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Abstract: This paper is concerned with the free and forced vibration responses of a magneto/electroactive
dielectric elastomer, emphasizing the chaotic phenomena. The dielectric elastomers under exter-
nal magnetic and electrical excitations undergo large elastic deformation. The magnetodielectric
elastomer is modeled based on the Gent—Gent strain energy function to incorporate the influence
of the second invariant and the strain stiffening. The viscoelasticity of the active polymer is also
considered in the form of Rayleigh’s dissipation function. The equation of motion is governed with
the aid of the Lagrangian equation in terms of a physical quantity, namely, the stretch of the elastomer.
An energy-based approach is utilized to re-evaluate the static and DC voltage instabilities of the
resonator. Time-stretch response (time history behavior), phase plane diagram, Poincaré map, and
fast Fourier transform are numerically obtained and presented to explore the chaotic oscillation
behavior of the active polymer actuators. The results reveal that the magnetic field may tune the
stability and instability regions of the active polymeric membrane. It has also been shown that
the applied magnetic field may lead to chaotic vibration responses when a sinusoidal voltage is
applied simultaneously to the system. The results presented in this paper can be effectively used to
design magnetic and electrical soft robotic actuators and elastomer membranes under electrical and
magnetic stimulants.
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1. Introduction

Active polymers are smart-functional materials capable of altering their mechan-
ical and geometrical properties under the application of external physical stimuli [1].
These external stimuli may be electrical [2], light [3], thermal [4], magnetic [5,6], and
hygrothermal [7]. All these excitation methods have provided new routes into the design
of smart systems that can be mechanically responsive and adaptive to environmental
changes. There are some limitations associated with the practical applications of some
active materials. For instance, light-activated materials are limited by the opaqueness of
the surrounding area, while thermal and hygrothermal active materials may require local
environmental conditions and provide slow responses to external excitations and thus not
applicable for real-time control applications. In these concerns, magneto/electroactive
materials, due to their fast response and the possibility of remote actuation, can potentially
overcome these limitations and become ideal candidates for several applications within
soft robotics actuators and smart sensors [8,9]. Magnetodielectric elastomers (MDEs) have
properties of both magnetoactive material and dielectric elastomer (DE) and are thus re-
sponsive to both magnetic and electrical loads [10,11]. The magnetodielectric effect has
received recent interest due to its capability to control the dielectric permittivity in response
to applied magnetic fields. Materials showing a significant magnetodielectric effect are
suitable for new applications, including radio frequency, tunable microwaves, filters, four-
state memories, magnetic sensors, and spin-charge transducers [12-14]. Magnetodielectric
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nanocomposite materials based on nanoparticles with polyvinylidene fluoride (PVDF) and
polydimethylsiloxane (PDMS) were used for antenna applications [15,16]. Yang et al. [17]
reported that the dielectric permittivity of the polymer composite increases with the increas-
ing amount of Fe30, doping and is not influenced by nanoparticle size. Isaev et al. [10]
presented the results of the numerical simulation of the magnetodielectric effect of three
types of particle size distributions on magnetorheological elastomers. It is notable that
the majority of studies in this area were focused on the effect of the volume content of
particles on the dielectric response and magnetization. Stojak et al. [13] investigated tunable
magnetodielectric polymers. They showed that these materials might experience large
deformation unsuitable for applications such as microwave metamaterials and magnetic
sensors. Thus, knowing the free and forced vibration behaviors of magnetoactive materials
and electroactive elastomers is essential for their design and practical application.

Polymers stimulated by electrical excitation are called electroactive polymers (EAPs).
The most well-known material in EAPs is dielectric elastomers (DEs). DEs deform under
the application of an electrical field and show large deformation and strain [18,19]. Static
and dynamic responses of DEs with different geometries have been well addressed. For
example, Zhu et al. [20] investigated the dynamic response of a spherical DE using the neo-
Hookean model. They obtained the equation of motion for the system using the method
of virtual work and solved the problem numerically and analytically. Sheng et al. [21]
analyzed the nonlinear oscillation of a rectangular DE membrane using virtual work
and utilizing the Gent hyperelastic material model. Wang et al. [22] studied a circular
DE’s static and dynamic characteristics using the Gent model and Lagrangian equation.
Different models have been utilized to investigate the time and frequency response of
microbeams made of DEs, such as the neo-Hookean, Gent, and Cosserat hyperelastic
models [23,24]. Several research studies investigated the static and dynamic behaviors of
fiber-reinforced DEs. Hyperelastic models such as neo-Hookean, Gent, Mooney—Rivlin,
and Ogden were generally used [25,26]. Recently, Alibakhshi et al. [27] showed that multi-
frequency excitation could control the effect of the damping in the system and improve
the performance of dielectric elastomers, where a higher response amplitude is required.
To the best of our knowledge, some papers considered the experimental analysis of the
simultaneous effect of both electrical and magnetic stimuli [28,29]. However, no study has
been conducted on the simultaneous chaotic effect of both electrical and magnetic stimuli
on the performance of the dielectric elastomers and their dynamic response behavior.

As mentioned above, the magnetic field can be effectively used to actuate some active
polymers [30-32]. The study of magnetoactive polymers (MAPs) is a growing field of
study worldwide due to their potential widespread biomedical applications, and use in
soft robotics and adaptive smart systems [33,34]. They can also be custom-made fabricated
using the novel 3D and 4D printing technologies [35,36]. The theory and fundamental
formulations of MAPs were nearly developed three decades ago when Dorfmann et al. [37]
extended the electromagnetism theories for elastomers and polymers. Garcia-Gonzalez [38]
extended the theory and applications of a magnetically actuated soft polymer (hard mag-
netic soft materials) using the neo-Hookean model. Zhao et al. [39] analyzed the mechanics
of magneto/active soft polymers considering the magnetic field in the thickness direction
and used the neo-Hookean model to capture the nonlinear nature of the polymer. Dorfman
and Odgen [37] reported a detailed description and formulation of electro-magneto-active
polymers. Kumar et al. [38] also provide a universal formulation of polymers triggered by
electromagnetic excitations.

Similar to DEs, the static and dynamic responses of MAPs are of significant importance
for their design and applications as actuators. For example, Khurana et al. [40] investigated
the static and DC dynamic responses of an MAP using the Lagrangian equation. They
also included the influence of the electric field. They used a molecular-based hyperelastic
model to assess the influence of the polymer chain entanglements and crosslinks on the
characteristics of the MAP. Haldar et al. [41] developed a finite element formulation of an
MAP in the context of finite deformation (large deformation). Khurana and co-workers [42]
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later conducted a vibrational analysis of and depicted a phase plane diagram and Poincaré
map to give more details about the system’s response. In another study, Xing and Yong [43]
developed a dynamic model and a controller for a magnetically actuated polymer using
the neo-Hookean constituent material model.

The literature review mentioned above shows that the chaotic responses of MAPs
under the simultaneous application of both electrical and magnetic stimuli have not been
investigated. More specifically, the influence of the magnetic field on the chaos and stability
of active polymers needs more investigation. This study aims to investigate the static and
dynamic responses of MDEs. In the following, the first governing equations of motion are
derived using the Lagrangian equation and solved numerically using the Runge-Kutta
method. An energy method is subsequently expressed to analytically explore the static and
dynamic instability of the magnetodielectric elastomer, and finally, the results are presented
and discussed.

2. Mathematical Formulation

The schematic representation of a magneto-electro-active membrane is depicted in
Figure 1. The length, width, and thickness of the membrane are denoted by L, L, and d,
respectively. The continuum mechanics notation is utilized to derive equations of motion of
the membrane undergoing large deformation. Thus, two configurations are set to define the
deformation of the membrane. The first one is the reference (undeformed) configuration
(Figure 1a), in which there are no applied forces to the membrane. The second one is
the actuated (deformed) configuration (Figure 1b), where the membrane is subjected to
magneto-electro-mechanical loading. A rectangular Cartesian coordinate system is used to
specify the deformation of the system, which is X3, X», X3 in the reference configuration
and x1, X2, x3 in the actuated deformed configuration. In a deformed form, the membrane
is subjected to in-plane mechanical load P, which may be static or harmonic, as well as
external AC/DC magnetic (B) and electrical (¢) excitations.

Figure 1. The schematic of magneto/electroactive model (a) without external stimuli and (b) actuated
with magnetic, electrical, and mechanical stimulants; Reference configuration in red (X3, X5, X3))
and Actuated deformed configuration in black arrows (x1, xp, x3).

The governing equations of motion are derived by assuming the following conditions:

1.  The polymeric membrane is assumed to be incompressible, e.g., the volume of the
reference and actuated model are equal.

2. The deformation of the membrane is specified in terms of the stretch A.

3. Itis assumed that the thickness of the membrane is thin (the inertia in the out-of-plane
direction (X3, x3) is negligible); thus, only the in-plane deformation is analyzed.

4.  Linear viscoelasticity is assumed using the Kelvin—Voigt model.
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The stretches in x1, x,, x3 directions can be represented as:

M=
A=, (1)
Ay =g

For the in-plane motion, it is assumed A = A1 = A, in which the stretch only depends
on time, namely, A = A(t). Therefore, the equations of motion can be derived in terms of
the stretch A and its derivates. The governing equations of motion are derived using an
energy approach based on the Euler-Lagrange equation:

dt

d<auK> aUs  oF Wp ®

) T T T T
in which Uk stands for kinetic energy; Us is the potential energy; F refers to Rayleigh’s
dissipation function; and Wp is the work performed by external forces. The kinetic energy

of the soft system membrane is formulated as follows:
1 . . .
Ug = Ep/v(x1 + i + x3)dV, €)

where V and p are the volume and density of the membrane. For the in-plane motion, x3 is
zero. Substituting Equation (1) into Equation (3) yields:

1 d (L pL,. .
U = ~p / / / (AlzXlz+/\22X22>/\1/\2/\3dX1dX2dX3. @)
2" Jo Jo Jo —
=1

It is noted that A;A;A3 = 1 owing to the incompressibility constraint. Considering
A = A1 = Ay, Equation (4) can be simplified in terms of A as:

1 (dAN? 5
Uy = 3pdL <dt> +o(d) )

The term O(d®) shows that only in-plane deformation has been included in the kinetic
energy. The potential energy of the system under consideration may be described as:

uS = de(lpelustic + lpelectrical + wmagnetic) . (6)

where Yeiastics Yelectrical, ANA Pruagnetic are elastic, electrical, and magnetic potential energies
per unit volume. The elastic part of the potential energy is formulated using the Gent-Gent
hyperelastic material model developed by Pucci and Saccomandi [44]. This model includes
both the strain-stiffening effect and the second invariant and provides better performance
compared with the classic Gent model for a broader range of deformation [45] and can be
described with respect to the first and second invariants as [46]:

C L-3 I
Yelastic = — 12]m In (1 - 1]111 ) +G 11’1(32), ()

in which C; and C, are material constants which are identified by experimental data, and
Jim represents a dimensionless parameter related to limiting stretch Ay, which is called
the Gent parameter (stiffening parameter) and measures the maximum available stretches
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of the membrane (J;; = 2A1im? + Alim* — 3). I; and I are the first and second principal
invariants of the right Cauchy—Green deformation tensor, which are formulated as:

3
I =Y (M) =2A24+274,
i=1
5 ®)
L= Y AAj=A*+2172
ij=1

Substituting Equation (8) into Equation (7), we can write the following relation for
elastic potential energy with respect to the stretch, A:

C 202+ A% -3 At 42072
Yelastic = — 1 Jm Infl-———— ) +CGIn{ ——F—— )
2 Jm 3
The electrical potential energy can be expressed as:
¢E € 2 € 2
Yelectrical = _?A%A% = ) <(§> /\%/\% = ) (Z) At (10)

in which ¢ stands for the permittivity of the soft membrane; E = ¢/d indicates the true
electric field; and ¢ is the applied voltage to the electrodes attached at the top and bottom
surfaces of the membrane. The potential energy of the magnetic force is also formulated as:

1
wmagnetic = EBL-(CBL) (11)

in which u stands for the magnetic permeability; By, is the magnetic induction vector; and
C is the right Cauchy—Green deformation tensor, which are expressed as:

A2 0 0
cC=|(0 A2 o0
0 0 A¢

0 (12)
Bp=140
B

B=uH+M

In Equation (12), H is the reference magnetic field applied in the thickness direction,
and M is the magnetic polarization density. Substituting Equation (12) into Equation (11)
and considering the structure without magnetization, the potential energy for the magnetic
field (Yimagnetic) is formulated as:

1 -
lpmugnetic = EVHZ)\ ! (13)

Finally, substituting Equations (9), (10), and (13) into Equation (6) yields the final
potential energy as:

CiJ 224 A4 -3 M42A72\ e/ 9\ 1 _
_724) _X1Jm et Tt e AL A T I & 4, = 244
LIS—Ld{ 5 1n<1 I )+Czln( 3 ) 2<H) A +2yH/\ (14)

The work performed by the in-plane tensile mechanical loads is formulated as:

X X
Wp — / ' Pdx, +/ " Pdxy = P(AL — L) + P(AL — L) = 2PL(A — 1) (15)
X1 X2
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3C; dt?

1Cd

2CGd dt ' Ju—2A2-A413  G2AZ+AY) G

The damping of the membrane is captured with the aid of Rayleigh’s dissipation
function, such that [47]:

.2
F:%%HA, (16)
where c; is the viscous damping coefficient. Finally, considering Equations (14)—(16) and
employing the Lagrangian equation, Equation (2), the governing equation of motion, is
derived as:

ar Jm(A —A79) 26 =A7%) <4’>2/\3 _ LHZ,\—5 Py (17)

d C1 -~ CiLd

Using the following dimensionless variables: nondimensional time T = t/L+/p/3Cy;
nondimensional damping coefficient ¢ = c;/2C1Ld/p/3Cy; nondimensional mechani-
cal load S = P/C;Ld; nondimensional voltage V = \/¢/Cy¢/d; nondimensional mag-
netic field H = /u/CyH and K = C;/Cy, Equation (17) can be cast into the following
dimensionless form:

(A =A%) (P —A)

5213 T52,-5 &
—VA-HA?-5=0 18
Jm—2A2 =A%+ 43 202+ A%) (18)

)\+c)\+

It is noted that the dot notation represents differentiation with respect to dimensionless time.

3. Results and Discussion
3.1. Equilibrium Points and Initial Stretch

By considering the elastic, electrical, and magnetic properties of the ideal elastomer
in the nondimensional form [48-50], the equilibrium points are obtained when the first-
and second-time derivatives in Equation (18) are set to zero, and the voltage, mechanical
load, and electric field are static, i.e., S = S5, V = Vpc, and H = Hs. These equilibrium
points may be used as initial stretches at time ¢ = 0. In this study, it is assumed that the
initial stretch is deduced when the membrane is only subjected to the mechanical load.
This yields the following nonlinear algebraic equation:

o) (o)
]m—Z%—A;+6 K@;ﬁ+i@_%%_o' 49

The initial stretch (1) for different values of K, Ss, and [y, are presented in Table 1. As
it can be realized, the influence of the pressure Sg on the initial stretch is greater than the
material parameters. The following sections will utilize these initial stretches in dynamic
and static stability.

Table 1. The initial stretch of the MAP subjected to mechanical load only.

§S K J m /\p
0 0 100 1
0 0.05 100 1
0 0 50 1
0.5 0.05 100 1.105382543

3.2. Static Instability

Here, the static parameters are identified for different values of K, Ss, Im, and Hg. The
process by Sharma et al. [51] is followed to identify stable and unstable areas. To this end,
the total potential energy with the inclusion of the potential due to the mechanical load is
first made dimensionless as follows:
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2 —4 _ 4 -2 . . _
U= —]’“m(1 — W) +1<1n<“3”) — %VZA‘* + %Hzr‘* —25¢(A 1), (20)
m

where U = U/L?dC; is the dimensionless total energy of the system. Differentiation of U
with respect to A, namely, dU/dA = 0, will lead to a V — A curve, such that:

— Tm(A=2 = A=8) 1—-A6 5
V:\/]_z/\z_A4+3+2K/\4+2A2—5A3—HA8. (1)

To obtain the static critical voltage Vet and critical static stretch A€, d2U /dA%2 = 0
should be calculated, i.e.,

L(SH e BK(Z1449)° 6K(1+A%) n(1HA)° Ju(5+19) -0 (@
A8 A224A6)7 0 A224+A0) (A= (34 Ju)AS +247)° AT = (B4 Jm)AC 4248 |

By solving Equations (21) and (22) simultaneously for the given different system
parameters, the static critical voltage VbeC and static critical stretch AgC are obtained.
Table 2 shows Vpct and AsC for different system parameters. An examination of the
results reveals that increasing the mechanical load increases the static critical stretch and
decreases the static critical voltage. As the mechanical load increases, a lower voltage value
is required for the onset of the instability. As the second invariant parameter is increased
and the Gent parameter |, is decreased, a higher value of the voltage is required for the
system to enter the static unstable region. Another conclusion from Table 2 is that with the
increase in the magnetic field, critical voltage happens at a lower value, while it increases
the static critical stretch.

Table 2. The static critical voltage V%C and static critical stretch AS.

S K Im H ASC V:a:c
0 0 100 0 1.2638 0.6893
0.5 0 100 0 1.4379 0.5164
0 0.05 100 0 1.2635 0.7036
0 0 100 0.4 1.2958 0.6730
0 0 50 0 1.2679 0.6914

3.3. DC Dynamic Instability

First, the DC dynamic instability under the magneto-static field is analyzed in this
sub-section. It is assumed that the active polymer is excited by a DC Heaviside step
voltage signal for such instability. To evaluate the DC dynamic critical voltage Vp® and
dynamic critical stretch A,uqy = ApC, the following conservation of energy relation should
be satisfied [52]:

U(ty) + Ug(t1) = U(t2) + Uk(t2) (23)

in which Uk is the dimensionless kinetic energy.

It is assumed that in the initial position ¢y, the stretch is equal to A = A}, obtained from
Equation (19), and the velocity is zero, in such a way that Ug(f1) = 0. In t,, the velocity is
equal to zero, and the stretch is A = A4,. Thus, we can write:
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i’ 2 4 5
(1) = =25(=1+ Aar) + i — Yt 4 3K (52 + Amart) +25(-1 4+ ) = By - I

1 2
2 P S WSS L) Y =347 +21p
Ny ”—§1<<22+/\‘;>—;]an(1—%]4>+;]an<1—}fn —0

>
I
=
S
\
Sl

(24)

/\ P m

To find the DC dynamic instability, we should set 0D /0Auax = 0 and simultane-
ously solve it together with Equation (24), from which VpC and Ay = ApC are deduced.
Table 3 provides the results for Vp© and A,y for different system parameters. Compar-
ing Tables 2 and 3, it is observed that the dynamic critical voltage is less than the static
critical voltage.

Table 3. The static critical voltage V€ and static critical stretch Apay.

5 K Ton H A v,
0 0 100 0 1.4743 0.6494
0.5 0 100 0 1.7052 0.4889
0 0.05 100 0 1.4718 0.6624
0 0 100 0.4 1.5447 0.6253
0 0 50 0 1.4843 0.6521

Now, the results of the analytical study presented in Table 3 are also validated numer-
ically. Numerical integration is conducted on Equation (18) to analyze the DC dynamic
instability when the voltage, mechanical load, and magnetic field are static, i.e., V =Vpe,
H = Hs,and S = Ss. As test cases, the influence of the magnetic field and the second
invariant are studied. The results are presented in a A — 7 diagram (time history) and
dA/dt — A diagram (phase plane). The fixed parameters are J,, = 100 and S = Sg = 0, and
the initial conditions are A(t = 0) = A, and A(t=0) =0.

The response of the system under H = Hg = 0 and K = 0 is analyzed under two
values of the DC voltage (i.e., Vpc = 0.6494 & 0.65) and presented in Figure 2. Figure 2a
shows the time history of the system under a DC dynamic condition, and Figure 2b is the
plot of the phase plane diagram under such a condition. It is seen that when the static
voltage is near the critical voltage obtained in Table 3, namely, Ve = 0.6494, the response
of the system is periodic. A slight increase in DC voltage, Vpc = 0.65, will result in the
response becoming aperiodic, which is the emergence of the DC dynamic instability in
the system. This trend is observed in time history, where the trajectory is predictable and
regular for a period response. Moreover, the periodic response indicates a closed loop
in the phase plane. For aperiodic behavior, the stretch evolves beyond the critical starch;
Amax = 1.4743 is the beginning of the instability.

The time history and phase plane diagram when the magnetic field is increased to
H = Hs = 0.4 and K = 0 are depicted in Figure 3. The values of DC voltage are chosen,
i.e., Vpc = 0.6253 & 0.63. Similar to Figure 2, when the voltage is beyond the threshold,
Vpce = 0.6253, the vibration becomes aperiodic, in which the stretch evolves to an unstable
region. Comparing Figures 2 and 3, it is concluded that a lower value of voltage is required
for the onset of instability when the membrane is subjected to an external magnetic field.
The results also show that the critical DC stretch is increased to A,y = 1.5447 from
Amax = 1.4743 under the application of the magnetic field.
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Figure 2. The DC dynamic response of the electro-magneto-active polymer to H = Hg = 0and K = 0.
(a) Time history and (b) phase plane diagram.

1.8 — T :
,i' Ve = 0.6253;Hs = 0.4 Vo = 0.6253;Hs = 0.4
e Ve =0.63;Hs =04 04— === Vpe = 0.63;Hs = 0.4
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<
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Figure 3. The DC dynamic response of the electro-magneto-active polymer to H = Hg = 0.4 and
K =0. (a) Time history and (b) phase plane diagram.

As the physical meaning of the second invariant is complex, this parameter has been
generally neglected in a majority of works on active polymers. Based on the work conducted
by Horgan and Smayda [45], the first invariant refers to a measure representing the average
over all possible orientations of three times the squared stretches of an infinitesimal line
element, and the second invariant refers to the exact same definition but for the area element.
Moreover, the third invariant stands for the influence of volume change. Figure 4 shows the
effect of the second invariant (selected as K = 0.05) on the instability in the absence of the
magnetic field, H = Hg = 0. The critical DC voltage is selected from Table 3. Comparing
Figure 2 for K = 0 and Figure 4 for K = 0.05, it is concluded that with the inclusion of the
second invariant, a higher value of voltage is required to enter the instability region.

1.8 0.4
— Ve = 0.6624;K = 0.05 —— Ve = 0.6624;K = 0.05
- = =Vpe = 0.663;K = 0.05 - = =Vpe = 0.663;K = 0.05
'
16 ; 0.2
. -
,
- . . .-
E 0 N
~< 14 ~<
kel
12 -0.2
] -0.4
0 s 10 15 20 1 1.2 14 16
- A
(a) (b)

Figure 4. The DC dynamic response of the electro-magneto-active polymer to H = Hg = 0 and
K = 0.05. (a) Time history and (b) phase plane diagram.
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)\+c)\+

}L+c)\+

(A =179

3.4. Dynamics under Time-Varying External Load

The previous sections focused on the static and DC dynamic instability of the system.
In this section, the vibratory response of the MDE membrane shown in Figure 1 is investi-
gated under time-varying external electrical and magnetic loads. Several cases have been
investigated, and these include a time-varying voltage represented as:

V= VDC + VAC Sil’l(Qt), (25)

augmented with a static magnetic force. In Equation (25), V oc stands for nondimensional
AC voltage, and () = QgL+/p/3C; is the nondimensional excitation frequency () is the
original electrical excitation frequency).

Substituting Equation (25) into the governing dynamic equation, Equation (18), one
can obtain:

3_3-3
pa oA

Jm—2A2—A4+3 (2A-2 4 A%)

e P S N

7 2
— VDC2 (1 + % Sil‘l(Qt)) A3 — HS2)\_5 — §S =0 (26)
DC

It is noted that the time-dependent magnetic field is represented as:
H = Hs + Hpsin(wt), (27)

where Hp, represents the dynamic magnetic field, and w = wyL+/p/3C; is the nondimen-
sional magnetic excitation frequency (wy is the original magnetic excitation frequency).
Similarly, substituting Equation (27) into Equation (18) and considering static (DC) volt-
age yields:

2

Jm—2A2—A443 (A2 +A%)

Jm(A = A7)

_ H _
— Vpc?A® — H? (1 + ?D sin(wt)) AP —85=0 (28)
S

The effect of both the time-varying voltage and magnetic field, as given in Equations (25) and (27),
are also investigated using the following relation:

(3 A7)

Tm— 202 A3 (2021 Ab)

= 2 = 2
— Vpc? <1 + Vac sin(Qt)) A% —Hg? <1 + fp sin(wt)) AP -55=0 (29)
Vbe Hg

Hereafter, the dynamic of the system is analyzed when the system is actuated and
subjected to the external loads described in the above cases. The numerical simulation is
conducted by solving governing equations numerically using the Runge-Kutta method, and
the results are depicted in different diagrams, for example, A — T (time history), dA/dt — A
(phase plane diagram), dA/dt — A (Poincaré map that is obtained by sampling at every
period of the electrical load), and fast Fourier transform (FFT).

The results for H = Hs =0, K =0,S = Sg = 0, Vpc = 0.5, %ﬁ =03,Q0=1c=0,
and [, = 100 are shown in Figure 5. This figure contains four subfigures: the time history,
phase plane diagram, Poincaré map, and fast Fourier transform (FFT). As it can be realized,
the response is quasiperiodic when the membrane is only subjected to electrical load under

the considered parameters. Quasiperiodicity is observable in the Poincaré map, where a
closed loop arises.
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Figure 5. The dynamic response of the electro-magneto-active polymer to time-varying voltage
H = Hg = 0. (a) Time history, (b) phase plane diagram, (c) Poincaré map, and (d) FFT.

The effect of varying the static magnetic field and parameters K, ¢, and J,; on the
dynamics of the MDE membrane under time-varying voltage is also investigated. For

instance, Figure 6 presents results for Hs = 0.4, K = 0,5 = Sg = 0, Vpc = 0.5, % =0.3,

Q =1,¢=0,and J,, = 100. The results show that the applied static magnetic field Hg
substantially contributes to the vibration response of the MDE membrane. What stands
out from Figure 6 is that with the increase in the static magnetic field Hs from 0 to 0.4, the
quasiperiodic oscillation is replaced by chaotic oscillation. Irregular and unpredictable
trajectories are seen when the stretch evolves with time in Figure 6a, namely, time history;
this trend shows the chaos in the system. Many points on the Poincaré map with an
irregular shape are another symptom of chaotic behavior in the electro-magneto-active
membrane. The phase plane diagram also exhibits irregularly closed and open loops,
indicating a chaotic phenomenon. The chaotic vibration can also be seen in the FFT, where
continuous and noisy spectra emerge, indicating a complicated, chaotic trend.

Figure 7 also shows the results for the active polymer under time-varying voltage,
assuming Hs = 0.4, K = 0.3, Ss = 0, Vpc = 0.5, gg =03,0=1,c=0,and J, = 100.
The aim is to investigate the influence of the second invariant integrated into parameter K
on the response of the MDE membrane under time-varying voltage and the presence of
the static magnetic field. A comparison of Figures 6 and 7 shows that with the inclusion
of the second invariant, the response becomes quasiperiodic. This means that the second
invariant can suppress the chaotic behavior caused by the applied static magnetic field, as
shown in Figure 6.
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Figure 6. The dynamic response of the electro-magneto-active polymer to time-varying voltage
H = Hs = 0.4. (a) Time history, (b) phase plane diagram, (c) Poincaré map, and (d) FFT.

The results for the case Hg = 0.4, K = 0, Sg = 0, Vpc = 0.5, VAC =03 0=1,

¢ = 0.05, and J,; = 100 is presented in Figure 8. This figure evaluates the effect of damping
on the vibratory response behavior of the MDE membrane under time-varying voltage and
a static magnetic field. The results show that if the membrane is not ideal and possesses
viscoelasticity with ¢ = 0.05, the chaotic motion induced by the static magnetic field in
Figure 6 is suppressed. The evidence of nonchaotic motion in Figure 8 is that when the
stretch changes with time, the trajectory becomes regular, and points in the Poincaré map
evolve into a stable region with periodic n-motion after neglecting the transient response.

Figure 9 also shows the effect of changes in the parameter |, for Hg =04,K=0,

Ss =0, Vpc = 0.5, VAC =03,Q=1,c =0,and J,, = 40. It is observed that for the
membrane with strong stram stiffening of ], = 40, in comparison to Figure 6, the response
changes to quasiperiodic. As shown in Figure 6, the Poincaré map generated inside the
phase plane (black dots) contains closed loops, which is a sign of quasiperiodicity.
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Figure 7. The dynamic response of the electro-magneto-active polymer to time-varying voltage

H = Hg = 0.4and K = 0.3. (a) Time history, (b) phase plane diagram, (c) Poincaré map, and (d) FFT.
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Figure 8. The dynamic response of the electro-magneto-active polymer to time-varying voltage

H = Hg = 0.4and ¢ = 0.05. (a) Time history, (b) phase plane diagram, (c) Poincaré map, and (d) FFT.
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and (b) phase plane diagram with Poincaré map inside it.
The vibration response of the MDE membrane under the simultaneous application of
time-varying voltage and a magnetic field assuming Hg = 0.1, K =0, Sg = 0, Vpc = 0.5,
g—‘*g =03Q=1c=0, ], =100, %—‘; = 0.1, and w = 1.5 are shown in Figure 10. As it can
D
be realized, the system can undergo a stable quasiperiodic motion even with a coupled time-
dependent external loading. Closed loops in the phase plane diagram are the advent of the
quasiperiodic in Figure 10. However, as depicted in Figure 11, as the amplitude of the time-
varying magnetic field is increased to % = 0.5 from % = 0.1, chaotic behavior appears in
S S
the system. The results confirm the importance of the magnitude of the magnetic load. It
is interesting to note that with the same loading condition considered in Figure 11, while
the time-dependent voltage is neglected %—Ag = 0, the response reverts to quasiperiodicity
D
similar to Figure 10.
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Figure 10. The dynamic response of the electro-magneto-active polymer to H—‘;’ = 0.1. (a) Time history
and (b) phase plane diagram.
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Figure 11. The dynamic response of the electro-magneto-active polymer to H—‘;’ = 0.5. (a) Time history
and (b) phase plane diagram.

4. Conclusions

This paper investigates the nonlinear vibration behaviors of the magnetodielectric
effect in magnetorheological elastomers using an energy-based method, the Lagrangian
equation, and the Runge-Kutta time integration algorithm. The elastomer was modeled
using the Gent-Gent model, and the damping effect was also captured. Time histories,
phase plane diagrams, Poincaré sections, and fast Fourier transform were utilized to
distinguish between the system’s periodic, quasiperiodic, and chaotic motion. This paper
concludes that:

The magneto-electro-active polymer may undergo quasiperiodic and chaotic motions.

Increasing the static magnetic field leads to chaos when the electric field is time-dependent.

The second invariant can suppress the influence of the static magnetic field.

The damping force can also overcome chaotic motion due to the increased static

magnetic field.

e  Chaotic motion due to the increased static magnetic field can be suppressed by increas-
ing the strain stiffening effect (decreasing the Gent parameter-limiting stretch).

e  With the inclusion of the static magnetic field, a smaller amount of static voltage is

required for the onset of static and DC dynamic instabilities.

Due to the lack of data on the nonlinear dynamic analysis of magnetodielectric effects
in magnetorheological elastomers, the results presented in this study can provide essential
guidance on the design of high-performance dielectric elastomers used in producing linear
motion with sound generation or in self-sensing actuators. This paper focused on simple
geometry, but the electromagnetic excitations can be developed for other geometries of
MDEs. More specifically, for MDE-based microbeams that are used in resonators and
tunable microwave filters, the voltage and magnetic field excitations can improve their
performance; therefore, it would be crucial to study such structures. In other words,
the results of this paper can not only be extended to MDE-based magnetic sensors and
transducers but also to different geometries and nanocomposites.
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