Open AccessProceeding Paper
Progress in GrAHal-CAPP/DMAG for Axion Dark Matter Search in the 1–3 μeV Range
by
Pierre Pugnat, Rafik Ballou, Philippe Camus, Guillaume Donnier-Valentin, Thierry Grenet, Ohjoon Kwon, Jérôme Lacipière, Mickaël Pelloux, Rolf Pfister, Yannis K. Semertzidis, Arthur Talarmin, Jérémy Vessaire and SungWoo Youn
Abstract
Two outstanding problems of particle physics and cosmology, namely the strong-CP problem and the nature of dark matter, can be solved with the discovery of a single new particle, the axion. The modular high magnetic field and flux hybrid magnet platform of LNCMI-Grenoble,
[...] Read more.
Two outstanding problems of particle physics and cosmology, namely the strong-CP problem and the nature of dark matter, can be solved with the discovery of a single new particle, the axion. The modular high magnetic field and flux hybrid magnet platform of LNCMI-Grenoble, which was recently put in operation up to 42 T, offers unique opportunities for axion/axion-like particle search using Sikivie-type haloscopes. In this paper, the focus will be on the 350–600 MHz frequency range corresponding to the 1–3 μeV axion mass range requiring a large-bore RF-cavity. It will be built by DMAG and integrated within the large-bore superconducting hybrid magnet outsert, providing a central magnetic field up to 9 T in 812 mm warm bore diameter. The progress achieved by Néel Institute in the design of the complex cryostat with its double dilution refrigerators to cooldown below 50 mK the ultra-light Cu RF-cavity of 650 mm inner diameter and the first stage of the RF measurement chain are presented. Perspectives for the targeted sensitivity, assuming less than 2-year integration time, are recalled.
Full article
►▼
Show Figures