A Controlled System for Parahydrogen Hyperpolarization Experiments
Abstract
1. Introduction
2. Description of the System
2.1. Parahydrogen Generator
2.2. The pH2 Distribution System
2.3. The Temperature Control Unit and μ-Metal for SABRE-SHEATH Experiments
2.4. Integration of TTL-Controlled Bubbling System for High-Field Parahydrogen Experiments
3. Results and Discussion
Experiments at 1.4 T with a Benchtop NMR and at 9.4 T
4. Materials and Methods
4.1. Sample Preparation
4.2. μ-Metal, Flux-Gate Magnetometer, and Degaussing Wand
4.3. NMR Tube–PTFE Connection Method
4.4. SABRE-SHEATH Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PHIP | Parahydrogen-Induced Hyperpolarization |
| SABRE | Signal Amplification by Reversible Exchange |
| DNP | Dynamic Nuclear Polarization |
Appendix A. Estimated Component Costs for the Parahydrogen Generator and Control System
| ITEM | NAME | Q. | ESTIMATED PRICE/EUR |
| H2 generator | AD-600 Cinel SRL (Viale del Lavoro, Vigonza Padova, Italy) | 1 | 6000.00 |
| Iron(III) oxide catalyst | Merck, 371254-50G, 30–50 mesh, CAS 20344-49-4 (from Merck Serono, Roma, Italy) | 1 | 120.00 |
| LN2 Dewar | ISOTHERM DSS 2000 (from Vetrotecnica srl, Padova, Italy) | 1 | 430.00 |
| Mu-metal shield | Zero gauss chamber, model: ZG-100-300-3-0 (from Sas Ateliers Soudupin, Montereau Fault Yonne, France) | 1 | 3800.00 |
| Back-pressure regulator | ROMETEC SRL (Roma, Italy) | 1 | 500.00 |
| Mass-flow controller | Sierra Instruments C100 (from Smeri srl, Assago, Milano, Italy) | 1 | 2300.00 |
| Portable H2 gas detector | RS COMPONENTS (Vimodrone Milano, Italy)—RS GD38 | 1 | 150.00 |
| M6A-F4L-50-SS filters | RS COMPONENTS (Vimodrone Milano, Italy) | 2 | 250.00 |
| Solenoid valves | SMC SMVDW20HA (SMC, Brugherio, Italy) | 6 | 180.00 |
| Safety relief valve | S-Lok SRV30-S-6M (from Socima srl, Ponte San Nicolò Padova, Italy) | 1 | 160.00 |
| Ball valve | S-Lok SBV1-S-6M (from Socima srl, Ponte San Nicolò Padova, Italy) | 2 | 150.00 |
| Tube fitting | S-Lok SNV2-S-6M (from Socima srl, Ponte San Nicolò Padova, Italy) | 2 | 130.00 |
| Two-way ball valve | S-Lok SBV1-3B-S-6M (from Socima srl, Ponte San Nicolò Padova, Italy) | 1 | 90.00 |
| Soft copper | 4 mm O.D. −15 m (from Socima srl, Ponte San Nicolò Padova, Italy) | 1 | 25.00 |
| Soft copper | 6 mm O.D. −15 m (from Socima srl, Ponte San Nicolò Padova, Italy) | 1 | 40.00 |
| SMC pneumatic fitting | RS COMPONENTS—771-5920 (Vimodrone Milano, Italy) | 10 | 30.00 |
| Flow regulators | RS COMPONENTS—748-0712 (Vimodrone Milano, Italy) | 10 | 90.00 |
| Pressure gauge | MANS063010BR04NG (from Socima srl, Ponte San Nicolò Padova, Italy) | 4 | 80.00 |
| Pressure regulators | RS COMPONENTS—204-0053 RS COMPONENTS (Vimodrone Milano, Italy) | 4 | 150.00 |
| Nickel-plated brass compression fittings | TECNOCAM (Pian Camuno, Italy) | 10 | 20.00 |
| Capillary fiber | TUBING 0.010” ID SILICA 1 = 10M Molex, Part Number: 1068150026 (from Digikey 701 Brooks Avenue South, Thief River Falls, MN, USA) | 1 | 120.00 |
| Tubing | PTFE, Polyurethane, nylon (from Merck Serono, Roma, Italy) | 1 | 100.00 |
| Push-in fittings | RS COMPONENTS 121-6243 (Vimodrone Milano, Italy) | 1 | 35.00 |
| Push-in fittings | RS COMPONENTS 364-190 (Vimodrone Milano, Italy) | 1 | 40.00 |
| Relief valve | RS COMPONENTS 398-9120(Vimodrone Milano, Italy) | 1 | 150.00 |
| Diaphragm pump | Vacuubrand MZ 1C (from Deltek, Pozzuoli, Italy) | 1 | 1300.00 |
| Relays | DC 24 V 4-Channel Relay Module with Optocoupler Isolation by YWBL-WH (https://www.amazon.it/dp/B07QLTT9QT?ref=fed_asin_title, accessed on 1 November 2025) | 1 | 10.00 |
| Power supply | 24 V, 250 W V-TAC 3273 (https://www.amazon.it/V-TAC-ALIMENTATORE-250W-IP20-3273/dp/B08M52M7DP/ref=sr_1_1?crid=3QSZ9SARKH5QM&dib=eyJ2IjoiMSJ9.4EmDHc9BBtp0ZjtHgDyJcROYifMVU98X4onCabKeYC_K2SaYcRLn0RLin3GAnnYuOvqWtR6rW4DyiNhc3WRM5lbToggzjLTfI8ueqrU7Ad03lQQvVlOtXZnyRcOTGBUTJ6U-kydMDMSJBZVuAxmYqbwiQAjJd6q_3T_2Yff8ck7F1BDnqqXy3IZt_uBJvP3C3sdDOrA3L4amy0gF1eVq9qxkQEeUMlWNKnjd3Kiw0-I.Ctdzw2N2mSzRNmGlz5FNx4mQuLG-WbIscYMJQzaGNdA&dib_tag=se&keywords=power+supply+24+V%2C+250+W+V-TAC+3273&qid=1762159548&s=tools&sprefix=power+supply+24+v%2C+250+w+v-tac+3273%2Caps%2C90&sr=1-1, accessed on 1 November 2025) | 1 | 25.00 |
| Push buttons with LEDs | 16 mm Self-Locking Push Button Switch, 12–24 V, 5 A (https://www.amazon.it/dp/B07Z4QKSGY?ref=ppx_yo2ov_dt_b_fed_asin_title&th=1, accessed on 1 November 2025) | 4 | 50.00 |
| Cables and other components | 1 | 150.00 | |
| NMR tubes (100) | Code Z565229-100EA, vendor: https://www.sigmaaldrich.com/IT/it/product/aldrich/z565229, accessed on 1 November 2025 | 1 | 170.00 |
| TOTAL | 16,845.00 (including hydrogen generator, excluding NMR hardware) | ||
| ADDITIONAL COMPONENTS: | |||
| Flux-gate magnetometer | Bartington—MAG-03MC 1000 (from GEOSTUDI Astier s.r.l. Livorno, Italy) | 1 | 2660.00 |
| Power supply and display | Bartington—MAGMETER 2 (from GEOSTUDI Astier s.r.l. Livorno, Italy) | 1 | 3730.00 |
| Degaussing wand | Bartington—Degaussing Wand (from GEOSTUDI Astier s.r.l. Livorno, Italy) | 1 | 830.00 |
| Suprasil Dewar | Wilmad® Suprasil® VT Dewar Inserts for Bruker® Z744278 (check Bruker Switzerland AG, Fällanden, Switzerland) | 1 | ~1800.00 |
| Temperature control unit | BVT2000 | 1 | ~3000.00 |
| Low-temperature integrated unit | Ask Bruker (Bruker Switzerland AG, Fällanden, Switzerland (CH)), Oxford Instruments (Oxford Instruments Magnetic Resonance, Tubney Woods, Abingdon Oxfordshire, UK) for quotes | (~6000.00) | |
| TOTAL OF ADDITIONAL COMPONENTS | 12,020.00 (excluding low-temperature integrated unit) | ||
Appendix B. Pulse Sequence for Automated Bubbling and Acquisition
| ;zgPHIP.gs: pulse sequence to perform automatized bubbling and acquisition ;avance-version (2/10/18) ;$CLASS = HighRes ;$DIM = 1D ;$TYPE = ;$SUBTYPE = ;$COMMENT = #include <Avance.incl> #include <Delay.incl> #include <Grad.incl> “p2 = p1 * 2” “p4 = p3 * 2” ; Definitions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; define delay dByPass “dByPass = cnst2” define delay dPressurization “dPressurization = cnst3” define delay dBubbling “dBubbling = cnst4” define delay dExhaust “dExhaust = cnst5” define delay dStabilization “dStabilization = cnst6” ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Pulse sequence 1 ze 2 30 m d1 ; Operations at the switch box TTL1_HIGH ; Set the “By Pass” valve to off TTL2_HIGH ; Set the “pH2” valve to off TTL3_HIGH ; Set the “Exhaust” valve to off TTL4_HIGH ; Set the “N2” valve to off dByPass TTL1_LOW ; Activate “By Pass Valve” 2s dPressurization TTL2_LOW ; Pressurization with pH2 dBubbling TTL1_HIGH ; Bubbling Period TTL1_LOW ; Stop bubbling 1s TTL2_HIGH ; Stop pH2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; dStabilization ; Stabilization after bubbling 4u pl1:f1 ; power on F1 (p1 ph1):f1 Go =2 ph31 30 m mc #0 to 2 F0(zd) 100m dExhaust TTL3_LOW ; Release pressure TTL3_HIGH TTL1_HIGH exit ph1 = 1 ph31 = 0 ;pl1: f1 channel—power level for pulse (default) HETERONUCLEAR ;pl2: f2 channel—power level for pulse (default) PROTON ;p1: f1 channel—90 degree high power pulse HETERONUCLEAR ;p2: f1 channel—180 degree high power pulse HETERONUCLEAR ;p3: f2 channel—90 degree high power pulse PROTON ;p4: f2 channel—180 degree high power pulse PROTON ;d1: relaxation delay ;cnst2: switch on ByPass Valve (1 s is OK) ;cnst3: Pressurization of the system (>120 s) ;cnst4: Bubbling time ;cnst5: Exhaust time ;cnst6: Stabilization after bubbling |
References
- Luchinat, E.; Cremonini, M.; Banci, L. Radio Signals from Live Cells: The Coming of Age of In-Cell Solution NMR. Chem. Rev. 2022, 122, 9267–9306. [Google Scholar] [CrossRef]
- Sakakibara, D.; Sasaki, A.; Ikeya, T.; Hamatsu, J.; Hanashima, T.; Mishima, M.; Yoshimasu, M.; Hayashi, N.; Mikawa, T.; Wälchli, M.; et al. Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 2009, 458, 102–105. [Google Scholar] [CrossRef]
- Gallagher, F.A.; Bohndiek, S.E.; Kettunen, M.I.; Lewis, D.Y.; Soloviev, D.; Brindle, K.M. Hyperpolarized 13C MRI and PET: In vivo tumor biochemistry. J. Nucl. Med. 2011, 52, 1333–1336. [Google Scholar] [CrossRef]
- Abragam, A. Principles of Nuclear Magnetism; Clarendon Press: Oxford, UK, 1961; ISBN 978-0-19-852014-6. [Google Scholar]
- Gadian, D.G.; Panesar, K.S.; Perez Linde, A.J.; Horsewill, A.J.; Köckenberger, W.; Owers-Bradley, J.R. Preparation of highly polarized nuclear spin systems using brute-force and low-field thermal mixing. Phys. Chem. Chem. Phys. 2012, 14, 5397. [Google Scholar] [CrossRef]
- Owers-Bradley, J.R.; Horsewill, A.J.; Peat, D.T.; Goh, K.S.K.; Gadian, D.G. High polarization of nuclear spins mediated by nanoparticles at millikelvin temperatures. Phys. Chem. Chem. Phys. 2013, 15, 10413. [Google Scholar] [CrossRef]
- Hirsch, M.L.; Kalechofsky, N.; Belzer, A.; Rosay, M.; Kempf, J.G. Brute-Force Hyperpolarization for NMR and MRI. J. Am. Chem. Soc. 2015, 137, 8428–8434. [Google Scholar] [CrossRef] [PubMed]
- Peat, D.T.; Hirsch, M.L.; Gadian, D.G.; Horsewill, A.J.; Owers-Bradley, J.R.; Kempf, J.G. Low-field thermal mixing in [1-13 C] pyruvic acid for brute-force hyperpolarization. Phys. Chem. Chem. Phys. 2016, 18, 19173–19182. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, H.; Moskau, D.; Spraul, M. Cryogenically cooled probes—A leap in NMR technology. Prog. Nucl. Magn. Reson. Spectrosc. 2005, 46, 131–155. [Google Scholar] [CrossRef]
- Jones, C.J.; Larive, C.K. Could smaller really be better? Current and future trends in high-resolution microcoil NMR spectroscopy. Anal. Bioanal. Chem. 2012, 402, 61–68. [Google Scholar] [CrossRef]
- Overhauser, A.W. Polarization of Nuclei in Metals. Phys. Rev. 1953, 92, 411–415. [Google Scholar] [CrossRef]
- Carver, T.R.; Slichter, C.P. Polarization of Nuclear Spins in Metals. Phys. Rev. 1953, 92, 212–213. [Google Scholar] [CrossRef]
- Eills, J.; Budker, D.; Cavagnero, S.; Chekmenev, E.Y.; Elliott, S.J.; Jannin, S.; Lesage, A.; Matysik, J.; Meersmann, T.; Prisner, T.; et al. Spin Hyperpolarization in Modern Magnetic Resonance. Chem. Rev. 2023, 123, 1417–1551. [Google Scholar] [CrossRef] [PubMed]
- Barskiy, D.A. Molecules, Up Your Spins! Molecules 2024, 29, 1821. [Google Scholar] [CrossRef]
- Henstra, A.; Dirksen, P.; Wenckebach, W.T. Enhanced dynamic nuclear polarization by the integrated solid effect. Phys. Lett. A 1988, 134, 134–136. [Google Scholar] [CrossRef]
- Ardenkjaer-Larsen, J.H.; Fridlund, B.; Gram, A.; Hansson, G.; Hansson, L.; Lerche, M.H.; Servin, R.; Thaning, M.; Golman, K. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. USA 2003, 100, 10158–10163. [Google Scholar] [CrossRef]
- Wenckebach, W.T. The Solid Effect. Appl. Magn. Reson. 2008, 34, 227. [Google Scholar] [CrossRef]
- Lesage, A.; Lelli, M.; Gajan, D.; Caporini, M.A.; Vitzthum, V.; Miéville, P.; Alauzun, J.; Roussey, A.; Thieuleux, C.; Mehdi, A.; et al. Surface Enhanced NMR Spectroscopy by Dynamic Nuclear Polarization. J. Am. Chem. Soc. 2010, 132, 15459–15461. [Google Scholar] [CrossRef]
- Jannin, S.; Bornet, A.; Colombo, S.; Bodenhausen, G. Low-temperature cross polarization in view of enhancing dissolution Dynamic Nuclear Polarization in NMR. Chem. Phys. Lett. 2011, 517, 234–236. [Google Scholar] [CrossRef]
- Corzilius, B. Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids. Phys. Chem. Chem. Phys. 2016, 18, 27190–27204. [Google Scholar] [CrossRef]
- Wenckebach, W.T. Dynamic nuclear polarization via thermal mixing: Beyond the high temperature approximation. J. Magn. Reson. 2017, 277, 68–78. [Google Scholar] [CrossRef]
- Bowers, C.R.; Weitekamp, D.P. Transformation of symmetrization order to nuclear-spin magnetization by chemical reaction and nuclear magnetic resonance. Phys. Rev. Lett. 1986, 57, 2645–2648. [Google Scholar] [CrossRef]
- Bowers, C.R.; Weitekamp, D.P. Para-Hydrogen and Synthesis Allow Dramatically Enhanced Nuclear Alignment. J. Am. Chem. Soc. 1987, 109, 5541–5542. [Google Scholar] [CrossRef]
- Natterer, J.; Bargon, J. Parahydrogen induced polarization. Prog. Nucl. Magn. Reson. Spectrosc. 1997, 31, 293–315. [Google Scholar] [CrossRef]
- Koptyug, I.V.; Kovtunov, K.V.; Burt, S.R.; Anwar, M.S.; Hilty, C.; Han, S.-I.; Pines, A.; Sagdeev, R.Z. para-Hydrogen-Induced Polarization in Heterogeneous Hydrogenation Reactions. J. Am. Chem. Soc. 2007, 129, 5580–5586. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.W.; Aguilar, J.A.; Atkinson, K.D.; Cowley, M.J.; Elliott, P.I.; Duckett, S.B.; Green, G.G.; Khazal, I.G.; Lopez-Serrano, J.; Williamson, D.C. Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer. Science 2009, 323, 1708–1711. [Google Scholar] [CrossRef]
- Atkinson, K.D.; Cowley, M.J.; Elliott, P.I.P.; Duckett, S.B.; Green, G.G.R.; Lopez-Serrano, J.; Whitwood, A.C. Spontaneous Transfer of Parahydrogen Derived Spin Order to Pyridine at Low Magnetic Field. J. Am. Chem. Soc. 2009, 131, 13362–13368. [Google Scholar] [CrossRef]
- Kauczor, H.U.; Surkau, R.; Roberts, T. MRI using hyperpolarized noble gases. Eur. Radiol. 1998, 8, 820–827. [Google Scholar] [CrossRef]
- Meier, B.; Dumez, J.N.; Stevanato, G.; Hill-Cousins, J.T.; Roy, S.S.; Hakansson, P.; Mamone, S.; Brown, R.C.; Pileio, G.; Levitt, M.H. Long-lived nuclear spin states in methyl groups and quantum-rotor-induced polarization. J. Am. Chem. Soc. 2013, 135, 18746–18749. [Google Scholar] [CrossRef]
- Dumez, J.N.; Vuichoud, B.; Mammoli, D.; Bornet, A.; Pinon, A.C.; Stevanato, G.; Meier, B.; Bodenhausen, G.; Jannin, S.; Levitt, M.H. Dynamic Nuclear Polarization of Long-Lived Nuclear Spin States in Methyl Groups. J. Phys. Chem. Lett. 2017, 8, 3549–3555. [Google Scholar] [CrossRef]
- Corzilius, B.; Smith, A.A.; Barnes, A.B.; Luchinat, C.; Bertini, I.; Griffin, R.G. High-field dynamic nuclear polarization with high-spin transition metal ions. J. Am. Chem. Soc. 2011, 133, 5648–5651. [Google Scholar] [CrossRef]
- Corzilius, B. High-Field Dynamic Nuclear Polarization. Annu. Rev. Phys. Chem. 2020, 71, 143–170. [Google Scholar] [CrossRef] [PubMed]
- Jardón-Álvarez, D.; Leskes, M. Metal ions based dynamic nuclear polarization: MI-DNP. Prog. Nucl. Magn. Reson. Spectrosc. 2023, 138–139, 70–104. [Google Scholar] [CrossRef] [PubMed]
- Javed, A.; Jabbour, R.; Sadasivan, S.V.; Alsaghir, S.; Alhussni, A.; Jhamnani, M.; Equbal, A. Dynamic nuclear polarization: State of the art and future possibilities with light activation. Chem. Phys. Rev. 2025, 6, 021301. [Google Scholar] [CrossRef]
- Albers, M.J.; Bok, R.; Chen, A.P.; Cunningham, C.H.; Zierhut, M.L.; Zhang, V.Y.; Kohler, S.J.; Tropp, J.; Hurd, R.E.; Yen, Y.F.; et al. Hyperpolarized 13C lactate, pyruvate, and alanine: Noninvasive biomarkers for prostate cancer detection and grading. Cancer Res. 2008, 68, 8607–8615. [Google Scholar] [CrossRef]
- Capozzi, A.; Hyacinthe, J.-N.; Cheng, T.; Eichhorn, T.R.; Boero, G.; Roussel, C.; Van Der Klink, J.J.; Comment, A. Photoinduced Nonpersistent Radicals as Polarizing Agents for X-Nuclei Dissolution Dynamic Nuclear Polarization. J. Phys. Chem. C 2015, 119, 22632–22639. [Google Scholar] [CrossRef]
- Reineri, F.; Boi, T.; Aime, S. ParaHydrogen Induced Polarization of 13C carboxylate resonance in acetate and pyruvate. Nat. Commun. 2015, 6, 5858. [Google Scholar] [CrossRef]
- Di Matteo, G.; Bondar, O.; Carrera, C.; Cavallari, E.; Mishra, S.; Reineri, F. Improving the Catalyst Efficiency for Hyperpolarization of Pyruvate Derivatives by Means of Hydrogenative PHIP. ChemMedChem 2025, 20, 202500379. [Google Scholar] [CrossRef]
- Truong, M.L.; Theis, T.; Coffey, A.M.; Shchepin, R.V.; Waddell, K.W.; Shi, F.; Goodson, B.M.; Warren, W.S.; Chekmenev, E.Y. (15)N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH. J. Phys. Chem. C Nanomater. Interfaces 2015, 119, 8786–8797. [Google Scholar] [CrossRef]
- Barskiy, D.A.; Shchepin, R.V.; Tanner, C.P.N.; Colell, J.F.P.; Goodson, B.M.; Theis, T.; Warren, W.S.; Chekmenev, E.Y. The Absence of Quadrupolar Nuclei Facilitates Efficient13 C Hyperpolarization via Reversible Exchange with Parahydrogen. ChemPhysChem 2017, 18, 1493–1498. [Google Scholar] [CrossRef]
- Schmidt, A.B.; Bowers, C.R.; Buckenmaier, K.; Chekmenev, E.Y.; De Maissin, H.; Eills, J.; Ellermann, F.; Glöggler, S.; Gordon, J.W.; Knecht, S.; et al. Instrumentation for Hydrogenative Parahydrogen-Based Hyperpolarization Techniques. Anal. Chem. 2022, 94, 479–502. [Google Scholar] [CrossRef]
- Pravdivtsev, A.N.; Barskiy, D.A.; Hövener, J.-B.; Koptyug, I.V. Symmetry Constraints on Spin Order Transfer in Parahydrogen-Induced Polarization (PHIP). Symmetry 2022, 14, 530. [Google Scholar] [CrossRef]
- Hövener, J.; Bär, S.; Leupold, J.; Jenne, K.; Leibfritz, D.; Hennig, J.; Duckett, S.B.; Von Elverfeldt, D. A continuous-flow, high-throughput, high-pressure parahydrogen converter for hyperpolarization in a clinical setting. NMR Biomed. 2013, 26, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Birchall, J.R.; Coffey, A.M.; Goodson, B.M.; Chekmenev, E.Y. High-Pressure Clinical-Scale 87% Parahydrogen Generator. Anal. Chem. 2020, 92, 15280–15284. [Google Scholar] [CrossRef]
- Chapman, B.; Joalland, B.; Meersman, C.; Ettedgui, J.; Swenson, R.E.; Krishna, M.C.; Nikolaou, P.; Kovtunov, K.V.; Salnikov, O.G.; Koptyug, I.V.; et al. Low-Cost High-Pressure Clinical-Scale 50% Parahydrogen Generator Using Liquid Nitrogen at 77 K. Anal. Chem. 2021, 93, 8476–8483. [Google Scholar] [CrossRef]
- Ellermann, F.; Pravdivtsev, A.; Hövener, J.-B. Open-source, partially 3D-printed, high-pressure (50-bar) liquid-nitrogen-cooled parahydrogen generator. Magn. Reson. 2021, 2, 49–62. [Google Scholar] [CrossRef]
- Nantogma, S.; Joalland, B.; Wilkens, K.; Chekmenev, E.Y. Clinical-Scale Production of Nearly Pure (>98.5%) Parahydrogen and Quantification by Benchtop NMR Spectroscopy. Anal. Chem. 2021, 93, 3594–3601. [Google Scholar] [CrossRef]
- Kiryutin, A.S.; Sauer, G.; Hadjiali, S.; Yurkovskaya, A.V.; Breitzke, H.; Buntkowsky, G. A highly versatile automatized setup for quantitative measurements of PHIP enhancements. J. Magn. Reson. 2017, 285, 26–36. [Google Scholar] [CrossRef]
- Duchowny, A.; Denninger, J.; Lohmann, L.; Theis, T.; Lehmkuhl, S.; Adams, A. SABRE Hyperpolarization with up to 200 bar Parahydrogen in Standard and Quickly Removable Solvents. Int. J. Mol. Sci. 2023, 24, 2465. [Google Scholar] [CrossRef]
- Richardson, P.M.; Parrott, A.J.; Semenova, O.; Nordon, A.; Duckett, S.B.; Halse, M.E. SABRE hyperpolarization enables high-sensitivity 1H and 13C benchtop NMR spectroscopy. Analyst 2018, 143, 3442–3450. [Google Scholar] [CrossRef]
- Richardson, P.M.; Jackson, S.; Parrott, A.J.; Nordon, A.; Duckett, S.B.; Halse, M.E. A simple hand-held magnet array for efficient and reproducible SABRE hyperpolarisation using manual sample shaking. Magn. Reson. Chem. 2018, 56, 641–650. [Google Scholar] [CrossRef]
- Semenova, O.; Richardson, P.M.; Parrott, A.J.; Nordon, A.; Halse, M.E.; Duckett, S.B. Reaction Monitoring Using SABRE-Hyperpolarized Benchtop (1 T) NMR Spectroscopy. Anal. Chem. 2019, 91, 6695–6701. [Google Scholar] [CrossRef]
- Robinson, A.D.; Richardson, P.M.; Halse, M.E. Hyperpolarised 1H–13C Benchtop NMR Spectroscopy. Appl. Sci. 2019, 9, 1173. [Google Scholar] [CrossRef]
- Tickner, B.J.; Semenova, O.; Iali, W.; Rayner, P.J.; Whitwood, A.C.; Duckett, S.B. Optimisation of pyruvate hyperpolarisation using SABRE by tuning the active magnetisation transfer catalyst. Catal. Sci. Technol. 2020, 10, 1343–1355. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.; Terkildsen, N.; Bender, Z.; Abdurraheem, A.; Nantogma, S.; Samoilenko, A.; Gyesi, J.; Kovtunova, L.M.; Salnikov, O.G.; Koptyug, I.V.; et al. SABRE Ir–IMes Catalysis for the Masses. Molecules 2025, 30, 3837. [Google Scholar] [CrossRef] [PubMed]
- Mamone, S.; Floreani, F.; Faramawy, A.; Graiff, C.; Franco, L.; Ruzzi, M.; Tubaro, C.; Stevanato, G. (De)coding SABRE of [1-13 C]Pyruvate. Phys. Chem. Chem. Phys. 2025, 1–17. [Google Scholar] [CrossRef]
- Wibbels, G.L.; Oladun, C.; O’Hara, T.Y.; Adelabu, I.; Robinson, J.E.; Ahmed, F.; Bender, Z.T.; Samoilenko, A.; Gyesi, J.; Kovtunova, L.M.; et al. Parahydrogen-Based Hyperpolarization for the Masses at Millitesla Fields. Magnetochemistry 2025, 11, 80. [Google Scholar] [CrossRef]
- Tickner, B.J.; Lewis, J.S.; John, R.O.; Whitwood, A.C.; Duckett, S.B. Mechanistic insight into novel sulfoxide containing SABRE polarisation transfer catalysts. Dalton Trans. 2019, 48, 15198–15206. [Google Scholar] [CrossRef]
- Schmidt, A.B.; Eills, J.; Dagys, L.; Gierse, M.; Keim, M.; Lucas, S.; Bock, M.; Schwartz, I.; Zaitsev, M.; Chekmenev, E.Y.; et al. Over 20% Carbon-13 Polarization of Perdeuterated Pyruvate Using Reversible Exchange with Parahydrogen and Spin-Lock Induced Crossing at 50 μT. J. Phys. Chem. Lett. 2023, 14, 5305–5309. [Google Scholar] [CrossRef]
- Verlinden, K.; Buhl, H.; Frank, W.; Ganter, C. Determining the Ligand Properties of N-Heterocyclic Carbenes from77 Se NMR Parameters. Eur. J. Inorg. Chem. 2015, 2015, 2416–2425. [Google Scholar] [CrossRef]
- Clavier, H.; Nolan, S.P. Percent buried volume for phosphine and N-heterocyclic carbene ligands: Steric properties in organometallic chemistry. Chem. Commun. 2010, 46, 841. [Google Scholar] [CrossRef]
- Tolman, C.A. Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chem. Rev. 1977, 77, 313–348. [Google Scholar] [CrossRef]
- Teng, Q.; Huynh, H.V. A unified ligand electronic parameter based on13 C NMR spectroscopy of N-heterocyclic carbene complexes. Dalton Trans. 2017, 46, 614–627. [Google Scholar] [CrossRef]
- Descamps, C.; Coquelet, C.; Bouallou, C.; Richon, D. Solubility of hydrogen in methanol at temperatures from 248.41 to 308.20 K. Thermochim. Acta 2005, 430, 1–7. [Google Scholar] [CrossRef]
- Assaf, C.D.; Gui, X.; Auer, A.A.; Duckett, S.B.; Hövener, J.-B.; Pravdivtsev, A.N. J Coupling Constants of <1 Hz Enable 13C Hyperpolarization of Pyruvate via Reversible Exchange of Parahydrogen. J. Phys. Chem. Lett. 2024, 15, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Assaf, C.D.; Gui, X.; Salnikov, O.G.; Brahms, A.; Chukanov, N.V.; Skovpin, I.V.; Chekmenev, E.Y.; Herges, R.; Duckett, S.B.; Koptyug, I.V.; et al. Analysis of chemical exchange in iridium N-heterocyclic carbene complexes using heteronuclear parahydrogen-enhanced NMR. Commun. Chem. 2024, 7, 286. [Google Scholar] [CrossRef] [PubMed]
- Salnikov, O.G.; Assaf, C.D.; Yi, A.P.; Duckett, S.B.; Chekmenev, E.Y.; Hövener, J.B.; Koptyug, I.V.; Pravdivtsev, A.N. Modeling Ligand Exchange Kinetics in Iridium Complexes Catalyzing SABRE Nuclear Spin Hyperpolarization. Anal. Chem. 2024, 96, 11790–11799. [Google Scholar] [CrossRef]
- Dhali, B.K.S.; Abdurraheem, A.; Abdulmojeed, M.; Samoilenko, A.; Pike, M.; Harrison, R.J.; Theiss, F.; Goodson, B.M.; Chekmenev, E.Y.; Theis, T. SABRE-SHEATH hyperpolarized15 N2 -imidazole for Zn2+ sensing. Chem. Commun. 2025, 61, 12115–12118. [Google Scholar] [CrossRef]
- Joalland, B.; Nantogma, S.; Chowdhury, M.R.H.; Nikolaou, P.; Chekmenev, E.Y. Magnetic shielding of parahydrogen hyperpolarization experiments for the masses. Magn. Reson. Chem. 2021, 59, 1180–1186. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, L.; Floreani, F.; Mamone, S.; Faramawy, A.M.; Ruzzi, M.; Tubaro, C.; Stevanato, G. A Controlled System for Parahydrogen Hyperpolarization Experiments. Molecules 2025, 30, 4299. https://doi.org/10.3390/molecules30214299
Franco L, Floreani F, Mamone S, Faramawy AM, Ruzzi M, Tubaro C, Stevanato G. A Controlled System for Parahydrogen Hyperpolarization Experiments. Molecules. 2025; 30(21):4299. https://doi.org/10.3390/molecules30214299
Chicago/Turabian StyleFranco, Lorenzo, Federico Floreani, Salvatore Mamone, Ahmed Mohammed Faramawy, Marco Ruzzi, Cristina Tubaro, and Gabriele Stevanato. 2025. "A Controlled System for Parahydrogen Hyperpolarization Experiments" Molecules 30, no. 21: 4299. https://doi.org/10.3390/molecules30214299
APA StyleFranco, L., Floreani, F., Mamone, S., Faramawy, A. M., Ruzzi, M., Tubaro, C., & Stevanato, G. (2025). A Controlled System for Parahydrogen Hyperpolarization Experiments. Molecules, 30(21), 4299. https://doi.org/10.3390/molecules30214299

