)
75 + λ

(1)
3 ϖ

(1)
55

)(
A(1)

5 + A(1)
5

)
−inµ f ˜̃p/α2 − κ

(1)
35

(
A(1)

5 − A(1)
5

)


, (A5)

W1 =



(
κ
(2)
25 − β

(2)
3 ϖ

(2)
55

)
A(2)

5 −
(

κ
(1)
25 − β

(1)
3 ϖ

(1)
55

)(
A(1)

5 e−r1s(1)5 h1 + A(1)
5 er1s(1)5 h1

)
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κ
(2)
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)
A(2)

5 −
(

κ
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(1)
55

)(
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)
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κ
(2)
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3 ϖ

(2)
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)
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(

κ
(1)
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)
κ
(2)
35 A(2)
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25 A(2)

5 /α − r1s(1)5 ϖ
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(A7)

Appendix B

The process of determining the unknowns of the temperature solution (A(1)
5 , A(1)

5 ,

A(2)
5 ) is to solve the linear equations (Equation (24)) as follows:

1 −1 0

ϖ
(1)
55 θ5

ϖ
(2)
55

ϖ
(1)
55

ϖ
(2)
55 θ5

−1

χ2θ5 −χ2/θ5 −1




A(1)
5

A(1)
5

A(2)
5

 =


˜̃q

k(1)33 r1s(1)5 ϖ
(1)
55

0

0

. (A8)

Equation (A8) can be written as

A(1)
5 − A(1)

5 =
˜̃q

k(1)33 r1s(1)5 ϖ
(1)
55

, (A9)

ϖ
(1)
55 θ5

ϖ
(2)
55

A(1)
5 +

ϖ
(1)
55

ϖ
(2)
55 θ5

A(1)
5 − A(2)

5 = 0, (A10)
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χ2θ5 A(1)
5 − χ2/θ5 A(1)

5 − A(2)
5 = 0. (A11)

Equation (A10) is multiplied by χ2 minus Equation (A11) multiplied by ϖ
(1)
55

ϖ
(2)
55

, resulting in

(
ϖ
(1)
55

ϖ
(2)
55

− χ2

)
θ5 A(1)

5 +

(
ϖ
(1)
55

ϖ
(2)
55

+ χ2

)
/θ5 A(1)

5 = 0. (A12)

Simultaneously, Equation (A9) and Equation (A12) are grouped:

A(1)
5 − A(1)

5 =
˜̃q

k(1)33 r1s(1)5 ϖ
(1)
55

, (A13)

(
ϖ
(1)
55

ϖ
(2)
55

− χ2

)
θ5 A(1)

5 +

(
ϖ
(1)
55

ϖ
(2)
55

+ χ2

)
/θ5 A(1)

5 = 0. (A14)

Equation (A10) is multiplied by
(

ϖ
(1)
55

ϖ
(2)
55

+ χ2

)
/θ5 plus Equation (A12), leading to

A(1)
5 =

(
ϖ
(1)
55 + ϖ

(2)
55 χ2

)
˜̃q

k(1)33 r1s(1)5 ϖ
(1)
55

[(
ϖ
(1)
55 + χ2ϖ

(2)
55

)
+
(

ϖ
(1)
55 − χ2ϖ

(2)
55

)
θ2

5

] . (A15)

After obtaining A(1)
5 , A(1)

5 can be obtained by Equation (A9):

A(1)
5 = −

(
ϖ
(1)
55 − ϖ

(2)
55 χ2

)
θ2

5

ϖ
(1)
55 + ϖ

(2)
55 χ2

A(1)
5 . (A16)

After obtaining A(1)
5 and A(1)

5 , A(2)
5 is easy to obtain from Equation (A10) or Equation (A11):

A(2)
5 = χ2θ5 A(1)

5 − χ2

θ5
A(1)

5 (A17)

References
1. Wang, Z.L.; Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246. [CrossRef]

[PubMed]
2. Guo, J.; He, L.; Liu, Y.; Li, L. Anti-plane analysis of a reinforced nano-elliptical cavity or nano-crack in a magnetoelectroelastic

matrix with surface effect. Theor. Appl. Fract. Mech. 2020, 107, 102553. [CrossRef]
3. Yang, Y.; Li, X.-F. Bending and free vibration of a circular magnetoelectroelastic plate with surface effects. Int. J. Mech. Sci. 2019,

157–158, 858–871. [CrossRef]
4. Li, K.; Jing, S.; Yu, J.; Zhang, B. Complex Rayleigh Waves in Nonhomogeneous Magneto-Electro-Elastic Half-Spaces. Materials

2021, 14, 1011. [CrossRef] [PubMed]
5. Mindlin, R.D.; Cheng, D.H. Thermoelastic stress in the semi-infinite solid. J. Appl. Phys. 1950, 21, 931–933. [CrossRef]
6. Zhou, Y.T.; Pang, S.J.; Zhang, C. On sliding interface contact in layered smart structures. Appl. Math. Model. 2019, 67, 135–150.

[CrossRef]
7. Ootao, Y.; Ishihara, M. Transient thermal stress problem of a functionally graded magneto-electro-thermoelastic hollow sphere.

Materials 2011, 4, 2136–2150. [CrossRef] [PubMed]
8. Zhang, X.; Wang, Z.; Shen, H.; Wang, Q.J. Frictional contact involving a multiferroic thin film subjected to surface magnetoelec-

troelastic effects. Int. J. Mech. Sci. 2017, 131–132, 633–648. [CrossRef]
9. Marmo, F.; Sessa, S.; Vaiana, N.; De Gregorio, D.; Rosati, L. Complete solutions of three-dimensional problems in transversely

isotropic media. Contin. Mech. Therm. 2020, 32, 775–802. [CrossRef]
10. Ma, L.; Wu, L.Z.; Feng, L.P. Surface crack problem for functionally graded magnetoelectroelastic coating–homogeneous elastic

substrate system under anti-plane mechanical and in-plane electric and magnetic loading. Eng. Fract. Mech. 2009, 76, 269–285.
[CrossRef]

https://doi.org/10.1126/science.1124005
https://www.ncbi.nlm.nih.gov/pubmed/16614215
https://doi.org/10.1016/j.tafmec.2020.102553
https://doi.org/10.1016/j.ijmecsci.2019.05.029
https://doi.org/10.3390/ma14041011
https://www.ncbi.nlm.nih.gov/pubmed/33669909
https://doi.org/10.1063/1.1699786
https://doi.org/10.1016/j.apm.2018.10.023
https://doi.org/10.3390/ma4122136
https://www.ncbi.nlm.nih.gov/pubmed/28824129
https://doi.org/10.1016/j.ijmecsci.2017.07.039
https://doi.org/10.1007/s00161-018-0733-8
https://doi.org/10.1016/j.engfracmech.2008.10.002


Materials 2024, 17, 128 26 of 27

11. Wang, Y.Z. Influences of imperfect interfaces on effective properties of multiferroic composites with coated inclusion. Mech. Res.
Commun. 2016, 77, 5–11. [CrossRef]

12. Mousavi, S.M.; Paavola, J. Analysis of functionally graded magneto-electro-elastic layer with multiple cracks. Theor. Appl. Fract.
Mech. 2013, 66, 1–8. [CrossRef]

13. Li, Y.S.; Pan, E. Responses of an anisotropic magnetoelectroelastic and layered half-space to internal forces and dislocations. Int. J.
Solids Struct. 2016, 94–95, 206–221. [CrossRef]

14. Espinosa-Almeyda, Y.; Camacho-Montes, H.; Otero, J.; Rodríguez-Ramos, R.; López-Realpozo, J.; Guinovart-Díaz, R.; Sabina,
F. Interphase effect on the effective magneto-electro-elastic properties for three-phase fiber-reinforced composites by a semi-
analytical approach. Int. J. Eng. Sci. 2020, 154, 103310. [CrossRef]

15. Sixto-Camacho, L.M.; Bravo-Castillero, J.; Brenner, R.; Guinovart-Díaz, R.; Mechkour, H.; Rodríguez-Ramos, R.; Sabina, F.J.
Asymptotic homogenization of periodic thermo-magneto-electro-elastic heterogeneous media. Comput. Math. Appl. 2013, 66,
2056–2074. [CrossRef]

16. Zhou, L.; Tang, J.; Tian, W.; Xue, B.; Li, X. A multi-physics coupling cell-based smoothed finite element micromechanical model
for the transient response of magneto-electro-elastic structures with the asymptotic homogenization method. Thin Wall Struct.
2021, 165, 107991. [CrossRef]

17. Chaki, M.S.; Bravo-Castillero, J. Dynamic asymptotic homogenization for wave propagation in magneto-electro-elastic laminated
composite periodic structure. Compos. Struct. 2023, 322, 117410. [CrossRef]

18. Zhang, X.; Wang, Z.; Shen, H.; Wang, Q.J. Dynamic contact in multiferroic energy conversion. Int. J. Solids Struct. 2018, 143,
84–102. [CrossRef]

19. Zhang, H.; Wang, W.; Zhang, S.; Zhao, Z. Semi-analytical solution of three-dimensional steady state thermoelastic contact problem
of multilayered material under friction heating. Int. J. Therm. Sci. 2018, 127, 384–399. [CrossRef]

20. Sui, Y.; Wang, W.; Zhang, H. Effects of electromagnetic fields on the contact of magneto-electro-elastic materials. Int. J. Mech. Sci.
2022, 223, 107283. [CrossRef]

21. Wan, Y.; Yue, Y.; Zhong, Z. Multilayered piezomagnetic/piezoelectric composite with periodic interface cracks under magnetic or
electric field. Eng. Fract. Mech. 2012, 84, 132–145. [CrossRef]

22. Arhani, A.A.; Ayatollahi, M. Dynamic response of cracked non-homogeneous magneto-electro-elastic layer sandwiched by two
dissimilar orthotropic layers. Fatigue Fract. Eng. M 2022, 45, 1448–1463. [CrossRef]

23. Wang, P.; Wang, B.; Wang, K.; Cui, Y. Analysis of inclusion in thermoelectric materials: The thermal stress field and the effect of
inclusion on thermoelectric properties. Compos. Part B-Eng. 2019, 166, 130–138. [CrossRef]

24. Sunar, M.; Al Garni, A.Z.; Ali, M.H.; Kahraman, R. Finite element modeling of thermopiezomagnetic smart structures. AIAA J.
2002, 40, 1846–1851. [CrossRef]

25. Tassi, N.; Bakkali, A.; Fakri, N.; Azrar, L.; Aljinaidi, A. Mathematical modeling of fully coupled reinforced magneto-electro-
thermo-mechanical effective properties based on conditioned micromechanics. Compos. Struct. 2022, 280, 114896. [CrossRef]

26. Chen, W.Q.; Yong Lee, K.; Ding, H.J. General solution for transversely isotropic magneto-electro-thermo-elasticity and the
potential theory method. Int. J. Eng. Sci. 2004, 42, 1361–1379. [CrossRef]

27. Zhou, L.; Li, M.; Ma, Z.; Ren, S.; Li, X.; Tang, J.; Ma, Z. Steady-state characteristics of the coupled magneto-electro-thermo-elastic
multi-physical system based on cell-based smoothed finite element method. Compos. Struct. 2019, 219, 111–128. [CrossRef]

28. Ni, Y.; Zhu, S.; Sun, J.; Tong, Z.; Zhou, Z.; Xu, X. Analytical buckling solution of magneto-electro-thermo-elastic cylindrical shells
under multi-physics fields. Compos. Struct. 2020, 239, 112021. [CrossRef]

29. Chang, D.; Liu, X.; Wang, B.; Liu, L.; Wang, T.; Wang, Q.; Han, J. Exact solutions to magneto-electro-thermo-elastic fields for a
cracked cylinder composite during thermal shock. Int. J. Mech. Mater. Des. 2020, 16, 3–18. [CrossRef]

30. Bravo-Castillero, J.; Sixto-Camacho, L.M.; Brenner, R.; Guinovart-Díaz, R.; Pérez-Fernández, L.D.; Rodríguez-Ramos, R.; Sabina,
F.J. Temperature-related effective properties and exact relations for thermo-magneto-electro-elastic fibrous composites. Comput.
Math. Appl. 2015, 69, 980–996. [CrossRef]

31. Marmo, F.; Paradiso, M. Quasi-Harmonic Solutions for Transversely Isotropic Magneto-Electro-Thermo-Elasticity: A Symbolic
Mathematics Approach. In Mathematical Applications in Continuum and Structural Mechanics; Springer: Cham, Switzerland, 2021;
pp. 173–190.
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