Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (339)

Search Parameters:
Keywords = magnetic target positioning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6921 KiB  
Article
Transcriptomic Analysis Identifies Oxidative Stress-Related Hub Genes and Key Pathways in Sperm Maturation
by Ali Shakeri Abroudi, Hossein Azizi, Vyan A. Qadir, Melika Djamali, Marwa Fadhil Alsaffar and Thomas Skutella
Antioxidants 2025, 14(8), 936; https://doi.org/10.3390/antiox14080936 - 30 Jul 2025
Viewed by 407
Abstract
Background: Oxidative stress is a critical factor contributing to male infertility, impairing spermatogonial stem cells (SSCs) and disrupting normal spermatogenesis. This study aimed to isolate and characterize human SSCs and to investigate oxidative stress-related gene expression, protein interaction networks, and developmental trajectories involved [...] Read more.
Background: Oxidative stress is a critical factor contributing to male infertility, impairing spermatogonial stem cells (SSCs) and disrupting normal spermatogenesis. This study aimed to isolate and characterize human SSCs and to investigate oxidative stress-related gene expression, protein interaction networks, and developmental trajectories involved in SSC function. Methods: SSCs were enriched from human orchiectomy samples using CD49f-based magnetic-activated cell sorting (MACS) and laminin-binding matrix selection. Enriched cultures were assessed through morphological criteria and immunocytochemistry using VASA and SSEA4. Transcriptomic profiling was performed using microarray and single-cell RNA sequencing (scRNA-seq) to identify oxidative stress-related genes. Bioinformatic analyses included STRING-based protein–protein interaction (PPI) networks, FunRich enrichment, weighted gene co-expression network analysis (WGCNA), and predictive modeling using machine learning algorithms. Results: The enriched SSC populations displayed characteristic morphology, positive germline marker expression, and minimal fibroblast contamination. Microarray analysis revealed six significantly upregulated oxidative stress-related genes in SSCs—including CYB5R3 and NDUFA10—and three downregulated genes, such as TXN and SQLE, compared to fibroblasts. PPI and functional enrichment analyses highlighted tightly clustered gene networks involved in mitochondrial function, redox balance, and spermatogenesis. scRNA-seq data further confirmed stage-specific expression of antioxidant genes during spermatogenic differentiation, particularly in late germ cell stages. Among the machine learning models tested, logistic regression demonstrated the highest predictive accuracy for antioxidant gene expression, with an area under the curve (AUC) of 0.741. Protein oxidation was implicated as a major mechanism of oxidative damage, affecting sperm motility, metabolism, and acrosome integrity. Conclusion: This study identifies key oxidative stress-related genes and pathways in human SSCs that may regulate spermatogenesis and impact sperm function. These findings offer potential targets for future functional validation and therapeutic interventions, including antioxidant-based strategies to improve male fertility outcomes. Full article
(This article belongs to the Special Issue Oxidative Stress and Male Reproductive Health)
Show Figures

Figure 1

18 pages, 3870 KiB  
Article
Universal Vector Calibration for Orientation-Invariant 3D Sensor Data
by Wonjoon Son and Lynn Choi
Sensors 2025, 25(15), 4609; https://doi.org/10.3390/s25154609 - 25 Jul 2025
Viewed by 232
Abstract
Modern electronic devices such as smartphones, wearable devices, and robots typically integrate three-dimensional sensors to track the device’s movement in the 3D space. However, sensor measurements in three-dimensional vectors are highly sensitive to device orientation since a slight change in the device’s tilt [...] Read more.
Modern electronic devices such as smartphones, wearable devices, and robots typically integrate three-dimensional sensors to track the device’s movement in the 3D space. However, sensor measurements in three-dimensional vectors are highly sensitive to device orientation since a slight change in the device’s tilt or heading can change the vector values. To avoid complications, applications using these sensors often use only the magnitude of the vector, as in geomagnetic-based indoor positioning, or assume fixed device holding postures such as holding a smartphone in portrait mode only. However, using only the magnitude of the vector loses the directional information, while ad hoc posture assumptions work under controlled laboratory conditions but often fail in real-world scenarios. To resolve these problems, we propose a universal vector calibration algorithm that enables consistent three-dimensional vector measurements for the same physical activity, regardless of device orientation. The algorithm works in two stages. First, it transforms vector values in local coordinates to those in global coordinates by calibrating device tilting using pitch and roll angles computed from the initial vector values. Second, it additionally transforms vector values from the global coordinate to a reference coordinate when the target coordinate is different from the global coordinate by correcting yaw rotation to align with application-specific reference coordinate systems. We evaluated our algorithm on geomagnetic field-based indoor positioning and bidirectional step detection. For indoor positioning, our vector calibration achieved an 83.6% reduction in mismatches between sampled magnetic vectors and magnetic field map vectors and reduced the LSTM-based positioning error from 31.14 m to 0.66 m. For bidirectional step detection, the proposed algorithm with vector calibration improved step detection accuracy from 67.63% to 99.25% and forward/backward classification from 65.54% to 100% across various device orientations. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

30 pages, 9360 KiB  
Article
Dynamic Positioning and Optimization of Magnetic Target Based on Binocular Vision
by Jing Li, Yang Wang, Ligang Qu, Guangming Lv and Zhenyu Cao
Machines 2025, 13(7), 592; https://doi.org/10.3390/machines13070592 - 8 Jul 2025
Viewed by 187
Abstract
Aiming at the problems of visual occlusion, reduced positioning accuracy and pose loss in the dynamic scanning process of aviation large components, this paper proposes a binocular vision dynamic positioning method based on magnetic target. This method detects the spatial coordinates of the [...] Read more.
Aiming at the problems of visual occlusion, reduced positioning accuracy and pose loss in the dynamic scanning process of aviation large components, this paper proposes a binocular vision dynamic positioning method based on magnetic target. This method detects the spatial coordinates of the magnetic target in real time through the binocular camera, extracts the target center to construct a unified reference system of the measurement platform, and uses MATLAB simulation to analyze the influence of different target layouts on the scanning stability and positioning accuracy. On this basis, a dual-objective optimization model with the objectives of ‘minimizing the number of targets’ and ‘spatial distribution uniformity’ is established, and Monte Carlo simulation is used to evaluate the robustness under Gaussian noise and random frame loss interference. The experimental results on the C-Track optical tracking platform show that the optimized magnetic target layout reduces the rotation error of the dynamic scanning from 0.055° to 0.035°, the translation error from 0.31 mm to 0.162 mm, and the scanning efficiency is increased by 33%, which significantly improves the positioning accuracy and tracking stability of the system under complex working conditions. This method provides an effective solution for high-precision dynamic measurement of aviation large components. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

14 pages, 2508 KiB  
Article
Enhancement of Efficiency in an Ex Situ Coprecipitation Method for Superparamagnetic Bacterial Cellulose Hybrid Materials
by Thaís Cavalcante de Souza, Italo José Batista Durval, Hugo Moraes Meira, Andréa Fernanda de Santana Costa, Eduardo Padrón Hernández, Attilio Converti, Glória Maria Vinhas and Leonie Asfora Sarubbo
Membranes 2025, 15(7), 198; https://doi.org/10.3390/membranes15070198 - 1 Jul 2025
Viewed by 465
Abstract
Superparamagnetic magnetite nanoparticles (Fe3O4) have garnered considerable interest due to their unique magnetic properties and potential for integration into multifunctional biomaterials. In particular, their incorporation into bacterial cellulose (BC) matrices offers a promising route for developing sustainable and high-performance [...] Read more.
Superparamagnetic magnetite nanoparticles (Fe3O4) have garnered considerable interest due to their unique magnetic properties and potential for integration into multifunctional biomaterials. In particular, their incorporation into bacterial cellulose (BC) matrices offers a promising route for developing sustainable and high-performance magnetic composites. Numerous studies have explored BC-magnetite systems; however, innovations combining ex situ coprecipitation synthesis within BC matrices, tailored reagent molar ratios, stirring protocols, and purification processes remain limited. This study aimed to optimize the ex situ coprecipitation method for synthesizing superparamagnetic magnetite nanoparticles embedded in BC membranes, focusing on enhancing particle stability and crystallinity. BC membranes containing varying concentrations of magnetite (40%, 50%, 60%, and 70%) were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). The resulting magnetic BC membranes demonstrated homogenous dispersion of nanoparticles, improved crystallite size (6.96 nm), and enhanced magnetic saturation (Ms) (50.4 emu/g), compared to previously reported methods. The adoption and synergistic optimization of synthesis parameters—unique to this study—conferred greater control over the physicochemical and magnetic properties of the composites. These findings position the optimized BC-magnetite nanocomposites as highly promising candidates for advanced applications, including electromagnetic interference (EMI) shielding, electronic devices, gas sensors, MRI contrast agents, and targeted drug delivery systems. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

15 pages, 1166 KiB  
Article
Technical Validation of a Training Workstation for Magnet-Based Ultrasound Guidance of Fine-Needle Punctures
by Christian Kühnel, Martin Freesmeyer, Falk Gühne, Leonie Schreiber, Steffen Schrott, Reno Popp and Philipp Seifert
Sensors 2025, 25(13), 4102; https://doi.org/10.3390/s25134102 - 30 Jun 2025
Viewed by 298
Abstract
It has been demonstrated that needle guidance systems can enhance the precision and safety of ultrasound-guided punctures in human medicine. Systems that permit the utilization of commercially available standard needles, instead of those that necessitate the acquisition of costly, proprietary needles, are of [...] Read more.
It has been demonstrated that needle guidance systems can enhance the precision and safety of ultrasound-guided punctures in human medicine. Systems that permit the utilization of commercially available standard needles, instead of those that necessitate the acquisition of costly, proprietary needles, are of particular interest. The objective of this phantom study is to evaluate the reliability and accuracy of magnet-based ultrasound needle guidance systems, which superimpose the position of the needle tip and a predictive trajectory line on the live ultrasound image. We conducted fine-needle aspiration cytology of thyroid nodules. The needles utilized in these procedures are of a slender gauge (21–27G), with lengths ranging from 40 to 80 mm. A dedicated training workstation with integrated software-based analyses of the movement of the needle tip was utilized in 240 standardized phantom punctures (angle: 45°; target depth: 20 mm). No system failures occurred, and the target achieved its aim in all cases. The analysis of the software revealed stable procedural parameters with minor relative deviations from the predefined reference values regarding the distance of needle tip movement (−4.2% to +6.7%), needle tilt (−6.4% to +9.6%), and penetration depth (−7.5% to +4.5%). These deviations appeared to increase with the use of thin needles and, to a lesser extent, long needles. They are attributed to the slight bending of the needle inside the (phantom) tissue. The training workstation we employed is thus suitable for use in educational settings. Nevertheless, in intricate clinical puncture scenarios—for instance, in the case of unfavorable localized small lesions near critical anatomical structures, particularly those involving thin needles—caution is advised, and the system should not be relied upon exclusively. Full article
(This article belongs to the Special Issue Ultrasonic Imaging and Sensors II)
Show Figures

Figure 1

26 pages, 7464 KiB  
Article
Pore Structure and Multifractal Characteristics of the Upper Lianggaoshan Formation in the Northeastern Sichuan Basin, China
by Jingjing Guo, Guotao Luo, Haitao Wang and Liehui Zhang
Fractal Fract. 2025, 9(7), 430; https://doi.org/10.3390/fractalfract9070430 - 30 Jun 2025
Viewed by 276
Abstract
The Upper Lianggaoshan (LGS) Formation in the northeastern Sichuan Basin, composed of shale with interbedded siltstone, is a promising target layer for shale oil. Accurate evaluation of pore structures is essential for effective exploration of shale oil. This study investigated pore structures of [...] Read more.
The Upper Lianggaoshan (LGS) Formation in the northeastern Sichuan Basin, composed of shale with interbedded siltstone, is a promising target layer for shale oil. Accurate evaluation of pore structures is essential for effective exploration of shale oil. This study investigated pore structures of siltstone and shale samples from the Upper LGS Formation using low-pressure CO2 adsorption (LTCA), low-temperature N2 adsorption (LTNA), high-pressure mercury intrusion (HPMI), and nuclear magnetic resonance (NMR) methods. The single-exponent and multifractal dimensions of samples were determined, and the relationships between fractal dimensions and pore structures were explored. Results show that the pore size distribution (PSD) of siltstone and shale samples exhibits multi-peak characteristics, with mesopores (2–50 nm) being dominant in the total pore volumes. The multi-scaled pores in shale and siltstone samples exhibit fractal characteristics. The average values of single-fractal dimensions (D1, D2) obtained by LTNA data are 2.39 and 2.62 for shale samples, and 2.24 and 2.59 for siltstone samples, respectively. Compared to siltstones, the pore structures of shale samples exhibit greater complexity, indicated by larger fractal dimensions. The samples from subsections Liang 2 and Liang 3 exhibit greater heterogeneity compared to subsection Liang 1. The single-fractal dimensions of micropores and mesopores show positive correlations with specific surface area (SSA) and pore volume (PV), while the fractal dimension of macropores shows a negative correlation with average pore diameter and median radius. The average values of single-fractal dimension D3 obtained from HPMI data are 2.9644 and 2.9471 for shale and siltstone samples, respectively, indicating more complex structures of macropores in shale samples compared to siltstone samples. The average value of ΔDNMR and singularity strength range Δα obtained by a multifractal model for core samples from subsection Liang 1 are 1.868 and 2.155, respectively, which are the smallest among all of the three subsections, indicating that the heterogeneity of pore structures of subsection Liang 1 is the weakest. This research provides valuable guidance for shale oil development in the northeastern Sichuan Basin, China. Full article
(This article belongs to the Special Issue Analysis of Geological Pore Structure Based on Fractal Theory)
Show Figures

Figure 1

32 pages, 1108 KiB  
Systematic Review
Advances in Cerebellar TMS Therapy: An Updated Systematic Review on Multi-Session Interventions
by Andrea Ciricugno, Sonia Paternò, Nicole Barbati, Renato Borgatti, Zaira Cattaneo and Chiara Ferrari
Biomedicines 2025, 13(7), 1578; https://doi.org/10.3390/biomedicines13071578 - 27 Jun 2025
Viewed by 950
Abstract
Introduction: Cerebellar transcranial magnetic stimulation (TMS) has emerged as a promising neuromodulatory intervention for addressing motor, cognitive, and socio-affective deficits across a range of clinical populations. Materials and Methods: This systematic review aimed to synthesize recent evidence (2015–2025) on the efficacy, safety, and [...] Read more.
Introduction: Cerebellar transcranial magnetic stimulation (TMS) has emerged as a promising neuromodulatory intervention for addressing motor, cognitive, and socio-affective deficits across a range of clinical populations. Materials and Methods: This systematic review aimed to synthesize recent evidence (2015–2025) on the efficacy, safety, and methodological characteristics of multi-session cerebellar TMS protocols used in rehabilitation settings. Following PRISMA guidelines, a comprehensive search of PubMed and Scopus was conducted to identify peer-reviewed studies applying multi-session cerebellar TMS in clinical populations for motor, cognitive, or affective rehabilitation. A total of 1750 records were screened, and 46 studies met the inclusion criteria. Data extraction included sample characteristics, study design, TMS protocol, targeted symptoms, outcomes, and risk of bias. Results: The results show that repeated sessions of cerebellar TMS are safe, well-tolerated, and associated with functional improvements primarily in motor disorders—such as spinocerebellar ataxia, Parkinson’s disease, multiple system atrophy, essential tremor, and post-stroke deficits—as well as in psychiatric populations, particularly patients with schizophrenia. Discussion: Evidence regarding the effects of cerebellar TMS on cognitive functions remains limited, though promising. Despite overall positive findings, the literature is limited by variability in stimulation parameters, protocol designs, and outcome measures, small sample sizes and potential publication bias. Conclusions: The review highlights the need for further large-scale and well-controlled trials to refine stimulation protocols, explore long-term effects, and clarify the underlying mechanisms of cerebellar TMS across motor, cognitive, and affective domains. This systematic review has been registered on PROSPERO (registration number: CRD420251067308). Full article
(This article belongs to the Collection Feature Papers in Neuromodulation and Brain Stimulation)
Show Figures

Figure 1

15 pages, 3542 KiB  
Article
Longitudinal Overlap and Metabolite Analysis in Spectroscopic MRI-Guided Proton Beam Therapy in Pediatric High-Grade Glioma
by Abinand C. Rejimon, Anuradha G. Trivedi, Vicki Huang, Karthik K. Ramesh, Natia Esiashvilli, Eduard Schreibmann, Hyunsuk Shim, Kartik Reddy and Bree R. Eaton
Tomography 2025, 11(6), 71; https://doi.org/10.3390/tomography11060071 - 19 Jun 2025
Viewed by 462
Abstract
Background: Pediatric high-grade glioma (pHGG) is a highly aggressive cancer with unique biology distinct from adult high-grade glioma, limiting the effectiveness of standard treatment protocols derived from adult research. Objective: The purpose of this report is to present preliminary results from an ongoing [...] Read more.
Background: Pediatric high-grade glioma (pHGG) is a highly aggressive cancer with unique biology distinct from adult high-grade glioma, limiting the effectiveness of standard treatment protocols derived from adult research. Objective: The purpose of this report is to present preliminary results from an ongoing pilot study integrating spectroscopic magnetic resonance imaging (sMRI) to guide proton beam therapy and longitudinal imaging analysis in pediatric patients with high-grade glioma (pHGG). Methods: Thirteen pediatric patients under 21 years old with supratentorial WHO grade III-IV glioma underwent baseline and serial whole-brain spectroscopic MRI alongside standard structural MRIs. Radiation targets were defined using T1-weighted contrast enhanced, T2-FLAIR, and Cho/NAA ≥ 2X maps. Longitudinal analyses included voxel-level metabolic change maps and spatial overlap metrics comparing pre-proton therapy and post-. Results: Six patients had sufficient longitudinal data; five received sMRI-guided PBT. Significant positive correlation (R2 = 0.89, p < 0.0001) was observed between T2-FLAIR and Cho/NAA ≥ 2X volumes. Voxel-level difference maps of Cho/NAA and Choline revealed dynamic metabolic changes across follow-up scans. Analyzing Cho/NAA and Cho changes over time allowed differentiation between true progression and pseudoprogression, which conventional MRI alone struggles to achieve. Conclusions: Longitudinal sMRI enhanced metabolic tracking in pHGG, detects early tumor changes, and refines RT targeting beyond structural imaging. This first in-kind study highlights the potential of sMRI biomarkers in tracking treatment effects and emphasizes the complementary roles of metabolic and radiographic metrics in evaluating therapy response in pHGG. Full article
(This article belongs to the Section Cancer Imaging)
Show Figures

Figure 1

14 pages, 4313 KiB  
Article
Metal Thickness Measurement Using an Ultrasonic Probe with a Linear Actuator for a Magnet-Type Climbing Robot: Design and Development
by Yuki Nishimura, Cheng Wang and Wei Song
Actuators 2025, 14(6), 299; https://doi.org/10.3390/act14060299 - 18 Jun 2025
Viewed by 352
Abstract
The inspection of oil storage tanks is a critical measure to prevent the risk of oil leakage. Therefore, research has focused on magnet-type climbing robots for automated tank inspections. While existing magnet-type climbing robots have demonstrated significant improvements in climbing steel structures, their [...] Read more.
The inspection of oil storage tanks is a critical measure to prevent the risk of oil leakage. Therefore, research has focused on magnet-type climbing robots for automated tank inspections. While existing magnet-type climbing robots have demonstrated significant improvements in climbing steel structures, their capability in terms of metal thickness measurement has not been previously evaluated. During thickness inspections, ultrasonic thickness sensors require a probe to be pressed against target surfaces. To automate metal thickness measurements, this pressing motion of the probe needs to be performed by the robot. This study introduces a novel metal thickness measurement device comprising an ultrasonic probe, a linear actuator, a gel pump, and a pressure sensor designed for a magnet-type climbing robot. The linear actuator moves the probe to its initial position, the gel pump injects a coupling gel, and then the actuator moves the probe to the surface and back. Finally, our prototype of an ultrasonic probe with a linear actuator was installed on a magnet-type climbing robot to demonstrate its functionality in a practical application regarding an oil storage tank inspection system. The prototype achieved a measurement success rate of 65.9% and an average error of 0.7% compared to a reference thickness. This article details the design and development of the ultrasonic probe with a linear actuator to enable the probe to make contact with the surface. It then details the experimental results and evaluation of metal thickness measurement performed using the prototype and the climbing robot. Full article
(This article belongs to the Special Issue Advanced Robots: Design, Control and Application—3rd Edition)
Show Figures

Figure 1

19 pages, 966 KiB  
Article
Sensitivity to Instruction Strategies in Motor Learning Is Predicted by Anterior–Posterior TMS Motor Thresholds
by Michael L. Perrier, Kylee R. Graham, Jessica E. Vander Vaart, W. Richard Staines and Sean K. Meehan
Brain Sci. 2025, 15(6), 645; https://doi.org/10.3390/brainsci15060645 - 16 Jun 2025
Viewed by 576
Abstract
Background: The impact of exogenous explicit knowledge on early motor learning is highly variable and may be influenced by excitability within the procedural sensorimotor network. Recent transcranial magnetic stimulation (TMS) studies suggest that variability in interneuron recruitment by anterior–posterior (AP) currents is linked [...] Read more.
Background: The impact of exogenous explicit knowledge on early motor learning is highly variable and may be influenced by excitability within the procedural sensorimotor network. Recent transcranial magnetic stimulation (TMS) studies suggest that variability in interneuron recruitment by anterior–posterior (AP) currents is linked to differences in functional connectivity between premotor and motor regions. Objectives: This study used controllable pulse parameter TMS (cTMS) to assess how AP-sensitive interneuron excitability interacts with explicit knowledge to influence motor learning. Methods: Seventy-two participants were grouped as AP-positive (n = 36) and AP-negative groups (n = 36) based on whether an AP threshold could be obtained before reaching maximal stimulator output. A narrow (30 µs) stimulus was employed to target the longest latency corticospinal inputs selectively. Participants then practiced a continuous visuomotor tracking task and completed a delayed retention test. Half of each group received explicit knowledge of a repeated sequence embedded between random sequences. Random sequence tracking performance assessed general sensorimotor efficiency; repeated sequence performance assessed sequence-specific learning. Results: Both AP30-positive participants, with and without explicit knowledge, and the AP30-negative without explicit knowledge demonstrated similar improvements in sensorimotor efficiency driven by offline consolidation. However, AP30-negative participants given explicit instruction exhibited significantly reduced improvement in sensorimotor efficiency, primarily due to impaired offline consolidation. Conclusions: These findings suggest that individuals with low excitability in long-latency AP-sensitive inputs may be more vulnerable to interference from explicit instruction. The current results highlight the importance of accounting for individual differences in interneuron excitability when developing instructional strategies for motor learning. Full article
Show Figures

Figure 1

25 pages, 6108 KiB  
Article
Preparation and Composition Analysis of Modified Asphalt for Preparing Carbon Fiber from Coal Direct Liquefaction Asphalt
by Yong Liu, Chenguang Jiang and Miao Gao
Processes 2025, 13(6), 1869; https://doi.org/10.3390/pr13061869 - 13 Jun 2025
Viewed by 406
Abstract
The modified asphalt with high softening point was prepared by air oxidation polymerization with coal liquefied asphalt as raw material. The quality control model regarding the coking value and softening point of the product were established based on the DFSS (Design for Six [...] Read more.
The modified asphalt with high softening point was prepared by air oxidation polymerization with coal liquefied asphalt as raw material. The quality control model regarding the coking value and softening point of the product were established based on the DFSS (Design for Six Sigma) and RSM (response surface method). By means of elemental analysis, infrared, XPS, XRD, nuclear magnetic, MALDI-TOF and other characterization methods, the composition and structure characteristics of the modified asphalt were analyzed. Using the target product as raw material, general base asphalt carbon fiber was prepared by spinning, pre-oxidation and carbonization. The results show that the fitting effect of the quality control model about the coking value and softening point of the product is good, and the operating window range of the polymerization process parameters corresponding to the preparation of target product is wide. It can be found that the oxidation time and oxidation temperature has the most significant effect on the coking value and softening point of products, respectively, and all of them show a positive correlation. The dealkylation reaction and oxidative crosslinking reaction were carried out at the same time, and the bridging products of methylene bridging products, ether–oxygen bonds, carbonyl bonds, anhydride bonds and other oxygen-containing groups were generated. The properties of carbon fiber prepared with the target product are better: the tensile strength is 775 MPa, the elastic modulus is 68.6 GPa and the elongation at break is 1.13%. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

23 pages, 10598 KiB  
Article
Robotic Wound Closure: Detection and Control of Patient Motion
by Edward H. Currie, Yimin Zhao, Louis Kavoussi and Sina Y. Rabbany
Actuators 2025, 14(6), 274; https://doi.org/10.3390/act14060274 - 31 May 2025
Viewed by 885
Abstract
Physiological organ motion, such as breathing movement, presents a challenge in the development of medical robots for autonomous wound closure. The robot’s task is to determine the wound’s pose and relay magnetic fixtures near the wound edge with pre-specified accuracy. To address this [...] Read more.
Physiological organ motion, such as breathing movement, presents a challenge in the development of medical robots for autonomous wound closure. The robot’s task is to determine the wound’s pose and relay magnetic fixtures near the wound edge with pre-specified accuracy. To address this problem, a visual motion detection system (VMDS) is designed to determine the pose of a wound. To ensure precise tracking of the wound, a varying target sliding mode control (VT-SMC) scheme was developed to follow the wound movement. Experiments demonstrate excellent agreement, with less than 0.67 mm variance between the VMDS measurements, real motion for three translations, and 0.26 degrees for three rotations. The relay error is 0.86 mm under the patient motion (position: 15 mm, orientation: 5 deg) in the autonomous robotic wound closure system. The developed robot successfully achieves the necessary motion tracking, which proves sufficient for the accuracy of wound closure in clinical applicability. Full article
(This article belongs to the Special Issue Actuators in Robotic Control—3rd Edition)
Show Figures

Figure 1

15 pages, 3148 KiB  
Article
Comparison of mpMRI and 68Ga-PSMA-PET/CT in the Assessment of the Primary Tumors in Predominant Low-/Intermediate-Risk Prostate Cancer
by Moritz J. Argow, Sebastian Hupfeld, Simone A. Schenke, Sophie Neumann, Romy Damm, Johanna Vogt, Melis Guer, Jan Wuestemann, Martin Schostak, Frank Fischbach and Michael C. Kreissl
Diagnostics 2025, 15(11), 1358; https://doi.org/10.3390/diagnostics15111358 - 28 May 2025
Viewed by 614
Abstract
While multi-parametric magnetic resonance imaging (mpMRI) is known to be a specific and reliable modality for the diagnosis of non-metastatic prostate cancer (PC), positron emission tomography (PET) using 68Ga labeled ligands targeting the prostate-specific membrane antigen (PSMA) is known for its reliable [...] Read more.
While multi-parametric magnetic resonance imaging (mpMRI) is known to be a specific and reliable modality for the diagnosis of non-metastatic prostate cancer (PC), positron emission tomography (PET) using 68Ga labeled ligands targeting the prostate-specific membrane antigen (PSMA) is known for its reliable detection of prostate cancer, being the most sensitive modality for the assessment of the extra-prostatic extension of the disease and the establishment of a diagnosis, even before biopsy. Background/Objectives: Here, we compared these modalities in regards to the localization of intraprostatic cancer lesions prior to local HDR brachytherapy. Methods: A cohort of 27 patients received both mpMRI and PSMA-PET/CT. Based on 24 intraprostatic segments, two readers each scored the risk of tumor-like alteration in each imaging modality. The detectability was evaluated using receiver operating characteristic (ROC) analysis. The histopathological findings from biopsy were used as the gold standard in each segment. In addition, we applied a patient-based “congruence” concept to quantify the interobserver and intermodality agreement. Results: For the ROC analysis, we included 447 segments (19 patients), with their respective histological references. The two readers of the MRI reached an AUC of 0.770 and 0.781, respectively, with no significant difference (p = 0.75). The PET/CT readers reached an AUC of 0.684 and 0.608, respectively, with a significant difference (p < 0.001). The segment-wise intermodality comparison showed a significant superiority of MRI (AUC = 0.815) compared to PET/CT (AUC = 0.690) (p = 0.006). Via a patient-based analysis, a superiority of MRI in terms of relative agreement with the biopsy result was observed (n = 19 patients). We found congruence scores of 83% (MRI) and 76% (PET/CT, p = 0.034), respectively. Using an adjusted “near total agreement” score (adjacent segments with positive scores of 4 or 5 counted as congruent), we found an increase in the agreement, with a score of 96.5% for MRI and 92.7% for PET/CT, with significant difference (p = 0.024). Conclusions: This study suggests that in a small collective of low-/intermediate risk prostate cancer, mpMRI is superior for the detection of intraprostatic lesions as compared to PSMA-PET/CT. We also found a higher relative agreement between MRI and biopsy as compared to that for PET/CT. However, further studies including a larger number of patients and readers are necessary to draw solid conclusions. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

30 pages, 7513 KiB  
Review
A Narrative Review of Artificial Intelligence in MRI-Guided Prostate Cancer Diagnosis: Addressing Key Challenges
by Deniz Alis, Aslihan Onay, Evrim Colak, Ercan Karaarslan and Baris Bakir
Diagnostics 2025, 15(11), 1342; https://doi.org/10.3390/diagnostics15111342 - 26 May 2025
Viewed by 1101
Abstract
Background/Objectives: Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer (csPCa). However, variability in MRI-targeted diagnostic pathways arises due to factors such as patient characteristics, imaging protocols, and radiologist expertise. Artificial intelligence (AI) offers potential [...] Read more.
Background/Objectives: Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer (csPCa). However, variability in MRI-targeted diagnostic pathways arises due to factors such as patient characteristics, imaging protocols, and radiologist expertise. Artificial intelligence (AI) offers potential solutions to these challenges by enhancing diagnostic accuracy and efficiency. Methods: This narrative review explores AI techniques, particularly machine learning and deep learning, in the context of prostate cancer diagnosis. It examines their application in improving MRI scan quality, detecting artifacts, and assisting radiologists in lesion detection and interpretation. It also considers how AI helps to reduce reading time and inter-reader variability. Results: AI has demonstrated sensitivity that is generally comparable to experienced radiologists, although specificity tends to be lower, potentially increasing false-positive rates. The clinical impact of these results requires validation in larger, prospective multicenter studies. AI is effective in identifying artifacts, assessing MRI quality, and assisting in diagnostic efficiency by providing second opinions and automating lesion detection. However, variability in study methodologies, datasets, and imaging protocols can impact AI’s generalizability, limiting its broader clinical application. Conclusions: While AI shows significant promise in enhancing diagnostic accuracy and efficiency for csPCa detection, challenges remain, particularly with the generalizability of AI models. To improve AI robustness and integration into clinical practice, multicenter datasets and transparent reporting are essential. Further development, validation, and standardization are required for AI’s widespread clinical adoption. Full article
(This article belongs to the Special Issue Recent Advances in Prostate Cancer Imaging and Biopsy Techniques)
Show Figures

Figure 1

15 pages, 5722 KiB  
Article
Novel MIL-53(Fe)@C Magnetic Composite Electrode for Efficient Dechlorination of Disinfection By-Product Trichloroacetic Acid in Water Treatment
by Xiaoyan Ma, Rongbin Quan, Wenqing Cao, Weijie Zhang, Su Jiang, Jiao Feng, Jiulong Wang and Stefanos Giannakis
Water 2025, 17(9), 1309; https://doi.org/10.3390/w17091309 - 27 Apr 2025
Cited by 1 | Viewed by 504
Abstract
Electrochemical reduction is a promising strategy for the dechlorination of halogenated organic compounds, offering advantages such as enhanced electron transfer efficiency and increased hydrogen atom concentration. It has garnered significant attention for application in mitigating halogenated disinfection by-products (DBPs) in drinking water, owing [...] Read more.
Electrochemical reduction is a promising strategy for the dechlorination of halogenated organic compounds, offering advantages such as enhanced electron transfer efficiency and increased hydrogen atom concentration. It has garnered significant attention for application in mitigating halogenated disinfection by-products (DBPs) in drinking water, owing to its high efficiency and simple operation. In this study, trichloroacetic acid (TCAA), a representative DBP, was selected as the target contaminant. A novel composite cathode comprising a metal–organic framework MIL-53(Fe)@C supported on an Nd magnet (MIL-53(Fe)@C-MAG) and its dechlorination performance for TCAA were systematically investigated. The innovative aspect of this study is the magnetic attachment of the MOF catalyst to the carbonized cathode surface treated through carbonization, which fundamentally differs from conventional solvent-based adhesion methods. Compared to the bare electrode, the MIL-53(Fe)@C-MAG achieved a TCAA removal efficiency exceeding 96.03% within 8 h of contact time. The structural characterization revealed that the α-Fe0 crystalline phase serves as the primary active center within the MIL-53(Fe)@C catalyst, facilitating efficient electron transfer and TCAA degradation. The scavenger experiments revealed that TCAA reduction involves a dual pathway: direct electron transfer and atomic hydrogen generation. The modified MIL-53(Fe)@C-MAG electrode exhibited robust electrolytic performance over a broad pH range of 3–7, with TCAA removal efficiency showing a positive correlation with current density within the range of 10–50 mA/cm2. Furthermore, the electrode maintained exceptional stability, retaining more than 90% removal efficiency after five consecutive operational cycles. The versatility of the system was further validated by the rapid and efficient dechlorination of various chlorinated DBPs, demonstrating the broad applicability of the electrode. The innovative magnetic composite electrode demonstrates a significant advancement in electrochemical dechlorination technology, offering a reliable and efficient solution for the purification of drinking water contaminated with diverse halogenated DBPs. These results provide valuable insights into the development of electrolysis for dechlorination in water treatment applications. Full article
Show Figures

Figure 1

Back to TopTop