Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (873)

Search Parameters:
Keywords = magnetically coupled resonance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2357 KB  
Article
Nonlinear Combined Resonance of Thermo-Magneto-Electro-Elastic Cylindrical Shells
by Gui-Lin She and Lei-Lei Gan
Dynamics 2025, 5(4), 48; https://doi.org/10.3390/dynamics5040048 - 14 Nov 2025
Abstract
This study investigates the combined resonance phenomenon in magneto-electro-elastic (MEE) cylindrical shells under longitudinal and lateral excitations with thermal factors, addressing the complex interaction between mechanical, electrical, and magnetic fields in smart structures. The research aims to establish a theoretical framework for predicting [...] Read more.
This study investigates the combined resonance phenomenon in magneto-electro-elastic (MEE) cylindrical shells under longitudinal and lateral excitations with thermal factors, addressing the complex interaction between mechanical, electrical, and magnetic fields in smart structures. The research aims to establish a theoretical framework for predicting resonance behaviors in energy harvesting and sensing applications. Using Maxwell’s equations and Hamilton’s principle, the governing equations for combined resonance are derived. The method of varying amplitude (MVA) is employed to acquire the combined resonance response across varying parameters. Furthermore, the Runge–Kutta method is applied to investigate the bifurcation and chaotic motion characteristics under different longitudinal and lateral excitation conditions. Key findings reveal the coupling effects of multi-physical fields on resonance frequencies, demonstrating quantitative agreement with prior studies. The results provide fundamental insights into the dynamic characteristics of MEE materials, offering theoretical support for optimizing their performance in adaptive engineering systems. Full article
(This article belongs to the Special Issue Recent Advances in Dynamic Phenomena—3rd Edition)
24 pages, 2681 KB  
Article
Analysis of Tyre Pyrolysis Oil as Potential Diesel Fuel Blend with Focus on Swelling Behaviour of Nitrile-Butadiene Rubber
by Steffen Seitz, Tobias Förster and Sebastian Eibl
Polymers 2025, 17(22), 3016; https://doi.org/10.3390/polym17223016 - 13 Nov 2025
Abstract
This study examines the swelling behaviour of nitrile-butadiene rubber (NBR) when interacting with tyre pyrolysis oils (TPO), with a focus on the chemical composition of TPO and their interaction with rubber matrices. Initially, a comparative analysis with conventional diesel fuel (DF) was performed [...] Read more.
This study examines the swelling behaviour of nitrile-butadiene rubber (NBR) when interacting with tyre pyrolysis oils (TPO), with a focus on the chemical composition of TPO and their interaction with rubber matrices. Initially, a comparative analysis with conventional diesel fuel (DF) was performed using advanced analytical techniques, including two-dimensional gas chromatography coupled to mass spectrometry (2D-GC/MS), infrared (IR) spectroscopy, and nuclear magnetic resonance (1H-NMR) spectroscopy. The analysis revealed that TPO contains a significantly higher proportion of aromatic hydrocarbons than DF, along with unsaturated and oxygen-containing compounds not present in DF. Based on these compositional differences, blends of TPO and DF were formulated and evaluated for their suitability as liquid energy carriers according to the specifications of DF. In principle, blends with an addition of up to 5 vol% TPO in DF are technically suitable for use as fuel. Subsequently, the sorption behaviour of TPO, DF, and their blends in NBR was investigated. The swelling potential was determined based on mass, density, and volume, and the changes in the hardness and tensile strength of NBR were recorded. The results demonstrate that TPO induces pronounced swelling in NBR, as evidenced by a marked increase in mass uptake and volume expansion. A linear increase was observed between the degree of swelling and the increasing TPO content in the blends. Mechanical property assessments revealed a corresponding decrease in the hardness and tensile strength of NBR upon exposure to TPO, with the most severe effects associated with neat TPO. This work provides a comprehensive assessment of TPO as a potential blend component for DF. It highlights the need for careful consideration of material compatibility in practical applications. Full article
(This article belongs to the Special Issue Exploration and Innovation in Sustainable Rubber Performance)
Show Figures

Figure 1

24 pages, 3795 KB  
Article
A Controlled System for Parahydrogen Hyperpolarization Experiments
by Lorenzo Franco, Federico Floreani, Salvatore Mamone, Ahmed Mohammed Faramawy, Marco Ruzzi, Cristina Tubaro and Gabriele Stevanato
Molecules 2025, 30(21), 4299; https://doi.org/10.3390/molecules30214299 - 5 Nov 2025
Viewed by 294
Abstract
Parahydrogen-induced hyperpolarization (PHIP), introduced nearly four decades ago, provides an elegant solution to one of the fundamental limitations of nuclear magnetic resonance (NMR)—its notoriously low sensitivity. By converting the spin order of parahydrogen into nuclear spin polarization, NMR signals can be boosted by [...] Read more.
Parahydrogen-induced hyperpolarization (PHIP), introduced nearly four decades ago, provides an elegant solution to one of the fundamental limitations of nuclear magnetic resonance (NMR)—its notoriously low sensitivity. By converting the spin order of parahydrogen into nuclear spin polarization, NMR signals can be boosted by several orders of magnitude. Here we present a portable, compact, and cost-effective setup that brings PHIP and Signal Amplification by Reversible Exchange (SABRE) experiments within easy reach, operating seamlessly across ultra-low-field (0–10 μT) and high-field (>1 T) conditions at 50% parahydrogen enrichment. The system provides precise control over bubbling pressure, temperature, and gas flow, enabling systematic studies of how these parameters shape hyperpolarization performance. Using the benchmark Chloro(1,5-cyclooctadiene)[1,3-bis(2,4,6-trimethylphenyl)imidazole-2-ylidene]iridium(I) (Ir–IMes) catalyst, we explore the catalyst activation time and response to parahydrogen flow and pressure. Polarization transfer experiments from hydrides to [1-13C]pyruvate leading to the estimation of heteronuclear J-couplings are also presented. We further demonstrate the use of Chloro(1,5-cyclooctadiene)[1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene]iridium(I) (Ir–SIPr), a recently introduced catalyst that can also be used for pyruvate hyperpolarization. The proposed design is robust, reproducible, and easy to implement in any laboratory, widening the route to explore and expand the capabilities of parahydrogen-based hyperpolarization. Full article
(This article belongs to the Special Issue Emerging Horizons of Hyperpolarization in Chemistry and Biomedicine)
Show Figures

Graphical abstract

19 pages, 32582 KB  
Article
Study on the Characteristics of Cement-Based Magnetoelectric Composites Using COMSOL
by Weixuan Huang, Cuijuan Pang, Jianyu Xu, Kangyang Liang, Cunying Fan, Zeyu Lu and Chuncheng Lu
Materials 2025, 18(21), 5027; https://doi.org/10.3390/ma18215027 - 4 Nov 2025
Viewed by 277
Abstract
A multiphysics-coupled 2–2 cement-based magnetoelectric composite model is established in COMSOL 6.2. This model is used to not only systematically investigate the magnetoelectric-coupling behavior, but also quantify the effects of the magnetic field, frequency, and layer-thickness ratio on the material’s magnetoelectric properties. The [...] Read more.
A multiphysics-coupled 2–2 cement-based magnetoelectric composite model is established in COMSOL 6.2. This model is used to not only systematically investigate the magnetoelectric-coupling behavior, but also quantify the effects of the magnetic field, frequency, and layer-thickness ratio on the material’s magnetoelectric properties. The results demonstrate that the model effectively reproduces the internal stress–strain distribution and voltage evolution. Specifically, the magnetostrictive and piezoelectric layers exhibit mechanical responses with pronounced non-uniformity, which is attributed to boundary effects. The bias magnetic field plays a crucial regulatory role: the output voltage increases linearly from 0 to 2000 Oe and then saturates at higher fields. Under an alternating magnetic field, the composite exhibits pronounced resonance characteristics, whose frequency is jointly governed by structural dimensions and the bias field. The dynamic response was further analyzed using the magnetic flux density modulus, displacement profiles at selected locations, and voltage evolution across the piezoelectric layer. Notably, the thickness of each functional phase exerts a pronounced and distinct influence on the composite’s magnetoelectric coupling, with markedly different trends between phases. Optimization results show that a thin piezoelectric layer combined with a thick magnetostrictive layer yields the highest magnetoelectric performance. Additionally, the longitudinal and transverse magnetoelectric coefficients exhibit markedly different coupling mechanisms—this is owing to the misalignment between the magnetic-field and electric-polarization directions, and this difference further reveals the intrinsic anisotropy of the magnetoelectric response. Overall, this study provides a crucial theoretical foundation for the design and optimization of high-performance cement-based magnetoelectric composites. Full article
Show Figures

Figure 1

10 pages, 6055 KB  
Proceeding Paper
WISPFI Experiment: Prototype Development
by Josep Maria Batllori, Michael H. Frosz, Dieter Horns and Marios Maroudas
Phys. Sci. Forum 2025, 11(1), 4; https://doi.org/10.3390/psf2025011004 - 31 Oct 2025
Viewed by 102
Abstract
Axions and axion-like particles (ALPs) are well-motivated dark matter (DM) candidates that couple with photons in external magnetic fields. The parameter space around m a 50 meV remains largely unexplored by haloscope experiments. We present the first prototype of Weakly Interacting Sub-eV [...] Read more.
Axions and axion-like particles (ALPs) are well-motivated dark matter (DM) candidates that couple with photons in external magnetic fields. The parameter space around m a 50 meV remains largely unexplored by haloscope experiments. We present the first prototype of Weakly Interacting Sub-eV Particles (WISP) Searches on a Fiber Interferometer (WISPFI), a table-top, model-independent scheme based on resonant photon–axion conversion in a hollow-core photonic crystal fiber (HC-PCF) integrated into a Mach–Zehnder interferometer (MZI). Operating near a dark fringe with active phase-locking, combined with amplitude modulation, the interferometer converts axion-induced photon disappearance into a measurable signal. A 2 W, 1550 nm laser is coupled with a 1 m-long HC-PCF placed inside a ∼2 T permanent magnet array, probing a fixed axion mass of m a 49 meV with a projected sensitivity of g a γ γ 1.3× 10 9 GeV−1 for a measurement time of 30 days. Future upgrades, including pressure tuning of the effective refractive index and implementation of a Fabry–Pérot cavity, could extend the accessible mass range and improve sensitivity, establishing WISPFI as a scalable platform to explore previously inaccessible regions of the axion parameter space. Full article
(This article belongs to the Proceedings of The 19th Patras Workshop on Axions, WIMPs and WISPs)
Show Figures

Figure 1

47 pages, 1224 KB  
Review
TLC in the Analysis of Plant Material
by Maria Zych and Alina Pyka-Pająk
Processes 2025, 13(11), 3497; https://doi.org/10.3390/pr13113497 - 31 Oct 2025
Viewed by 1101
Abstract
This paper provides an overview of thin-layer chromatography (TLC) and high-performance thin-layer chromatography (HPTLC) methods for analyzing plant materials and herbal formulations, as described in scientific publications from January 2022 to July 2025. It describes the use of TLC in the qualitative and [...] Read more.
This paper provides an overview of thin-layer chromatography (TLC) and high-performance thin-layer chromatography (HPTLC) methods for analyzing plant materials and herbal formulations, as described in scientific publications from January 2022 to July 2025. It describes the use of TLC in the qualitative and quantitative examination of plant materials and pharmaceutical preparations containing herbs, including profiling plant materials using TLC and applying it to HPTLC plates. It also describes other modern methods that improve component separations, such as applying TLC to profile plant formulations and detect adulterations and contaminants in them. Additionally, it discusses TLC coupled with other methods, such as principal component analysis (PCA), hierarchical cluster analysis (HCA), orthogonal partial least squares discriminant analysis (OPLS-DA), mass spectrometry (MS), nuclear magnetic resonance (NMR), surface-enhanced Raman spectroscopy (SERS), and image analysis (IA). The quantitative determination of biologically active compounds in herbs and herbal formulations is presented based on methods that combine TLC with densitometry. The paper also discusses TLC with effect-oriented analysis, including the detection of antimicrobial, antioxidant, enzyme-inhibiting, endocrine-disrupting, genotoxic, and cytotoxic substances. The advantages, disadvantages, and prospects of analyzing plant material using the TLC technique are indicated. TLC/HPTLC has great prospects for use by regulatory authorities due to the low cost of analysis and high throughput. Full article
(This article belongs to the Special Issue Quality of Plant Raw Materials and Their Processing)
Show Figures

Figure 1

13 pages, 655 KB  
Article
A Pilot Study on Plasma N-Acetylaspartate Levels at Admission and Discharge in Hospitalized Psychiatric Patients: Impact of Lithium Treatment and Clinical Correlations
by Simone Pardossi, Claudia Del Grande, Beatrice Campi, Andrea Bertolini, Barbara Capovani, Andrea Fagiolini, Riccardo Zucchi, Alessandro Saba, Alessandro Cuomo and Grazia Rutigliano
Psychiatry Int. 2025, 6(4), 130; https://doi.org/10.3390/psychiatryint6040130 - 21 Oct 2025
Viewed by 355
Abstract
N-Acetylaspartate (NAA) plays a critical role in neuronal function, metabolism, and neurotransmitter release. Evidence from magnetic resonance spectroscopy indicates diminished NAA levels in individuals diagnosed with schizophrenia and bipolar disorder; however, this process is time-consuming, expensive, and not viable in individuals with acute [...] Read more.
N-Acetylaspartate (NAA) plays a critical role in neuronal function, metabolism, and neurotransmitter release. Evidence from magnetic resonance spectroscopy indicates diminished NAA levels in individuals diagnosed with schizophrenia and bipolar disorder; however, this process is time-consuming, expensive, and not viable in individuals with acute illness exacerbation. In order to address these limitations, we developed a novel method for the quantification of plasma NAA based on tandem mass spectrometry coupled to liquid chromatography (HPLC-MS). Our study aimed to assess whether plasma NAA levels change during hospitalization and whether these changes correlate with symptomatic improvement in patients experiencing acute psychiatric exacerbations. We recruited 31 inpatients with acute symptoms of psychotic (48.39%) and/or mood (51.61%) disorders. Symptom severity was assessed using the brief psychiatric rating scale, Positive and Negative Syndrome Scale, and Clinical Global Impression Scale. Plasma NAA was measured at admission and discharge. We observed a significant decrease in symptom scores and a significant increase in plasma NAA levels between admission and discharge. The initiation of therapy with lithium salts significantly influenced plasma NAA changes. Our study shows that our HPLC-MS method can detect clinically meaningful changes in plasma NAA levels. These results might lay the groundwork for future research exploring the relationship between plasma NAA levels and cerebral NAA levels measured by MRS. Full article
Show Figures

Figure 1

18 pages, 3189 KB  
Article
Investigating the Limits of Predictability of Magnetic Resonance Imaging-Based Mathematical Models of Tumor Growth
by Megan F. LaMonica, Thomas E. Yankeelov and David A. Hormuth
Cancers 2025, 17(20), 3361; https://doi.org/10.3390/cancers17203361 - 18 Oct 2025
Viewed by 481
Abstract
Background/Objectives: We provide a framework for determining how far into the future the spatiotemporal dynamics of tumor growth can be accurately predicted using routinely available magnetic resonance imaging (MRI) data. Our analysis is applied to a coupled set of reaction-diffusion equations describing the [...] Read more.
Background/Objectives: We provide a framework for determining how far into the future the spatiotemporal dynamics of tumor growth can be accurately predicted using routinely available magnetic resonance imaging (MRI) data. Our analysis is applied to a coupled set of reaction-diffusion equations describing the spatiotemporal development of tumor cellularity and vascularity, initialized and constrained with diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI data, respectively. Methods: Motivated by experimentally acquired murine glioma data, the rat brain serves as the computational domain within which we seed an in silico tumor. We generate a set of 13 virtual tumors defined by different combinations of model parameters. The first parameter combination was selected as it generated a tumor with a necrotic core during our simulated ten-day experiment. We then tested 12 additional parameter combinations to study a range of high and low tumor cell proliferation and diffusion values. Each tumor is grown for ten days via our model system to establish “ground truth” spatiotemporal tumor dynamics with an infinite signal-to-noise ratio (SNR). We then systematically reduce the quality of the imaging data by decreasing the SNR, downsampling the spatial resolution (SR), and decreasing the sampling frequency, our proxy for reduced temporal resolution (TR). With each decrement in image quality, we assess the accuracy of the calibration and subsequent prediction by comparing it to the corresponding ground truth data using the concordance correlation coefficient (CCC) for both tumor and vasculature volume fractions, as well as the Dice similarity coefficient for tumor volume fraction. Results: All tumor CCC and Dice scores for each of the 13 virtual tumors are >0.9 regardless of the SNR/SR/TR combination. Vasculature CCC scores with any SR/TR combination are >0.9 provided the SNR ≥ 80 for all virtual tumors; for the special case of high-proliferating tumors (i.e., proliferation > 0.0263 day−1), any SR/TR combination yields CCC and Dice scores > 0.9 provided the SNR ≥ 40. Conclusions: Our systematic evaluation demonstrates that reaction-diffusion models can maintain acceptable longitudinal prediction accuracy—especially for tumor predictions—despite limitations in the quality and quantity of experimental data. Full article
(This article belongs to the Special Issue Mathematical Oncology: Using Mathematics to Enable Cancer Discoveries)
Show Figures

Figure 1

19 pages, 4201 KB  
Article
Implementation of an SS-Compensated LC-Thermistor Topology for Passive Wireless Temperature Sensing
by Seyit Ahmet Sis and Yeliz Dikerler Kozar
Sensors 2025, 25(20), 6316; https://doi.org/10.3390/s25206316 - 13 Oct 2025
Viewed by 477
Abstract
This paper presents a passive wireless temperature sensor based on an SS-compensated LC-thermistor topology. The system consists of two magnetically coupled LC tanks—each composed of a coil and a series capacitor—forming a series–series (SS) compensation network. The secondary side includes a negative temperature [...] Read more.
This paper presents a passive wireless temperature sensor based on an SS-compensated LC-thermistor topology. The system consists of two magnetically coupled LC tanks—each composed of a coil and a series capacitor—forming a series–series (SS) compensation network. The secondary side includes a negative temperature coefficient (NTC) thermistor connected in series with its coil and capacitor, acting as a temperature-dependent load. Magnetically coupled resonant systems exhibit different coupling regimes: weak, critical, and strong. When operating in the strongly coupled regime, the original resonance splits into two distinct frequencies—a phenomenon known as bifurcation. At these split resonance frequencies, the load impedance on the secondary side is reflected as pure resistance at the primary side. In the SS topology, this reflected resistance is equal to the thermistor resistance, enabling precise wireless sensing. The advantage of the SS-compensated configuration lies in its ability to map changes in the thermistor’s resistance directly to the input impedance seen by the reader circuit. As a result, the sensor can wirelessly monitor temperature variations by simply tracking the input impedance at split resonance points. We experimentally validate this property on a benchtop prototype using a one-port VNA measurement, demonstrating that the input resistance at both split frequencies closely matches the expected thermistor resistance, with the observed agreement influenced by the parasitic effects of RF components within the tested temperature range. We also demonstrate that using the average readout provides first-order immunity to small capacitor drift, yielding stable readings. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

17 pages, 3749 KB  
Article
Exploring Low Energy Excitations in the d5 Iridate Double Perovskites La2BIrO6 (B = Zn, Mg)
by Abhisek Bandyopadhyay, Dheeraj Kumar Pandey, Carlo Meneghini, Anna Efimenko, Marco Moretti Sala and Sugata Ray
Condens. Matter 2025, 10(4), 53; https://doi.org/10.3390/condmat10040053 - 6 Oct 2025
Viewed by 696
Abstract
We experimentally investigate the structural, magnetic, transport, and electronic properties of two d5 iridate double perovskite materials La2BIrO6 (B = Mg, Zn). Notably, despite similar crystallographic structure, the two compounds show distinctly different magnetic behaviors. The M [...] Read more.
We experimentally investigate the structural, magnetic, transport, and electronic properties of two d5 iridate double perovskite materials La2BIrO6 (B = Mg, Zn). Notably, despite similar crystallographic structure, the two compounds show distinctly different magnetic behaviors. The M = Mg compound shows an antiferromagnetic-like linear field-dependent isothermal magnetization below its transition temperature, whereas the M = Zn counterpart displays a clear hysteresis loop followed by a noticeable coercive field, indicative of ferromagnetic components arising from a non-collinear Ir spin arrangement. The local structure studies authenticate perceptible M/Ir antisite disorder in both systems, which complicates the magnetic exchange interaction scenario by introducing Ir-O-Ir superexchange pathways in addition to the nominal Ir-O-B-O-Ir super-superexchange interactions expected for an ideally ordered structure. While spin–orbit coupling (SOC) plays a crucial role in establishing insulating behavior for both these compounds, the rotational and tilting distortions of the IrO6 (and MO6) octahedral units further lift the ideal cubic symmetry. Finally, by measuring the Ir-L3 edge resonant inelastic X-ray scattering (RIXS) spectra for both the compounds, giving evidence of spin–orbit-derived low-energy inter-J-state (intra t2g) transitions (below ~1 eV), the charge transfer (O 2p → Ir 5d), and the crystal field (Ir t2geg) excitations, we put forward a qualitative argument for the interplay among effective SOC, non-cubic crystal field, and intersite hopping in these two compounds. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

13 pages, 1811 KB  
Article
Ochronotic Deposition in Alkaptonuria: Semiquinone-Mediated Oxidative Coupling and Metabolic Drivers of Homogentisic Acid Accumulation
by Daniela Grasso, Valentina Balloni, Maria Camilla Baratto, Adele Mucci, Annalisa Santucci and Andrea Bernini
Int. J. Mol. Sci. 2025, 26(19), 9674; https://doi.org/10.3390/ijms26199674 - 3 Oct 2025
Viewed by 489
Abstract
Alkaptonuria (AKU) is a rare metabolic disorder caused by homogentisate 1,2-dioxygenase (HGD) deficiency, leading to homogentisic acid (HGA) accumulation and ochronotic pigment deposition, which drug therapy cannot reverse. The process of pigment formation and deposition is still unclear. This study offers molecular insights [...] Read more.
Alkaptonuria (AKU) is a rare metabolic disorder caused by homogentisate 1,2-dioxygenase (HGD) deficiency, leading to homogentisic acid (HGA) accumulation and ochronotic pigment deposition, which drug therapy cannot reverse. The process of pigment formation and deposition is still unclear. This study offers molecular insights into the polymeric structure, with the goal of developing future adjuvant strategies that can inhibit or reverse pigment formation, thereby complementing drug therapy in AKU. HGA polymerisation was examined under physiological, acidic, and alkaline conditions using liquid and solid phase nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and polyacrylamide gel electrophoresis. At physiological pH, HGA polymerised slowly, while alkaline catalysis accelerated pigment formation while retaining the HGA aromatic scaffold. During the process, EPR detected a semiquinone radical intermediate, consistent with an oxidative coupling mechanism. Reactivity profiling showed the diphenol ring was essential for polymerisation, while –CH2COOH modifications did not impair reactivity. Pigments displayed a polydisperse molecular weight range (11–50 kDa) and a strong negative charge. Solid-state NMR has revealed the presence of phenolic ether and biphenyl linkages. Collectively, these identified structural motifs can serve as a foundation for future molecular targeting related to pigment formation. Full article
(This article belongs to the Special Issue Advances in Rare Diseases Biomarkers: 2nd Edition)
Show Figures

Figure 1

31 pages, 16219 KB  
Article
Design, Simulation, Construction and Experimental Validation of a Dual-Frequency Wireless Power Transfer System Based on Resonant Magnetic Coupling
by Marian-Razvan Gliga, Calin Munteanu, Adina Giurgiuman, Claudia Constantinescu, Sergiu Andreica and Claudia Pacurar
Technologies 2025, 13(10), 442; https://doi.org/10.3390/technologies13100442 - 1 Oct 2025
Viewed by 517
Abstract
Wireless power transfer (WPT) has emerged as a compelling solution for delivering electrical energy without physical connectors, particularly in applications requiring reliability, mobility, or encapsulation. This work presents the modeling, simulation, construction, and experimental validation of an optimized dual-frequency WPT system using magnetically [...] Read more.
Wireless power transfer (WPT) has emerged as a compelling solution for delivering electrical energy without physical connectors, particularly in applications requiring reliability, mobility, or encapsulation. This work presents the modeling, simulation, construction, and experimental validation of an optimized dual-frequency WPT system using magnetically coupled resonant coils. Unlike conventional single-frequency systems, the proposed architecture introduces two independently controlled excitation frequencies applied to distinct transistors, enabling improved resonance behavior and enhanced power delivery across a range of coupling conditions. The design process integrates numerical circuit simulations in PSpice and three-dimensional electromagnetic analysis in ANSYS Maxwell 3D, allowing accurate evaluation of coupling coefficient variation, mutual inductance, and magnetic flux distribution as functions of coil geometry and alignment. A sixth-degree polynomial model was derived to characterize the coupling coefficient as a function of coil separation, supporting predictive tuning. Experimental measurements were carried out using a physical prototype driven by both sinusoidal and rectangular control signals under varying load conditions. Results confirm the simulation findings, showing that specific signal periods (e.g., 8 µs, 18 µs, 20 µs, 22 µs) yield optimal induced voltage values, with strong sensitivity to the coupling coefficient. Moreover, the presence of a real load influenced system performance, underscoring the need for adaptive control strategies. The proposed approach demonstrates that dual-frequency excitation can significantly enhance system robustness and efficiency, paving the way for future implementations of self-adaptive WPT systems in embedded, mobile, or biomedical environments. Full article
Show Figures

Figure 1

16 pages, 2992 KB  
Article
The Prediction of Oil and Water Content in Tight Oil Fluid: A Case Study of the Gaotaizi Oil Reservoir in Songliao Basin
by Junhui Li, Jie Li, Xiuli Fu, Junwen Li, Shuangfang Lu, Zhong Chu and Nengwu Zhou
Energies 2025, 18(19), 5186; https://doi.org/10.3390/en18195186 - 30 Sep 2025
Viewed by 449
Abstract
The oil content in a produced fluid plays a crucial role in oil production engineering. In this paper, a predictive model for the oil and water proportions in produced fluid was established through nuclear magnetic resonance coupling displacement. This model successfully predicts the [...] Read more.
The oil content in a produced fluid plays a crucial role in oil production engineering. In this paper, a predictive model for the oil and water proportions in produced fluid was established through nuclear magnetic resonance coupling displacement. This model successfully predicts the oil proportion in the produced fluid from each block within the Gaotaizi oil reservoir of the Songliao Basin and elucidates the reasons for its variation across different blocks. The production of pure oil in a vertical well area was attributed to the reservoir fluid exhibiting high bound water saturation, resulting in oil being the primary movable phase. In the testing and extended areas, variations in oil saturation combined with the pore size distribution governing oil and water occupancy are likely responsible for the differing oil-water ratios observed in the produced fluid. Specifically, a higher oil-to-water ratio (7:3) was produced in the testing area, while the extended area yielded a lower oil-to-water ratio (3:7). Furthermore, the model predicts an oil-to-water ratio of 4:6 for the produced fluid in the Fangxing area. To enhance oil production in the extended area, narrowing the fracture interval is proposed. However, this measure may not prove effective in other blocks. Full article
Show Figures

Figure 1

17 pages, 6335 KB  
Article
Impedance Resonant Channel Shaping for Current Ringing Suppression in Dual-Active Bridge Converters
by Yaoqiang Wang, Zhaolong Sun, Peiyuan Li, Jian Ai, Chan Wu, Zhan Shen and Fujin Deng
Electronics 2025, 14(19), 3823; https://doi.org/10.3390/electronics14193823 - 26 Sep 2025
Viewed by 261
Abstract
Current ringing in dual-active bridge (DAB) converters significantly degrades efficiency and reliability, particularly due to resonant interactions in the magnetic tank impedance network. We propose a novel impedance resonant channel shaping technique to suppress the ringing by systematically modifying the converter’s equivalent impedance [...] Read more.
Current ringing in dual-active bridge (DAB) converters significantly degrades efficiency and reliability, particularly due to resonant interactions in the magnetic tank impedance network. We propose a novel impedance resonant channel shaping technique to suppress the ringing by systematically modifying the converter’s equivalent impedance model. The method begins with establishing a high-fidelity network representation of the magnetic tank, incorporating transformer parasitics, external inductors, and distributed capacitances, where secondary-side components are referred to the primary via the turns ratio squared. Critical damping is achieved through a rank-one modification of the coupling denominator, which is analytically normalized to a second-order form with explicit expressions for resonant frequency and damping ratio. The optimal series–RC damping network parameters are derived as functions of leakage inductance and winding capacitance, enabling precise control over the effective damping factor while accounting for core loss effects. Furthermore, the integrated network with the damping network dynamically shapes the impedance response, thereby attenuating ringing currents without compromising converter dynamics. Experimental validation confirms that the proposed approach reduces peak ringing amplitude by over 60% compared to the conventional snubber-based methods, while maintaining full soft-switching capability. Full article
Show Figures

Figure 1

15 pages, 13787 KB  
Article
High-Q Terahertz Perfect Absorber Based on a Dual-Tunable InSb Cylindrical Pillar Metasurface
by Rafael Charca-Benavente, Jinmi Lezama-Calvo and Mark Clemente-Arenas
Telecom 2025, 6(3), 70; https://doi.org/10.3390/telecom6030070 - 22 Sep 2025
Viewed by 666
Abstract
Perfect absorbers operating in the terahertz (THz) band are key enablers for next-generation wireless systems. However, conventional metal–dielectric designs suffer from Ohmic losses and limited reconfigurability. Here, we propose an all-dielectric indium antimonide (InSb) cylindrical pillar metasurface that achieves near-unity absorption at [...] Read more.
Perfect absorbers operating in the terahertz (THz) band are key enablers for next-generation wireless systems. However, conventional metal–dielectric designs suffer from Ohmic losses and limited reconfigurability. Here, we propose an all-dielectric indium antimonide (InSb) cylindrical pillar metasurface that achieves near-unity absorption at f0=1.83 THz with a high quality factor of Q=72.3. Critical coupling between coexisting electric and magnetic dipoles enables perfect impedance matching, while InSb’s low damping minimizes energy loss. The resonance is tunable via temperature and magnetic bias at sensitivities of ST2.8GHz·K1, SBTE132.7GHz·T1, and SBTM34.7GHz·T1, respectively, without compromising absorption strength. At zero magnetic bias (B=0), the metasurface is polarization-independent under normal incidence; under magnetic bias (B0), it maintains near-unity absorbance for both TE and TM, while the resonance frequency becomes polarization-dependent. Additionally, the 90% absorptance bandwidth (ΔfA0.9) can be modulated from 8.3 GHz to 3.3 GHz with temperature, or broadened from 8.5 GHz to 14.8 GHz under magnetic bias. This allows gapless suppression of up to 14 consecutive 1 GHz-spaced channels. This standards-agnostic bandwidth metric illustrates dynamic spectral filtering for future THz links and beyond-5G/6G research. Owing to its sharp selectivity, dual-mode tunability, and metal-free construction, the proposed absorber offers a compact and reconfigurable platform for advanced THz filtering applications. Full article
Show Figures

Graphical abstract

Back to TopTop