A Pilot Study on Plasma N-Acetylaspartate Levels at Admission and Discharge in Hospitalized Psychiatric Patients: Impact of Lithium Treatment and Clinical Correlations
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Mass Spectrometry-Based Assay
2.3. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics at Admission
3.2. Association Between Baseline Plasma NAA Levels and Clinical Variables
3.3. Change in Clinical Measures and Plasma NAA Levels from Admission to Discharge
3.4. Predictors of Changes in Plasma NAA Levels
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moffett, J.; Ross, B.; Arun, P.; Madhavarao, C.; Namboodiri, A. N-Acetylaspartate in the CNS: From Neurodiagnostics to Neurobiology. Prog. Neurobiol. 2007, 81, 89–131. [Google Scholar] [CrossRef]
- Benarroch, E.E. N-Acetylaspartate and N-Acetylaspartylglutamate: Neurobiology and Clinical Significance. Neurology 2008, 70, 1353–1357. [Google Scholar] [CrossRef]
- Baslow, M.H. Functions of N-Acetyl-l-Aspartate and N-Acetyl-l-Aspartylglutamate in the Vertebrate Brain: Role in Glial Cell-Specific Signaling. J. Neurochem. 2000, 75, 453–459. [Google Scholar] [CrossRef]
- Blüml, S. In VivoQuantitation of Cerebral Metabolite Concentrations Using Natural Abundance13C MRS at 1.5 T. J. Magn. Reson. 1999, 136, 219–225. [Google Scholar] [CrossRef]
- Schuff, N.; Meyerhoff, D.J.; Mueller, S.; Chao, L.; Sacrey, D.T.; Laxer, K.; Weiner, M.W. N-Acetylaspartate as a Marker of Neuronal Injury in Neurodegenerative Disease. In N-Acetylaspartate; Moffett, J.R., Tieman, S.B., Weinberger, D.R., Coyle, J.T., Namboodiri, A.M.A., Eds.; Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2006; Volume 576, pp. 241–262. ISBN 978-0-387-30171-6. [Google Scholar]
- Forester, B.P.; Finn, C.T.; Berlow, Y.A.; Wardrop, M.; Renshaw, P.F.; Moore, C.M. Brain Lithium, N-Acetyl Aspartate and Myo-Inositol Levels in Older Adults with Bipolar Disorder Treated with Lithium: A Lithium-7 and Proton Magnetic Resonance Spectroscopy Study. Bipolar Disord. 2008, 10, 691–700. [Google Scholar] [CrossRef]
- Munoz Maniega, S.; Cvoro, V.; Chappell, F.M.; Armitage, P.A.; Marshall, I.; Bastin, M.E.; Wardlaw, J.M. Changes in NAA and Lactate Following Ischemic Stroke: A Serial MR Spectroscopic Imaging Study. Neurology 2008, 71, 1993–1999. [Google Scholar] [CrossRef] [PubMed]
- Kwo-On-Yuen, P.F.; Newmark, R.D.; Budinger, T.F.; Kaye, J.A.; Ball, M.J.; Jagust, W.J. BrainN-Acetyl-l-Aspartic Acid in Alzheimer’s Disease: A Proton Magnetic Resonance Spectroscopy Study. Brain Res. 1994, 667, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Tsai, G.; Coyle, J.T. N-Acetylaspartate in Neuropsychiatric Disorders. Prog. Neurobiol. 1995, 46, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Teunissen, C.E.; Iacobaeus, E.; Khademi, M.; Brundin, L.; Norgren, N.; Koel-Simmelink, M.J.A.; Schepens, M.; Bouwman, F.; Twaalfhoven, H.A.M.; Blom, H.J.; et al. Combination of CSF N-Acetylaspartate and Neurofilaments in Multiple Sclerosis. Neurology 2009, 72, 1322–1329. [Google Scholar] [CrossRef]
- Whitehurst, T.S.; Osugo, M.; Townsend, L.; Shatalina, E.; Vava, R.; Onwordi, E.C.; Howes, O. Proton Magnetic Resonance Spectroscopy of N-Acetyl Aspartate in Chronic Schizophrenia, First Episode of Psychosis and High-Risk of Psychosis: A Systematic Review and Meta-Analysis. Neurosci. Biobehav. Rev. 2020, 119, 255–267. [Google Scholar] [CrossRef]
- Saccaro, L.F.; Tassone, M.; Tozzi, F.; Rutigliano, G. Proton Magnetic Resonance Spectroscopy of N-Acetyl Aspartate in First Depressive Episode and Chronic Major Depressive Disorder: A Systematic Review and Meta-Analysis. J. Affect. Disord. 2024, 355, 265–282. [Google Scholar] [CrossRef]
- Chabert, J.; Allauze, E.; Pereira, B.; Chassain, C.; De Chazeron, I.; Rotgé, J.-Y.; Fossati, P.; Llorca, P.-M.; Samalin, L. Glutamatergic and N-Acetylaspartate Metabolites in Bipolar Disorder: A Systematic Review and Meta-Analysis of Proton Magnetic Resonance Spectroscopy Studies. Int. J. Mol. Sci. 2022, 23, 8974. [Google Scholar] [CrossRef]
- Hajek, T.; Bauer, M.; Pfennig, A.; Cullis, J.; Ploch, J.; O’Donovan, C.; Bohner, G.; Klingebiel, R.; Young, L.; MacQueen, G.; et al. Large Positive Effect of Lithium on Prefrontal Cortex N-Acetylaspartate in Patients with Bipolar Disorder: 2-Centre Study. J. Psychiatry Neurosci. 2012, 37, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.J.; Bebchuk, J.M.; Hasanat, K.; Chen, G.; Seraji-Bozorgzad, N.; Wilds, I.B.; Faulk, M.W.; Koch, S.; Glitz, D.A.; Jolkovsky, L.; et al. Lithium Increases N-Acetyl-Aspartate in the Human Brain: In Vivo Evidence in Support of Bcl-2′s Neurotrophic Effects? Biol. Psychiatry 2000, 48, 1–8. [Google Scholar] [CrossRef]
- Silverstone, P.H.; Wu, R.H.; O’Donnell, T.; Ulrich, M.; Asghar, S.J.; Hanstock, C.C. Chronic Treatment with Lithium, but Not Sodium Valproate, Increases Cortical N-Acetyl-Aspartate Concentrations in Euthymic Bipolar Patients. Int. Clin. Psychopharmacol. 2003, 18, 73–79. [Google Scholar] [CrossRef]
- De Sousa, R.T.; Zanetti, M.V.; Talib, L.L.; Serpa, M.H.; Chaim, T.M.; Carvalho, A.F.; Brunoni, A.R.; Busatto, G.F.; Gattaz, W.F.; Machado-Vieira, R. Lithium Increases Platelet Serine-9 Phosphorylated GSK-3β Levels in Drug-Free Bipolar Disorder during Depressive Episodes. J. Psychiatr. Res. 2015, 62, 78–83. [Google Scholar] [CrossRef]
- Won, E.; Kim, Y.-K. An Oldie but Goodie: Lithium in the Treatment of Bipolar Disorder through Neuroprotective and Neurotrophic Mechanisms. Int. J. Mol. Sci. 2017, 18, 2679. [Google Scholar] [CrossRef]
- Emamghoreishi, M.; Keshavarz, M.; Nekooeian, A.A. Acute and Chronic Effects of Lithium on BDNF and GDNF mRNA and Protein Levels in Rat Primary Neuronal, Astroglial and Neuroastroglia Cultures. Iran. J. Basic Med. Sci. 2015, 18, 240–246. [Google Scholar] [PubMed]
- Lang, U.E.; Hellweg, R.; Seifert, F.; Schubert, F.; Gallinat, J. Correlation Between Serum Brain-Derived Neurotrophic Factor Level and An In Vivo Marker of Cortical Integrity. Biol. Psychiatry 2007, 62, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Nciri, R.; Desmoulin, F.; Allagui, M.S.; Murat, J.-C.; Feki, A.E.; Vincent, C.; Croute, F. Neuroprotective Effects of Chronic Exposure of SH-SY5Y to Low Lithium Concentration Involve Glycolysis Stimulation, Extracellular Pyruvate Accumulation and Resistance to Oxidative Stress. Int. J. Neuropsychopharmacol. 2013, 16, 365–376. [Google Scholar] [CrossRef]
- Campi, B.; Codini, S.; Daniele, G.; Marvelli, A.; Ceccarini, G.; Santini, F.; Zucchi, R.; Ferrannini, E.; Saba, A. Plasma N-Acetylaspartate: Development and Validation of a Quantitative Assay Based on HPLC-MS-MS and Sample Derivatization. Clin. Chim. Acta 2020, 508, 146–153. [Google Scholar] [CrossRef]
- Daniele, G.; Campi, B.; Saba, A.; Codini, S.; Ciccarone, A.; Giusti, L.; Del Prato, S.; Esterline, R.L.; Ferrannini, E. Plasma N-Acetylaspartate Is Related to Age, Obesity, and Glucose Metabolism: Effects of Antidiabetic Treatment and Bariatric Surgery. Front. Endocrinol. 2020, 11, 216. [Google Scholar] [CrossRef] [PubMed]
- Rebelos, E.; Daniele, G.; Campi, B.; Saba, A.; Koskensalo, K.; Ihalainen, J.; Saukko, E.; Nuutila, P.; Backes, W.H.; Jansen, J.F.A.; et al. Circulating N-Acetylaspartate Does Not Track Brain NAA Concentrations, Cognitive Function or Features of Small Vessel Disease in Humans. Sci. Rep. 2022, 12, 11530. [Google Scholar] [CrossRef]
- Molina, V.; Sánchez, J.; Sanz, J.; Reig, S.; Benito, C.; Leal, I.; Sarramea, F.; Rebolledo, R.; Palomo, T.; Desco, M. Dorsolateral Prefrontal N-Acetyl-Aspartate Concentration in Male Patients with Chronic Schizophrenia and with Chronic Bipolar Disorder. Eur. Psychiatr. 2007, 22, 505–512. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Roncone, R.; Ventura, J.; Impallomeni, M.; Falloon, I.R.H.; Morosini, P.L.; Chiaravalle, E.; Casacchia, M. Reliability of an Italian Standardized and Expanded Brief Psychiatric Rating Scale (BPRS 4.0) in Raters with High vs. Low Clinical Experience. Acta Psychiatr. Scand. 1999, 100, 229–236. [Google Scholar] [CrossRef]
- Pinna, F.; Bosia, M.; Cavallaro, R.; Carpiniello, B. Consensus Five Factor PANSS for Evaluation of Clinical Remission: Effects on Functioning and Cognitive Performances. Schizophr. Res. Cogn. 2014, 1, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Guy, W. Clinical Global Impressions Scale; APA: Washington, DC, USA, 2017. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; American Psychiatric Association: Washington, DC, USA, 1994. [Google Scholar]
- Marder, S.R.; Davis, J.M.; Chouinard, G. The Effects of Risperidone on the Five Dimensions of Schizophrenia Derived by Factor Analysis: Combined Results of the North American Trials. J. Clin. Psychiatry 1997, 58, 538–546. [Google Scholar] [CrossRef]
- European Medicines Agency. Guideline on Bioanalytical Method Validation; European Medicines Agency: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Leucht, S.; Kane, J.M.; Etschel, E.; Kissling, W.; Hamann, J.; Engel, R.R. Linking the PANSS, BPRS, and CGI: Clinical Implications. Neuropsychopharmacology 2006, 31, 2318–2325. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Smith, M.A.; Schlund, M.W.; Nestadt, G.; Barker, P.B.; Hoehn-Saric, R. Proton Magnetic Resonance Spectroscopy in Obsessive-Compulsive Disorder: A Pilot Investigation Comparing Treatment Responders and Non-Responders. Psychiatry Res. Neuroimaging 2007, 156, 175–179. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, Y.; Xu, G.; Ling, X.; Liu, S.; Huang, L. Frontal White Matter Biochemical Abnormalities in First-Episode, Treatment-Naive Patients with Major Depressive Disorder: A Proton Magnetic Resonance Spectroscopy Study. J. Affect. Disord. 2012, 136, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Szulc, A.; Wiedlocha, M.; Waszkiewicz, N.; Galińska-Skok, B.; Marcinowicz, P.; Gierus, J.; Mosiolek, A. Proton Magnetic Resonance Spectroscopy Changes after Lithium Treatment. Systematic Review. Psychiatry Res. Neuroimaging 2018, 273, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Dell’osso, L.; Del Grande, C.; Gesi, C.; Carmassi, C.; Musetti, L. A New Look at an Old Drug: Neuroprotective Effects and Therapeutic Potentials of Lithium Salts. NDT 2016, 12, 1687–1703. [Google Scholar] [CrossRef]
- Chen, R.-W.; Chuang, D.-M. Long Term Lithium Treatment Suppresses P53 and Bax Expression but Increases Bcl-2 Expression. J. Biol. Chem. 1999, 274, 6039–6042. [Google Scholar] [CrossRef]
- Forlenza, O.V.; De-Paula, V.J.R.; Diniz, B.S.O. Neuroprotective Effects of Lithium: Implications for the Treatment of Alzheimer’s Disease and Related Neurodegenerative Disorders. ACS Chem. Neurosci. 2014, 5, 443–450. [Google Scholar] [CrossRef]
- Hashimoto, R.; Hough, C.; Nakazawa, T.; Yamamoto, T.; Chuang, D.-M. Lithium Protection against Glutamate Excitotoxicity in Rat Cerebral Cortical Neurons: Involvement of NMDA Receptor Inhibition Possibly by Decreasing NR2B Tyrosine Phosphorylation. J. Neurochem. 2002, 80, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Richard, S.J. Lithium and GSK-3: One Inhibitor, Two Inhibitory Actions, Multiple Outcomes. Trends Pharmacol. Sci. 2003, 24, 441–443. [Google Scholar] [CrossRef]
- Lundberg, M.; Millischer, V.; Backlund, L.; Martinsson, L.; Stenvinkel, P.; Sellgren, C.M.; Lavebratt, C.; Schalling, M. Lithium and the Interplay Between Telomeres and Mitochondria in Bipolar Disorder. Front. Psychiatry 2020, 11, 586083. [Google Scholar] [CrossRef]
- Maurer, I.C.; Schippel, P.; Volz, H. Lithium-induced Enhancement of Mitochondrial Oxidative Phosphorylation in Human Brain Tissue. Bipolar Disord. 2009, 11, 515–522. [Google Scholar] [CrossRef]
- Gonul, A.S.; Kitis, O.; Ozan, E.; Akdeniz, F.; Eker, C.; Eker, O.D.; Vahip, S. The Effect of Antidepressant Treatment on N-Acetyl Aspartate Levels of Medial Frontal Cortex in Drug-Free Depressed Patients. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2006, 30, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Croarkin, P.E.; Thomas, M.A.; Port, J.D.; Baruth, J.M.; Choi, D.-S.; Abulseoud, O.A.; Frye, M.A. N-Acetylaspartate Normalization in Bipolar Depression after Lamotrigine Treatment. Bipolar Disord 2015, 17, 450–457. [Google Scholar] [CrossRef]
- Paslakis, G.; Träber, F.; Roberz, J.; Block, W.; Jessen, F. N-Acetyl-Aspartate (NAA) as a Correlate of Pharmacological Treatment in Psychiatric Disorders: A Systematic Review. Eur. Neuropsychopharmacol. 2014, 24, 1659–1675. [Google Scholar] [CrossRef] [PubMed]
- Arun, P.; Madhavarao, C.N.; Moffett, J.R.; Namboodiri, A.M.A. Antipsychotic Drugs Increase N-Acetylaspartate and N-Acetylaspartylglutamate in SH-SY5Y Human Neuroblastoma Cells. J. Neurochem. 2008, 106, 1669–1680. [Google Scholar] [CrossRef] [PubMed]
- Harte, M.K.; Bachus, S.B.; Reynolds, G.P. Increased N-Acetylaspartate in Rat Striatum Following Long-Term Administration of Haloperidol. Schizophr. Res. 2005, 75, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Grosic, V.; Folnegovic Grosic, P.; Kalember, P.; Bajs Janovic, M.; Mihanovic, M.; Henigsberg, N.; Rados, M. The Effect of Atypical Antipsychotics on Brain N-Acetylaspartate Levels in Antipsychotic-Naive First-Episode Patients with Schizophrenia: A Preliminary Study. NDT 2014, 2024, 1243–1253. [Google Scholar] [CrossRef]
- Aykut, D.S.; Arslan, F.C.; Özkorumak, E.; Tiryaki, A. Schizophrenia and Bipolar Affective Disorder: A Dimensional Approach. Psychiatr. Danub. 2017, 29, 141–147. [Google Scholar] [CrossRef]
- Corponi, F.; Bonassi, S.; Vieta, E.; Albani, D.; Frustaci, A.; Ducci, G.; Landi, S.; Boccia, S.; Serretti, A.; Fabbri, C. Genetic Basis of Psychopathological Dimensions Shared between Schizophrenia and Bipolar Disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 89, 23–29. [Google Scholar] [CrossRef]
Clinical Variables | NAA | |
---|---|---|
r | p | |
Disease duration (months) | 0.14 | 0.47 |
PANSS negative symptoms | −0.34 | 0.06 |
PANSS positive symptoms | −0.11 | 0.56 |
PANSS disorganized thought/cognition | −0.07 | 0.72 |
PANSS uncontrolled hostility/excitement | −0.18 | 0.33 |
PANSS anxiety/depression | 0.16 | 0.41 |
CGI | −0.22 | 0.24 |
BPRS | −0.36 | 0.05 |
Clinical Variables | Admission | Discharge | T | p |
---|---|---|---|---|
m (sd) | m (sd) | |||
NAA | 64.77 (16.30) | 74.44 (18.29) | 4.33 | <0.001 |
PANSS Positive symptoms | 25.30 (10.03) | 12.90 (5.49) | 8.48 | <0.0001 |
PANSS Negative symptoms * | 12.00 25% 7.00 75% 16.75 | 7.00 25% 7.00 75% 9.00 | V = 225 | <0.001 |
PANSS Disorganized thought/cognition * | 20.00 25% 16.00 75% 22.75 | 9.00 25% 8.00 75% 11.00 | V = 465 | <0.0001 |
PANSS Uncontrolled hostility/excitement | 13.30 (5.69) | 4.87 (1.28) | 8.88 | <0.0001 |
PANSS Anxiety/Depression | 14.60 (5.72) | 5.40 (1.33) | 8.49 | <0.0001 |
CGI * | 6.00 25% 6.00 75% 7.00 | 2.00 25% 2.00 75% 3.00 | V = 465 | <0.0001 |
BPRS | 52.87 (12.78) | 23.87 (5.57) | 15.50 | <0.0001 |
Clinical Variables | Δ% NAA | |
---|---|---|
r | p | |
Δ% PANSS Positive symptoms | −0.04 | 0.85 |
Δ% PANSS Negative symptoms | −0.13 | 0.50 |
Δ% PANSS Disorganized thought/cognition | 0.06 | 0.76 |
Δ% PANSS Uncontrolled hostility/excitement | 0.02 | 0.93 |
Δ% PANSS Anxiety/depression | −0.10 | 0.62 |
Δ% CGI | 0.02 | 0.92 |
Δ% BPRS | −0.14 | 0.46 |
Variable | β (Std Error) | Std β | p |
---|---|---|---|
Lithium initiation | 0.245 | 0.059 | <0.0001 |
ΔPANSS Negative symptoms | −0.111 | 0.073 | −0.253 |
ΔPANSS Disorganized thought/cognition | 0.283 | 0.148 | 0.068 |
Δ PANSS Uncontrolled hostility/excitement | −0.235 | 0.122 | 0.066 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pardossi, S.; Del Grande, C.; Campi, B.; Bertolini, A.; Capovani, B.; Fagiolini, A.; Zucchi, R.; Saba, A.; Cuomo, A.; Rutigliano, G. A Pilot Study on Plasma N-Acetylaspartate Levels at Admission and Discharge in Hospitalized Psychiatric Patients: Impact of Lithium Treatment and Clinical Correlations. Psychiatry Int. 2025, 6, 130. https://doi.org/10.3390/psychiatryint6040130
Pardossi S, Del Grande C, Campi B, Bertolini A, Capovani B, Fagiolini A, Zucchi R, Saba A, Cuomo A, Rutigliano G. A Pilot Study on Plasma N-Acetylaspartate Levels at Admission and Discharge in Hospitalized Psychiatric Patients: Impact of Lithium Treatment and Clinical Correlations. Psychiatry International. 2025; 6(4):130. https://doi.org/10.3390/psychiatryint6040130
Chicago/Turabian StylePardossi, Simone, Claudia Del Grande, Beatrice Campi, Andrea Bertolini, Barbara Capovani, Andrea Fagiolini, Riccardo Zucchi, Alessandro Saba, Alessandro Cuomo, and Grazia Rutigliano. 2025. "A Pilot Study on Plasma N-Acetylaspartate Levels at Admission and Discharge in Hospitalized Psychiatric Patients: Impact of Lithium Treatment and Clinical Correlations" Psychiatry International 6, no. 4: 130. https://doi.org/10.3390/psychiatryint6040130
APA StylePardossi, S., Del Grande, C., Campi, B., Bertolini, A., Capovani, B., Fagiolini, A., Zucchi, R., Saba, A., Cuomo, A., & Rutigliano, G. (2025). A Pilot Study on Plasma N-Acetylaspartate Levels at Admission and Discharge in Hospitalized Psychiatric Patients: Impact of Lithium Treatment and Clinical Correlations. Psychiatry International, 6(4), 130. https://doi.org/10.3390/psychiatryint6040130