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Abstract: This study addresses a magneto-viscoelasticity problem, considering the one-dimensional
case. The system under investigation is given by the coupling a non-linear partial differential equation
with a linear integro-differential equation. The system models a viscoelastic body whose mechanical
behavior, described by the linear integro-differential equation, is also influenced by an external
magnetic field. The model here investigated aims to consider the concomitance of three different
effects: viscoelasticity, aging and magnetization. In particular, the viscoelastic behavior is represented
via an integro-differential equation whose kernel characterizes the properties of the material. In a
viscoelastic material subject to the effects of aging, all changes in the response to deformation are
due not only to the intrinsic memory of the material but also to deterioration with the age of the
material itself. Thus, the relaxation function is not assumed to depend on the two times, present
and past, via their difference, but to depend on both the present and past times as two independent
variables. The sensibility to an external magnetic field is modeled by a non-linear partial differential
equation taking its origin in the Landau–Lifschitz magnetic model. This investigation is part of a
long-term research project aiming to provide new insight in the study of materials with memory and,
in particular, viscoelastic materials. Specifically, the classical model of viscoelastic body introduced
by Boltzmann represents the fundamental base from which a variety of generalizations have been
considered in the literature. In particular, the effects on the viscoelastic body due to interaction
with an external magnetic field are studied. The new aspect under investigation is the combined
presence of the external magnetic field with the effect of aging. Indeed, the coupling of viscoelasticity,
which takes into account the deterioration of the material with time, with the presence of an external
magnetic field, was never considered in previous research. An existence and uniqueness result is
proved under suitable regularity assumptions.

Keywords: magneto-mechanic interactions; magneto-viscoelasticity; aging materials with memory;
integro-differential evolution equation

1. Introduction

The study of magneto-viscoelastic materials finds its motivation in a wide variety of
new materials. Indeed, the possibilIty of constructing a viscoelastic material which is char-
acterized by mechanical response which can be modified under the action of an external
magnetic field turned out to be of importance in different applications [1–3]. As an example,
magneto-viscoelastic materials are considered in biomedical and seismic applications. The
key fact in biomedicine is that the most appropriate model of human tissues, when the
mechanical properties are concerned, is that of a suitable viscoelastic media. Notable
examples are represented by human bones which, in most cases, cannot be modeled as
solids nor as fluids, and thus, the viscoelasticity model seems more appropriate. The idea
to adopt the viscoelasticity model in the case of human bones was already present in the
literature in 1976 [4] and was subsequently developed in various directions, such as the
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possible changes of the viscoelastic properties of human bones due to pathological reasons.
Under this viewpoint in [5], the changes in the viscoelastic response are investigated in
the case of patients affected by diabetes, and also, aging effects are mentioned. As far as
viscoelastic models of bones are concerned, in [6] the viscoelastic damage is considered
subject to magnetization and electric polarization. In addition, thermal sensibility is also ex-
pected and, hence, a thermo-magneto-viscoelasticity model studied under an experimental
viewpoint deserves a mathematical investigation.

In other cases, more closely related to the present investigation, the viscoelastic proper-
ties of bones are investigated aiming to devise artificial implantations. Indeed, osteoporosis
effects are among the aging effects. A further example of viscoelastic material widely
studied is the brain. According to the review [7], which deals with how the viscoelasticity
model can be used in this field, investigations aim to provide the most appropriate model
for modeling traumatic injuries. The interest in magneto-sensible viscoelastic materials can
be found also in biomedical applications [8], where the use of magneto-sensible hydrogels
is suggested in drug delivery [9]. Indeed, the presence of micro or nanoparticles within
a viscoelastic material gives the opportunity to influence the mechanical behavior of the
material itself when an external magnetic field is applied or tuned.

Viscoelastic materials which exhibit a magnetic sensibility find interesting use also
in seismic applications [10]. Magneto-rheological elastomers are devised to prevent, as
much as possible, damages to buildings in case of earthquakes. In this case, according
to [1,11], unbounded relaxation functions are appropriate [12]. Finally, it can be mentioned
that magneto-active polymers are also of interest in aerospace applications [13].

The present investigation is part of a long-term research project devoted to studying
the analytical properties of systems which model mechanical properties of materials with
memory. In [14–16], magneto-elasticity problems are analyzed, whereas in [17,18], problems
arising in magneto-viscoelasticity are studied. In these papers, the cases of one-dimensional
as well as three-dimensional bodies are studied, assuming that the kernel representing the
relaxation modulus is regular or singular.

The novelty of our contribution consists of taking into account also the aging of the
material. Specifically, magneto-viscoelastic solids subject to aging under the assumption
of a constant temperature are investigated. Accordingly, the model of aging isothermal
viscoelasticity is adopted.

Specifically, for the reader’s convenience, the results are organized as follows. Section 2
is devoted to the introduction of the model of viscoelastic body with aging, which is how
the relaxation modulus is modified to take into account that the mechanical response of
the material changes over time due to modifications within the viscoelastic body itself.
Indeed, in the case under investigation, the kernel in the integral term, which represents
the relaxation modulus, depends on both the present as well as the past time, which are
regarded as two independent variables. Notably, the classical viscoelasticity model is
obtained when the relaxation modulus depends on time via the difference between the two
times, i.e., present and past times.

In Section 3, the one-dimensional magneto-viscoelasticity problem is introduced. In
particular, the two effects, viscoelasticity and magneto sensibility are synthetized in a
system of two equations, respectively, a linear integro-differential and a non-linear partial
differential equation. The same section provides also the a priori estimates crucial to
demonstrate the existence and uniqueness result aimed for. Remarkably, a key estimate
is obtained only in terms of the viscoelasticity term. A further two estimates refer to the
interaction between the two different physical phenomena. In the following Section 4, the
main result is presented. Specifically, in Section 4, under suitable regularity conditions, the
proof of the existence and uniqueness of weak solution is constructed, firstly locally in time;
then, it is extended.
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2. Aging Viscoelastic Body

The viscoelastic body is assumed to be homogeneous, which implies that the depen-
dence on the spatial variable can be omitted in the description of its behavior. On the
converse, the dependence on time is assumed to be not only through the present time but
also on the past (deformation) history of the material. The environment which surrounds
the body is understood to be passive, i.e., it is not influenced by the presence, or the status,
of the viscoelastic body.

The mechanical status of the viscoelastic body is described on imposing constitutive
assumptions whose aim is to guarantee the physical meaningfulness of the model (see,
for instance, [19]). In classical linear viscoelasticity, the quantities involved are: the strain
tensor, E = E (t), defined as E = 1

2 (∇u +∇uT), and the Cauchy stress tensor T = T (t).
At any point of the body, the stress at any time t depends upon the strain at all preceding
times τ < t.

According to the pioneering work of Boltzmann, the stress–strain relation was taken
to be linear so that a superposition of the influence of previous strains hold. In addition,
the influence of a previous strain on the stress depends on the time elapsed since that
strain occurred and is weaker for those strains that occurred long ago. After introducing
the elapsed time, s := t− τ, memory weakening is governed by the relaxation modulus
G = G(s), s ∈ IR+, which assume the initial value denoted as G0 := G(0). For any given
t ∈ IR, the linear stress–strain relation is given by

T (t) = G0E(t) +
∫ t

−∞
G′(t− τ)E(τ)dτ , G(s) = G0 +

∫ s

0
G′(ξ) dξ. (1)

where a prime mark denotes the derivation of the function with respect to its argument.
After introducing the strain past history, Et(s) := E(t− s), and making a change of variables,
this relation takes the form

T (t) = G0E(t) +
∫ ∞

0
G′(s)Et(s)ds. (2)

In addition, G enjoys fading memory property, that is

Proposition 1. For all ε > 0, there exists ã = a (ε, Et) ∈ IR+ such that
∣∣∣∣
∫ ∞

0
G′(s + a)Et(s) ds

∣∣∣∣< ε , ∀a > ã. (3)

The classical assumptions the relaxation modulus satisfies are:

G′ ∈ L1(IR+) , G(t) = G0 +
∫ t

0
G′(s) ds , G∞ = lim

t→∞
G(t). (4)

The relaxation modulus G∞ is positive definite in solids.
When aging effects are modeled, it can be assumed that the dependence of the relax-

ation modulus G on t and τ is not only through their difference t− τ as in (1) but involves
t and τ separately, namely G(t, τ) (see, for instance, [19–21]). The classical expression is
recovered by simply assuming that

G(t, τ) = G(t− τ), τ ≤ t.

In particular,
Gτ(t, τ) = −G′(t− τ), G(t, t) = G0,
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where in the subscript τ indicates partial derivative with respect to τ. Aging effects are
taken into account by modifying the stress–strain relation (2) as follows

T (t) = G(t, t)E(t)−
∫ t

−∞
Gτ(t, τ)E(τ)dτ. (5)

In view of further applications, it can be convenient to introduce the tensor-valued
function G, defined on IR× IR+ as

G(t, s) = G(t, t− s),

and hence
Gs(t, s) = Gs(t, t− s) = −Gτ(t, τ), τ = t− s.

This function depends not only on the elapsed time s but also on the current time t,
thus representing the effects of aging. Accordingly, (5) becomes

T (t) = G0(t)E(t) +
∫ ∞

0
Gs(t, s)Et(s)ds. (6)

where G0(t) := G(t, 0) = G(t, t), and

G(t, s) = G0(t) +
∫ s

0
Gξ(t, ξ) dξ, G∞(t) = lim

s→+∞
G(t, s).

In addition, the reduced kernel

Ǧ(t, s) = G(t, s)−G∞(t)

is supposed to be twice differentiable and satisfy

Ǧ(t, ·) ∈ L1(IR+) ∩ C2(IR+) (7)

for all t ∈ IR, together with the further prescriptions on the signature of its derivatives
that derive from the physics of the model (see [19], assumptions M1–M4). In unidimen-
sional problems, the relaxation kernel reduces to a scalar function G, and its derivatives
must satisfy

G(t, s) > 0, Gs(t, s) ≤ 0, Gss(t, s) ≥ 0, (t, s) ∈ IR× IR+, (8)

Gt(t, s) + Gs(t, s) ≤ 0, Gts(t, s) + Gss(t, s) ≥ 0 (t, s) ∈ IR× IR+. (9)

Since G(t, s) reduces to G(s) when aging is neglected, assumptions (8) correspond to
classical Graffi’s conditions, whereas (9) boils down to (8).

A typical example of an aging memory kernel is given by

G(t, s) = G∞(t) + exp
(
− s

ε(t)

)
,

where G∞, ε ∈ C1(IR, IR+) satisfy

G′∞(t) ≤ 0, ε′(t) ≤ 0, ∀t ∈ IR.

It is easy to verify that assumptions (8), (9) are complied. The corresponding stress–
strain relation describes a standard linear solid with a damping component that ages, losing
effectiveness.
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Another example is obtained by a suitable rescaling of a (non-negative) non-increasing
function Ǧ ∈ L1(IR+) ∩ C1(IR+). Given t0 > 0 and ε ∈ C1(IR, IR+) satisfying ε′(t) ≤ 0,
∀t ∈ IR, we define

Ǧ(t, s) =
1

ε(t)
Ǧ
( s

ε(t)

)
(10)

In particular, for all t ∈ IR, we obtain
∫ ∞

0
Ǧ(t, s)d s =

∫ ∞

0
Ǧ(s)d s = µ < ∞.

Accordingly, if ε(t)→ 0 as t→ ∞, we obtain the distributional convergence

lim
t→∞

Ǧ(t, ·) = µδ0,

where δ0 denotes the Dirac mass at 0+. As proved in [22] and depicted in Figure 1a, (10)
describes aging as a transition from viscoelasticity with long memory (standard linear
solid) to viscoelasticity with short memory (Kelvin–Voigt model). For definiteness, we take
Ǧ(s) = e−s and ε(t) = α/t, α > 0, in which case (see Figure 1b where α = 100)

Ǧ(t, s) =
t
α

exp
(
− st

α

)
(11)

The corresponding relaxation kernel G = G∞ + Ǧ complies with assumptions (8), (9)
provided that t ≥

√
2α and G′∞ ≤ 0.

2

0

1

2

3

4

Ǧ(t, s)

s1 2 3 4

Here t = 100 s (solid), t = 200 s (dashed), t = 400 s (short dashed),

k(t) = 1/ε(t)

k0

Figure 1. Standard solid model

0 x y

Figure 2. Spring system

2

0

1

2

3

4

Ǧ(t, s)

s1 2 3 4

Here t = 100 s (solid), t = 200 s (dashed), t = 400 s (short dashed),
(a) (b)

Figure 1. (a) The standard solid model with an aging spring component. (b) Plot of the memory
kernel Ǧ at t = 100 s (solid), t = 200 s (dashed), t = 400 s (short dashed).

3. The Problem

The problem under investigation models materials which couple a time-dependent
viscoelastic behavior with a magnetic one. For the sake of simplicity, the body here
considered is one-dimensional.

The magneto-elastic interaction is modeled according to [14–16] while the magneto-
viscoelastic regular behavior is the one given in [17,18].

Let Ω = (0, 1) and Q := Ω× (0, T), T > 0. The system to study is given by




utt − G(t, 0)uxx −
∫ t

0
Gs(t, s)uxx(t− s)ds− λ

2
(L(m) ·m)x = f

in Q
mt + δ−1[|m|2 − 1]m + λL(m)ux −mxx = 0,

(12)

together with the initial and boundary conditions

u(·, 0) = u0, ut(·, 0) = u1, m(·, 0) = m0, |m0| = 1, in Ω , (13)
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u(0, ·) = u(1, ·) = 0, mx(0, ·) = mx(1, ·) = 0 in (0, T) , (14)

where the displacement is u ≡ (u, 0, 0), since the direction of the conductor is here identified
with the x-axis, and the magnetization vector, M ≡ (0, m), m = (m1, m2), is orthogonal to
the conductor itself (see Figure 2). All fields u, m1, m2 are functions of (x, t) ∈ Ω× (0, T).
In addition, the linear operator L is defined by L(m) = (m2, m1) and λ, δ are positive
parameters. Finally, the term f is given by the sum of an external (longitudinal) force and
the contribution of the deformation history up to the initial time,

∫ ∞

t
Gs(t, s)uxx(t− s)ds = −

∫ 0

−∞
Gτ(t, τ)uxx(τ)dτ.

0 1

y

z

xu

m2

m1

1. An example: the rescaled memory kernel

An enlightening example of aging memory kernel is obtained by a suitable rescaling
of a (nonnegative) nonincreasing function Ǧ = G − G∞ ∈ C1(R+) ∩ L1(R+). Given
ε ∈ C1(R, R+) satisfying

ε̇(t) ≤ 0, ∀t ∈ R,

we define

Ǧ(t, s) =
1

ε(t)
Ǧ

(
s

ε(t)

)
.

kt(s) =
1

ε(t)
k

(
s

ε(t)

)
.

In particular, for all t ∈ R we get
∫ ∞

0

Ǧ(t, s)ds =

∫ ∞

0

Ǧ(s)ds = m < ∞.

Accordingly, if ε(t) → 0 as t → ∞, we obtain the distributional convergence

lim
t→∞

Ǧ(t, ·) = mδ0,

being δ0 the Dirac mass at 0+. As proved in [CDGP], such a memory kernel complies
with the assumptions above and describes aging as a transition from viscoelasticity with
long memory to viscoelasticity with short memory [?].

R. Dautray, J.-L. Lions, Mathematical analysis and numerical methods for science and
technology. Vol. 5. Evolution problems I., Springer, Berlin Heildelberg New York, 2000;
p.280. ISBN: 9783540661016

A typical example of memory kernel is obtained by taking

Ǧ(s) = e−s.

In which case (see Figure 2 where ε(t) = 100/t)

Ǧ(t, s) =
1

ε(t)
e− s

ε(t) .

1

Figure 2. A picture of the problem under consideration: the cylindrical sample is assumed to have a
negligible radius compared to its length.

Moreover, we assume

u0 ∈ H1
0(Ω), u1 ∈ L2(Ω), m0 ∈ H1(Ω), f ∈ L2(Q). (15)

In addition, the kernel, G : T → IR, T = [0, T]2, is supposed to satisfy (7) together
with (8) and (9).

Taking into account only the mechanical aspects of the problem, the following linear
integro-differential equation in Q is considered

ũtt(t)− G(t, 0)ũxx(t)−
∫ t

0
Gs(t, s)ũxx(t− s)ds = F(t). (16)

The initial and boundary conditions, in turn, are

ũ(·, 0) = u0, ũt(·, 0) = u1, in Ω

ũ(0, ·) = ū(1, ·) = 0, in (0, T) .
(17)

Note that, as proved in [22], problem (16)–(17) admits a unique strong solution. In
particular, the following result holds.

Lemma 1. Denote by ũ the unique solution admitted to the problem (16)–(17) with F ∈ L2(Q).
Then, for all t ∈ [0, T], the following estimate is obtained

1
2

∫

Ω
G(t, t) |ũx(t)|2 dx +

1
2

∫

Ω
|ũt(t)|2 dx

≤ 1
2

∫

Ω
G(0, 0) |ũ0x|2 dx +

1
2

∫

Ω
|u1|2 dx +

∫

Ω

∫ t

0
F(τ) ũτ(τ) dx dτ.

(18)

Proof. First of all, add and subtract to Equation (16) the term

∫ t

0
Gs(t, s)ũxx(t)ds = [G(t, t)− G(t, 0)]ũxx(t) .
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The result can be written in the equivalent form

ũtt − G(t, t)ũxx +
∫ t

0
Gs(t, s)[ũxx(t)− ũxx(t− s)]ds = F. (19)

when Equation (19) is multiplied by ũt, after integration over Ω, it follows

1
2

d
dt

∫

Ω
|ũt(t)|2dx +

∫

Ω
G(t, t)ũx(t) ũxt(t) dx +

−
∫

Ω
ũxt(t)

∫ t

0
Gs(t, s) [ũx(t)− ũx(t− s)]ds dx =

∫

Ω
Fũt(t) dx.

(20)

Since d
dtG(t, t) = [Gt + Gs](t, s)|s=t, it follows

1
2

d
dt

∫

Ω
|ũt|2dx +

1
2

d
dt

∫

Ω
G(t, t)|ũx|2 dx =

1
2

∫

Ω
[Gt + Gs](t, t)|ũx|2 dx

+
∫

Ω

∫ t

0
Gs(t, s)ũxt(t)[ũx(t)− ũx(t− s)]ds dx +

∫

Ω
Fũt dx.

(21)

Now, we observe that

∂

∂t
[ũx(t)− ũx(t− s)] = ũxt(t)−

∂

∂s
[ũx(t)− ũx(t− s)], 0 ≤ s ≤ t ≤ T,

and then

ũxt(t)[ũx(t)− ũx(t− s)] =
1
2

[
∂

∂t
|ũx(t)− ũx(t− s)|2 + ∂

∂s
|ũx(t)− ũx(t− s)|2

]
.

Substitution within the double integral in (21) gives

∫

Ω

∫ t

0
Gs(t, s) ũxt[ũx(t)− ũx(t− s)] dxds

=
1
2

∫ t

0

∫

Ω
Gs(t, s)

∂

∂t
|ũx(t)− ũx(t− s)|2dxds

1
2

∫ t

0

∫

Ω
Gs(t, s)

∂

∂s
|ũx(t)− ũx(t− s)|2dxds

=
1
2

d
dt

∫ t

0

∫

Ω
Gs(t, s)|ũx(t)− ũx(t− s)|2dxds

−1
2

∫

Ω

∫ t

0
[Gst + Gss](t, s)|ũx(t)− ũx(t− s)|2dxds.

Taking into account the sign conditions (8)–(9), from (21), we obtain

1
2

d
dt

∫

Ω
|ũt|2dx +

1
2

d
dt

∫

Ω
G(t, t)|ũx|2 dx ≤

1
2

d
dt

∫ t

0

∫

Ω
Gs(t, s)|ũx(t)− ũx(t− s)|2dxds +

∫

Ω
Fũt dx.

(22)

Integration over time, in the range (0, t), t ∈ (0, T), taking into account the sign
conditions (8) implies (18) and, hence, completes the proof.

According to (8)1, let

g0 = min
t∈[0,T]

G(t.t) > 0, g1 = max
t∈[0,T]

G(t.t) > 0.
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As a consequence of (18)

g0

∫

Ω
|ũx(t)|2 dx +

∫

Ω
|ũt(t)|2 dx ≤ g1

∫

Ω
|ũ0x|2 dx +

∫

Ω
|u1|2 dx

+
∫

Ω

∫ t

0
|F(τ)|2dx dτ +

∫

Ω

∫ t

0
|ũτ(τ)|2dx dτ,

which, on application of Gronwall’s Lemma, implies

‖ũ(t)‖2
H1

0 (Ω)
+ ‖ũt(t)‖2

L2(Ω) ≤ CeT , (23)

where C = Ĉ(‖u0‖H1
0 (Ω), ‖u1‖L2(Ω), ‖F‖L2(Q)) > 0. The estimate thus obtained is needed

subsequently, together with the following one.

Lemma 2. Let (u, m) be a solution admitted to the problem (12)–(15). Then, the following
estimate holds

∫

Ω
G(t, t)|ux|2 dx +

∫

Ω
|ut|2 dx + 2

∫ t

0

∫

Ω
|mt|2 dx ds +

∫

Ω
|mx|2 dx

+λ
∫

Ω
[L(m) ·m]ux dx +

1
2δ

∫

Ω
(|m|2 − 1)2 dx ≤ 2

∫ t

0

∫

Ω
f utdx (24)

+
∫

Ω
G(0, 0) |u0x|2 dx + λ

∫

Ω
[L(m0) ·m0]u0xdx +

∫

Ω
|m0x|2 dx +

∫

Ω
|u1|2 dx .

Proof. Taking the scalar product of (12)2 with mt and then integrating over Ω, it follows

∫

Ω
|mt|2 dx +

1
4δ

d
dt

∫

Ω

[(
|m|2 − 1

)2
+ 2δ|mx|2

]
dx + λ

∫

Ω
(L(m) ·mt)ux = 0

and hence, after integration over (0, t), since |m0| = 1. Then, it allows writing (13),

∫ t

0

∫

Ω
|mt|2 dx +

1
4

∫

Ω

(
|m|2 − 1

)2

δ
dx +

1
2

∫

Ω
|mx|2 dx

+λ
∫ t

0

∫

Ω
[L(m) ·mt]uxdx =

1
2

∫

Ω
|m0x|2 dx

(25)

Now, multiplying (12)1 by ut, integrating over Ω and following the lines of the proof
of Lemma 1, is obtained

1
2

∫

Ω
G(t, t) |ux(t)|2 dx +

1
2

∫

Ω
|ut(t)|2 dx ≤ 1

2

∫

Ω
G(0, 0) |u0x|2 dx

+
1
2

∫

Ω
|u1|2 dx +

∫

Ω

∫ t

0
f ut dx ds− λ

2

∫

Ω

∫ t

0
[L(m) ·m] uxt dx ds.

(26)

Since
L(m) ·mt =

1
2

d
dt
[L(m) ·m],

doubling the sum of (25) and (26), the inequality (24) is obtained, and the proof is com-
pleted.

As a consequence of Lemma 2, the following estimates of displacement and magnetic
field are proved.
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Lemma 3. Let (u, m) be a solution admitted to problem (12)–(15) with conditions (7)–(9). If δ is
small enough, then

∫

Ω
|ux|2 dx ≤ C1,

∫

Ω
|ut|2 dx ≤ C2,

∫

Ω
|mx|2 dx ≤ C3

∫

Q
|mt|2 dxdt ≤ C4,

∫

Ω

∣∣∣|m|2 − 1
∣∣∣ dx ≤

√
δC5

(27)

where Ck, k = 1, ..., 5, depend only on T, u0, u1, m0, f and |Ω|.

Proof. In considering inequality (24) proved in Lemma 2, observe that
∣∣∣∣
∫

Ω
(L(m) ·m)uxdx

∣∣∣∣ ≤
∫

Ω
|m|2|ux|dx.

Furthermore,

∫

Ω
|m|2|ux|dx =

√
δ
∫

Ω

(
|m|2 − 1

)
√

δ
|ux| dx +

∫

Ω
|ux|dx ≤

√
δ

2

∫

Ω

(
|m|2 − 1

)2

δ
dx +

1
2
(
√

δ + σ)
∫

Ω
|ux|2dx +

1
2σ
|Ω| ,

for any σ > 0. Note that 1/δ plays the role of a penalty coefficient (see [16]); in addition, σ
and δ can be chosen small enough in such a way that

2λ
√

δ < 1 , λ(
√

δ + σ) < g0 := min
t∈[0,T]

G(t.t) (28)

hence, (24) leads to

1
2

g0

∫

Ω
|ux|2 dx +

∫

Ω
|ut|2 dx +

∫

Ω
|mx|2 dx + 2

∫ t

0

∫

Ω
|mt|2 dx ds

+
1
4

∫

Ω

(|m|2 − 1)2

δ
dx ≤ 2

∫ t

0

∫

Ω
f utdxds + C0 . (29)

where the dependence on |Ω| and on initial data u0, u1, m0 is included within the constant
C0. Noticing that

2
∣∣∣∣
∫ t

0

∫

Ω
f ut dx ds

∣∣∣∣ ≤
∫ t

0

∫

Ω
|ut|2 dx ds +

∫ t

0

∫

Ω
| f |2 dx ds,

∫

Ω
(|m|2 − 1)2 dx ≥

(∫

Ω

∣∣|m|2 − 1
∣∣

√
|Ω|

dx

)2

,

by letting

E(t) =
1
2

g0

∫

Ω
|ux|2 dx +

∫

Ω
|ut|2 dx +

∫

Ω
|mx|2 dx +

(∫

Ω

∣∣|m|2 − 1
∣∣

2
√

δ|Ω|
dx

)2

,

via (29)

E(t)−
∫ t

0
E(τ)dτ + 2

∫ t

0

∫

Ω
|mt|2 dx ds ≤ C(T, u0, u1, m0, f , |Ω|), isobtained. (30)
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Hence, recalling Gronwall Lemma, for any t ∈ (0, T), it follows that

E(t),
∫ t

0
E(τ)dτ,

∫ t

0

∫

Ω
|mt|2 dx ds ≤ C̃(T, u0, u1, m0, f , |Ω|) ,

which completes the proof. Indeed, due to the expression of E, all the inequalities (27)
are proved.

4. An Existence and Uniqueness Result

This section is concerned about weak solutions to the non-linear integro-differential
problem (12)–(15). Specifically, under conditions (7)–(9) the problem is proved to admit
a unique weak solution. The result is first established in a small time interval using a
fixed-point theorem and then extended to any interval [0, T] by exploiting the previous
a priori estimates. Note that the result, following the procedure devised in [18], can be
generalized in the case of a three-dimensional magneto-viscoelastic material. Indeed, the a
priori estimates of Lemmas 2.1 and 2.2 can be easily extended.

First of all, a local result is established.

Lemma 4. Let us take the same assumptions as in Lemma 3. Then, depending on the data of the
problem, u0, u1, m0 and f , there exists t∗ ∈ (0, T] such that the initial-boundary value problem
(12)–(15) subject to conditions (7)–(9), has one and only one solution (u, m) in Ω× [0, t∗] that
satisfies:

• u ∈ C0([0, t∗]; H1
0(Ω)) ∩ C1([0, t∗]; L2(Ω));

• m ∈ C0([0, t∗]; H1(Ω));
• mt ∈ L2(0, t∗; L2(Ω)).

Proof. For simplicity, we introduce the following notations. The L2(Ω)-norm is denoted
by ‖ · ‖, the L∞(Ω)-norm by ‖ · ‖∞ and the H1(Ω)-norm by ‖ · ‖1. Let M1, M2 be any pair
of positive constants and let h ∈ (0, T]. Moreover, define

C = C0([0, h]; H1
0(Ω))× C0([0, h]; L2(Ω)).

Let Bh = Bh
1 ×Bh

2 be the convex set such that

Bh
1 ≡

{
(u, ut) ∈ C : u(0) = u0, ut(0) = u1, sup

[0,h]

[
‖u‖2

1 + ‖ut‖2
]
≤ M1

}

Bh
2 ≡

{
(m, mt) ∈ C : |m(0)| = |m0| = 1, mx

∣∣
x=0,1 = 0, sup

[0,h]
‖m‖2

1 +
∫ h

0
‖mt‖2dt ≤ M2

}
.

Let (u, m) ∈ Bh and consider the following linear problem




utt = G(t, 0)uxx +
∫ t

0
Gs(t, s)uxx(t− s)ds +

λ

2
(L(m) ·m)x + f ,

mt = mxx − λL(m)ux − δ−1(|m|2 − 1)m,

(31)

To start with, observe that system (31) is uncoupled and, for any arbitrarily fixed
(u, m) ∈ Bh, each equation admits a classical results of existence and uniqueness. Hence,
the linear problem (31), subject to conditions (13)–(15) and (7)–(9), has a unique solution
(u, m) such that u ∈ Bh

1 and m ∈ Bh
2 . Moreover, as a consequence of Lemmas 2 and 3, such

a solution satisfies the following estimates

(i) ‖ut(t)‖2 + ‖ux(t)‖2 ≤ (C1 + t K1 )e2t, t ∈ [0, h],

(ii)
∫ t

0
‖mτ(τ)‖2dτ + ‖m(t)‖2

H1(Ω) ≤ (C2 + t K2 )et, t ∈ [0, h],
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where K1, K2 are positive constants which depend on both M1 and M2 and

C1 = C̃1(‖u0‖1, ‖u1‖, ‖ f ‖L2(Q)) > 0, C2 = C̃2(‖m0‖1) > 0.

The estimates (i) and (ii) imply that if we set M1 = 2C1 and, M2 = 2C2, then,
taking t small enough, the solution (u, m) ∈ Bh and hence (u, m) 7→ (u, m) maps Bh into
itself. Banach fixed point theorem, once the mapping (u, m) 7→ (u, m) is proved to be
a contraction, allows proving the existence of the solution. Consider (u, m) and (u, m)
two fixed pairs in Bh and denote by (u, m) and (ũ, m̃) the corresponding solutions of the
linearized problem (31). To obtain the contraction property for t small enough, we need to
prove that the differences

(z, q) = (u− ũ, m− m̃), (z, q) = (u− u, m−m)

satisfy the following inequality

(iii) ‖zt(t)‖2 + ‖z(t)‖2
1 +

∫ t

0
‖qτ(τ)‖2dτ + ‖q(t)‖2

1

≤ t K3 et sup
[0,h]

(
‖zt(t)‖2 + ‖z(t)‖2

1 +
∫ t

0
‖qt‖2dτ + ‖q(t)‖2

1

)
,

where K3 > 0 depends on M1, M2.
Inequality (iii) can be proved analogously to estimates established above. First, we

consider Equation (31)1 for both u and ũ. If we then subtract them from each other, we
obtain

ztt = G(t, 0)zxx +
∫ t

0
Gs(t, s)zxx(t− s)ds + λL(m) ·mx − λL(m) ·mx.

Operating on the first terms of this equation as in Lemma 1, multiplication by zt and
integration over Ω gives

1
2

d
dt
{‖zt(t)‖2 + G(t, t)‖zx(t)‖2 −

∫ t

0
Gs(t, s)‖zx(t)− zx(t− s)‖2ds}

≤ λ
∫

Ω
{L(m(t)) ·mx(t)− L(m(t)) ·mx(t)}zt(t)dx

= λ
∫

Ω
L(m(t)) · qx(t)zt(t)dx + λ

∫

Ω
L(q(t)) ·mx(t)zt(t)dx

≤ λ sup
[0,h]
‖L(m(t))‖∞‖qx(t)‖ ‖zt(t)‖+ λ sup

[0,h]
‖L(q(t))‖∞‖mx(t)‖ ‖zt(t)‖

≤ 2λ
√

M2‖qx(t)‖ ‖zt(t)‖ ≤
1
2
‖zt(t)‖2 + 2λ2M2‖q(t)‖2

H1(Ω).

Let

E(t) = ‖zt(t)‖2 + G(t, t)‖zx(t)‖2 −
∫ t

0
Gs(t, s)‖zx(t)− zx(t− s)‖2ds

and note that E(0)=0. Moreover, since Gs(t, s) ≤ 0 and G(t, t) ≥ g0 > 0, it follows E(t) ≥ 0
for all t ∈ (0, T). We can then apply the previous inequality so obtaining

d
dt
[e−tE(t)] ≤ 4λ2M2‖q(t)‖2

H1(Ω)e
−t ≤ 4λ2M2 sup

[0,h]
‖q(t)‖2

H1(Ω) ,

and therefore, it follows

‖zt(t)‖2 + g0‖zx(t)‖2 ≤ 4λ2M2 tet sup
[0,h]
‖q(t)‖2

H1(Ω).
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Letting α = max{g−1
0 , 1}, we finally have

‖zt(t)‖2 + ‖zx(t)‖2 ≤ 4αλ2M2 tet sup
[0,h]
‖q(t)‖2

H1(Ω). (32)

Taking into account (31)2 for both m and m̃ allows writing

qt = qxx − λL(m)zx + λL(−q)ux − δ−1(|m|2 − 1)q + δ−1(|m|2 − |m|2)m. (33)

Multiplication of this equation by qt and the subsequent integration over Ω implies

‖qt‖2 +
1
2

d
dt
‖qx‖2 = −λ

∫

Ω
L(m) · qt zxdx + λ

∫

Ω
L(−q) · qt uxdx

− δ−1
∫

Ω
(|m|2 − 1)q · qt dx− δ−1

∫

Ω
q · (m + m)[m · qt]dx

≤ λ
√

2M2‖qt‖‖zx‖+ λ sup
0≤t≤h

‖q‖∞‖qt‖‖ux‖

+ δ−1(2M2 + 1)‖q‖‖qt‖+ δ−14M2‖q‖‖qt‖
≤ {λ

√
2M2‖zx‖+ [λ

√
2M1 + δ−1(2M2 + 1) + δ−14M2] ‖q‖H1(Ω)}‖qt‖

≤ 2λ2M2‖zx‖2 + [λ
√

2M1 + δ−1(2M2 + 1) + δ−14M2]
2 ‖q‖2

H1(Ω) +
1
2
‖qt‖2.

Accordingly, we obtain

‖qt(t)‖2 +
d
dt
‖qx(t)‖2 ≤ K1 sup

[0,h]
(‖zx(t)‖2 + ‖q(t)‖2

H1(Ω)) ,

where
K1 = 4λ2M2 + 2[λ

√
2M1 + δ−1(2M2 + 1) + δ−14M2]

2 > 0.

An integration over (0, t) yields

∫ t

0
‖qτ(τ)‖2dτ + ‖qx(t)‖2 ≤ K t et sup

[0,h]

(
‖zx(t)‖2 + ‖q(t)‖2

H1(Ω)

)
.

Finally, we multiply Equation (33) by q to obtain

1
2

d
dt
‖q‖2 + ‖qx‖2 =− λ

∫

Ω
L(m) · q zx dx + λ

∫

Ω
L(−q) · q ux dx

− δ−1
∫

Ω
(|m|2 − 1)q · q dx− δ−1

∫

Ω
q · (m + m)[m · q ]dx.

As above, the right-hand side is estimated by replacing qt with q. Hence,

1
2

d
dt
‖q(t)‖2 + ‖qx(t)‖2 ≤ K2 sup

[0,h]

(
‖zx(t)‖2 + ‖q(t)‖2

H1(Ω)

)
+

1
2
‖q(t)‖2 ,

where
K2 = 2λ2M2 + [λ

√
2M1 + δ−1(2M2 + 1) + δ−14M2]

2 > 0.

As a consequence,

d
dt
(‖q(t)‖2e−t) ≤ K2 sup

[0,h]

(
‖zx(t)‖2 + ‖q(t)‖2

H1(Ω)

)
,
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which after an integration leads to

‖q(t)‖2 ≤ K2tet sup
[0,h]

(
‖zx(t)‖2 + ‖q(t)‖2

H1(Ω)

)
.

Collecting all the previous inequalities, the estimate (iii) follows.

Theorem 1. Let T > 0. Given δ < (g0/λ)2, there exists a unique solution (u, m) to the problem
(12)–(15), subject to conditions (7)–(9), which satisfies the following conditions:

• u ∈ C0([0, T]; H1
0(Ω)) ∩ C1([0, T]; L2(Ω));

• m ∈ C0([0, T]; H1(Ω)) ∩ L2(0, T; H2(Ω));
• mt ∈ L2(Q).

Proof. By virtue of the uniform estimate (27) proved in Lemma 3, it turns out that we can
extended the local solution up to the given fixed time T. Specifically, the solution can be
extended, step by step, on a sequence of time intervals (tn, tn+1] such that tn+1 − tn = t∗;
hence, the result is achieved in the limit n→ T/t∗.

5. Conclusions

The non-linear one-dimensional magneto-viscoelasticity problem (12)–(15) is studied.
It is proved to admit a unique weak solution by means of suitable estimates based on the
physical involved phenomena. Thus, in particular, the established estimates are for the
viscoelastic behavior of the material as well as on the magnetic field and the interaction
between the two different effects. Since the model considered here also takes into account
the aging of the material, this result can be applied to a wide variety of real materials,
particularly when aging deteriorates some characteristic behaviors. This is the case of
viscoelastic materials that undergo a transition from long to short memory. However,
we considered magneto-viscoelastic solids subject to aging at constant temperature. This
hypothesis narrows the field of applicability of the results, as some aging phenomena are
closely connected with the thermal history of the material. A possible further development
consists in taking into account also the thermal variations of the body.

The results obtained in this study represent the needed theoretical background to
possible future investigations and numerical simulations. Indeed, when an existence and
uniqueness result of the solution is established, then the possibility to successfully perform
a numerical test is open.
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