Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = magnetic resonance sounding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3367 KiB  
Article
Sound Localization Training and Induced Brain Plasticity: An fMRI Investigation
by Ranjita Kumari, Sukhan Lee, Pradeep Kumar Anand and Jitae Shin
Diagnostics 2025, 15(12), 1558; https://doi.org/10.3390/diagnostics15121558 - 18 Jun 2025
Viewed by 503
Abstract
Background/Objectives: Neuroimaging techniques have been increasingly utilized to explore neuroplasticity induced by various training regimens. Magnetic resonance imaging (MRI) enables to study these changes non-invasively. While visual and motor training have been widely studied, less is known about how auditory training affects brain [...] Read more.
Background/Objectives: Neuroimaging techniques have been increasingly utilized to explore neuroplasticity induced by various training regimens. Magnetic resonance imaging (MRI) enables to study these changes non-invasively. While visual and motor training have been widely studied, less is known about how auditory training affects brain activity. Our objective was to investigate the effects of sound localization training on brain activity and identify brain regions exhibiting significant changes in activation pre- and post-training to understand how sound localization training induces plasticity in the brain. Method: Six blindfolded participants each underwent 30-minute sound localization training sessions twice a week for three weeks. All participants completed functional MRI (fMRI) testing before and after the training. Results: fMRI scans revealed that sound localization training led to increased activation in several cortical areas, including the superior frontal gyrus, superior temporal gyrus, middle temporal gyrus, parietal lobule, precentral gyrus, and postcentral gyrus. These regions are associated with cognitive processes such as auditory processing, spatial working memory, planning, decision-making, error detection, and motor control. Conversely, a decrease in activation was observed in the left middle temporal gyrus, a region linked to language comprehension and semantic memory. Conclusions: These findings suggest that sound localization training enhances neural activity in areas involved in higher-order cognitive functions, spatial attention, and motor execution, while potentially reducing reliance on regions involved in basic sensory processing. This study provides evidence of training-induced neuroplasticity, highlighting the brain’s capacity to adapt through targeted auditory training intervention. Full article
(This article belongs to the Special Issue Brain MRI: Current Development and Applications)
Show Figures

Figure 1

12 pages, 1280 KiB  
Review
SIU-ICUD: Comprehensive Imaging in Prostate Cancer—A Focus on MRI and Micro-Ultrasound
by Cesare Saitta, Wayne G. Brisbane, Hannes Cash, Sangeet Ghai, Francesco Giganti, Adam Kinnaird, Daniel Margolis and Giovanni Lughezzani
Soc. Int. Urol. J. 2025, 6(3), 39; https://doi.org/10.3390/siuj6030039 - 7 Jun 2025
Cited by 1 | Viewed by 456
Abstract
Background/Objectives: The diagnostic approach to prostate cancer (PCa) has evolved from systematic biopsies to imaging-guided strategies that improve detection of clinically significant PCa (csPCa) while reducing overdiagnosis. Multiparametric magnetic resonance imaging (mpMRI) has emerged as the gold standard for pre-biopsy evaluation, while micro-ultrasound [...] Read more.
Background/Objectives: The diagnostic approach to prostate cancer (PCa) has evolved from systematic biopsies to imaging-guided strategies that improve detection of clinically significant PCa (csPCa) while reducing overdiagnosis. Multiparametric magnetic resonance imaging (mpMRI) has emerged as the gold standard for pre-biopsy evaluation, while micro-ultrasound (MicroUS) offers a promising alternative with real-time imaging capabilities. Methods: We examined the principles, image interpretation frameworks (Prostate Imaging Reporting and Data System (PI-RADS) and Prostate Risk Identification using Micro UltraSound (PRI-MUS)), and clinical applications of mpMRI and MicroUS, comparing their diagnostic accuracy in biopsy-naïve patients, repeat biopsy scenarios, active surveillance, and staging. Results: mpMRI improves csPCa detection, reduces unnecessary biopsies, and enhances risk stratification. Landmark studies such as PRECISION (Prostate Evaluation for Clinically Important Disease: Sampling Using Image Guidance or Not?) and PRIME (Prostate Imaging Using MRI±Contrast Enhancement) confirm its superiority over systematic biopsy. However, mpMRI remains resource-intensive, with limitations in accessibility and interpretation variability. Conversely, MicroUS, with its high-resolution real-time imaging, shows non-inferiority to mpMRI and potential advantages in magnetic resonance imaging (MRI)-ineligible patients. It improves lesion visualization and biopsy targeting, with ongoing trials such as OPTIMUM (Optimization of prostate biopsy—Micro-Ultrasound versus MRI) evaluating its standalone efficacy. Conclusions: mpMRI and MicroUS are complementary modalities in PCa diagnosis. While mpMRI remains the preferred imaging standard, MicroUS offers an alternative, particularly in patients with MRI contraindications. Combining these techniques could enhance diagnostic accuracy, reduce unnecessary interventions, and refine active surveillance strategies. Future research should focus on integrating both modalities into standardized diagnostic pathways for a more individualized approach. Full article
Show Figures

Figure 1

24 pages, 6398 KiB  
Article
Implementation of a Breast Phantom with Acoustic Properties for Ultrasonic Thermometry
by Ruth Valeria Acero Mendoza, Ivonne Bazán and Alfredo Ramírez-García
Appl. Sci. 2025, 15(10), 5275; https://doi.org/10.3390/app15105275 - 9 May 2025
Viewed by 596
Abstract
Breast cancer remains one of the leading causes of death among women globally. Early detection is critical for improving patient outcomes, making the development of accurate and efficient detection methods essential for facilitating timely treatment and enhancing patients’ quality of life. Lesion sites [...] Read more.
Breast cancer remains one of the leading causes of death among women globally. Early detection is critical for improving patient outcomes, making the development of accurate and efficient detection methods essential for facilitating timely treatment and enhancing patients’ quality of life. Lesion sites are often associated with localized temperature increases, which can be identified by characterizing thermal gradients using thermometry tools. Ultrasound-based techniques are preferred for obtaining thermal patterns due to their noninvasive, non-ionizing nature and cost-effectiveness compared to methods like magnetic resonance imaging. This study focuses on developing breast tissue models with varying acoustic properties, specifically the speed of sound across temperatures ranging from 32 °C to 36 °C in increments of 0.5 °C for ultrasonic inspection and diagnostic applications. These models simulate healthy and tumorous breast tissue, including the fat, gland, and tumor layers. Signal variations were analyzed using cross-correlation methods to assess the changes in the speed of sound as a function of temperature. The proposed methodology offers a cost-effective, rapid, and precise approach to phantom production, facilitating the detection of temperature changes in 0.5 °C intervals through cross-correlation analysis of the acquired signals. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

21 pages, 28617 KiB  
Article
The Influence of Different Moisture Contents on the Acoustic Vibration Characteristics of Wood
by Hongru Qiu, Yunqi Cui, Liangping Zhang, Tao Ding and Nanfeng Zhu
Forests 2025, 16(4), 680; https://doi.org/10.3390/f16040680 - 14 Apr 2025
Viewed by 628
Abstract
This study investigates the vibrational and acoustic properties of Sitka spruce (Picea sitchensis (Bong.) Carr.) and Indian rosewood (Dalbergia latifolia Roxb.), two common musical instrument woods, at moisture contents of 2%, 7%, and 12%. The specimens with dimensions of 400mm (longitudinal) [...] Read more.
This study investigates the vibrational and acoustic properties of Sitka spruce (Picea sitchensis (Bong.) Carr.) and Indian rosewood (Dalbergia latifolia Roxb.), two common musical instrument woods, at moisture contents of 2%, 7%, and 12%. The specimens with dimensions of 400mm (longitudinal) × 25 mm (radial) × 10 mm (tangential) were tested under cantilever beam conditions using non-contact magnetic field excitation to generate sinusoidal and pulse signals. Vibration data were collected via acceleration sensors and FFT analyzers. The test method was based on ASTM D6874-12 standard. Results indicate that increasing moisture content reduces acoustic vibration characteristics, with hardwoods exhibiting higher declines than softwoods. From 2% to 12% moisture content, the first-order sound radiation quality factor of Sitka spruce and Indian rosewood decreased by 15.41% and 15.57%, respectively, while the sound conversion rate declined by 41.91% and 43.21%. Increased moisture content lowers first-order and second-order resonance frequencies, amplitude ratios, dynamic elastic modulus, vibration propagation velocity, acoustic radiation quality factor, and acoustic conversion efficiency, while increasing acoustic impedance and the loss factor. With excitation frequency increases from 100 Hz to 1500 Hz, vibration propagation velocity rises slightly, while the loss factor declines. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

12 pages, 949 KiB  
Article
Reducing Patient Movement During Magnetic Resonance Imaging: A Case Study
by Valentina Edelman, Hadas Chassidim and Irina Rabaev
Electronics 2025, 14(4), 668; https://doi.org/10.3390/electronics14040668 - 9 Feb 2025
Viewed by 780
Abstract
Magnetic resonance imaging (MRI) is a highly informative diagnostic method; however, its quality heavily depends on the patient’s immobility. Even minimal movements, such as breathing, can cause artifacts that complicate image interpretation, not to mention more significant movements, such as twitching or shivering. [...] Read more.
Magnetic resonance imaging (MRI) is a highly informative diagnostic method; however, its quality heavily depends on the patient’s immobility. Even minimal movements, such as breathing, can cause artifacts that complicate image interpretation, not to mention more significant movements, such as twitching or shivering. Given the high cost of the procedure, repeated scanning is undesirable. The aim of this study was to prepare patients for MRI procedures using specialized training software designed to minimize involuntary movements and improve diagnostic quality. The software tracked participants’ movements in an MRI simulator and reproduced characteristic scanning sounds. The Farnebäck optical flow algorithm detected even the slightest movements captured by the camera, allowing for the evaluation of movements during training sessions and improving patient readiness for actual scanning. A pilot study conducted on a group of 10 students aged 21–27 years demonstrated a significant reduction in the average number of movements during testing—from 27.7 in the first test to 8.3 in the second, corresponding to an average decrease of 19.4 movements. Additionally, two participants showed a noticeable reduction in anxiety levels after the first test, which likely contributed to the decrease in movements, emphasizing the importance of psychological preparation in enhancing training effectiveness. The study results suggest potential improvements in the quality of diagnostic images, which can increase their diagnostic value and enhance patient comfort during actual scanning, reducing the likelihood of repeated procedures. Full article
Show Figures

Figure 1

9 pages, 206 KiB  
Review
Brain Health in Neuroradiology
by Karl-Olof Lövblad, Isabel Wanke, Daniele Botta, Felix T. Kurz, Roland Wiest, Daniel Rüfenacht and Luca Remonda
Clin. Transl. Neurosci. 2025, 9(1), 1; https://doi.org/10.3390/ctn9010001 - 31 Dec 2024
Viewed by 1190
Abstract
Neuroradiology, as a modern branch of the neurosciences and radiological sciences, has an impact on global health, particularly on brain health. On the one hand, neuroradiology directly impacts diseases of the nervous system, such as stroke and inflammatory diseases, by providing an all-in-one [...] Read more.
Neuroradiology, as a modern branch of the neurosciences and radiological sciences, has an impact on global health, particularly on brain health. On the one hand, neuroradiology directly impacts diseases of the nervous system, such as stroke and inflammatory diseases, by providing an all-in-one package combining imaging, diagnosis, treatment, and follow-up. This has been impacted by the continuous evolution over the last decades of both diagnostic and interventional tools in parallel: this was the case in stroke, where the endovascular treatment was followed closely by developments in fast MRI techniques and multi-slice CT imaging. Additionally, inflammatory diseases of the brain, as well as tumors of the central nervous system, can be imaged and localized in order to set in place both an early diagnosis and initiate treatment. Neurodegenerative diseases such as Alzheimer’s disease, in which treatment options are appearing on the horizon, also benefit from the use of modern neuroimaging techniques. On the other hand, neuroradiology plays an important role in the prevention and prediction of brain diseases and helps in building up the so-called digital twin, often from birth till late in life. Additionally, the practice of neuroradiology itself is evolving to not only improve patient health but also the health of the practitioners of neuroradiology themselves. By improving the overall work environment also, neuroradiologists will be working under better conditions and will suffer less fatigue and burn-out, thereby providing better service to patients and population. By using less radiation for diagnostic tests and shifting to techniques that rely more and more on either magnetic resonance or ultra-sound techniques, the radiation load on the population and on the neuroradiologists will decrease. Furthermore, using less contrast, such as gadolinium, has been shown to result in fewer deposits in the brains of patients, as well as less pollution at the ocean level, thus contributing to general well-being. Additionally, the implementation and use of artificial intelligence at many levels of the diagnostic and treatment chain will be beneficial to patients and physicians. In this paper, we discuss the place and potential not just of the techniques but of neuroradiology and the neuroradiologist as promoters of brain health and thus global health. Full article
(This article belongs to the Special Issue Brain Health)
13 pages, 7332 KiB  
Article
Study on the Influence of Wind Load on the Safety of Magnetic Adsorption Wall-Climbing Inspection Robot for Gantry Crane
by Jun Liu, Chaoyu Xie, Yongsheng Yang and Xiaoxi Wan
J. Mar. Sci. Eng. 2024, 12(11), 2102; https://doi.org/10.3390/jmse12112102 - 20 Nov 2024
Viewed by 911
Abstract
The maintenance of the surface of steel structures is crucial for ensuring the quality of shipbuilding cranes. Various types of wall-climbing robots have been proposed for inspecting diverse structures, including ships and offshore installations. Given that these robots often operate in outdoor environments, [...] Read more.
The maintenance of the surface of steel structures is crucial for ensuring the quality of shipbuilding cranes. Various types of wall-climbing robots have been proposed for inspecting diverse structures, including ships and offshore installations. Given that these robots often operate in outdoor environments, their performance is significantly influenced by wind conditions. Consequently, understanding the impact of wind loads on these robots is essential for developing structurally sound designs. In this study, SolidWorks software was utilized to model both the wall-climbing robot and crane, while numerical simulations were conducted to investigate the aerodynamic performance of the magnetic wall-climbing inspection robot under wind load. Subsequently, a MATLAB program was developed to simulate both the time history and spectrum of wind speed affecting the wall-climbing inspection robot. The resulting wind speed time-history curve was analyzed using a time-history analysis method to simulate wind pressure effects. Finally, modal analysis was performed to determine the natural frequency and vibration modes of the frame in order to ensure dynamic stability for the robot. The analysis revealed that wind pressure predominantly concentrates on the front section of the vehicle body, with significant eddy currents observed on its windward side, leeward side, and top surface. Following optimization efforts on the robot’s structure resulted in a reduction in vortex formation; consequently, compared to pre-optimization conditions during pulsating wind simulations, there was a 99.19% decrease in induced vibration displacement within the optimized inspection robot body. Modal analysis indicated substantial differences between the first six non-rigid natural frequencies of this vehicle body and those associated with its servo motor frequencies—indicating no risk of resonance occurring. This study employs finite element analysis techniques to assess stability under varying wind loads while verifying structural safety for this wall-climbing inspection robot. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 24301 KiB  
Article
Hydrodynamic Model of the Area of the Żelazny Most Mining Waste Storage Facility to Reconstruct the Migration of Saline Groundwater
by Jacek Gurwin, Marek Wcisło, Stanisław Staśko, Sebastian Buczyński, Magdalena Modelska, Tomasz Olichwer and Robert Tarka
Water 2024, 16(17), 2431; https://doi.org/10.3390/w16172431 - 28 Aug 2024
Cited by 1 | Viewed by 1193
Abstract
This paper presents the construction of a numerical three-dimensional model of the area of the Żelazny Most Mining Waste Storage Facility (MWSF). In the study area, the difficult geological conditions associated with glaciotectonics are accompanied by a complex hydrotechnical system of sediment deposition [...] Read more.
This paper presents the construction of a numerical three-dimensional model of the area of the Żelazny Most Mining Waste Storage Facility (MWSF). In the study area, the difficult geological conditions associated with glaciotectonics are accompanied by a complex hydrotechnical system of sediment deposition and sedimentary water drainage. In order to effectively reflect the water flow paths, a detailed schematization was carried out, using 700,000 boreholes and more than 300 hydrogeological cross-sections. In addition, numerous drainage sections, streams, and ditches were included to reliably assess the amount of saline water entering the underlying aquifers. This research was supported by magnetic resonance sounding (MRS) studies of the reservoir’s sediments. The MWSF is currently being expanded, so the work primarily focuses on illustrating changes in the hydrodynamic field resulting from the inclusion of the new southern section. Models of similar facilities have been implemented before, but in the current one, the combination of meticulous analysis of the hydro-structural system, the water balance, a significant amount of data, the size of the facility, and the use of an unstructured discretization grid in the calculations is undoubtedly innovative and will be an important contribution to the development of analogous solutions around the world. Full article
(This article belongs to the Special Issue Groundwater Monitoring, Assessment and Modelling)
Show Figures

Figure 1

25 pages, 6808 KiB  
Article
Advancing the Understanding of Complex Piezometric Information: A Methodological Approach Integrating Long-Term Piezometry, Surface Nuclear Magnetic Resonance, and Fracture Analysis Using Insights from the “Calcaires du Barrois” Series, France
by Mathieu Bertrand, Catherine Bertrand, Naomi Mazzilli, Sylvain Gigleux, Sophie Denimal, Rémi Valois, Lise-Marie Girod, Guillaume Cinkus, Valentine Busquet and Konstantinos Chalikakis
Water 2024, 16(12), 1700; https://doi.org/10.3390/w16121700 - 14 Jun 2024
Cited by 1 | Viewed by 1279
Abstract
This study aims to analyze spatio-temporal piezometric data and integrate them with geological, geotechnical, and geophysical data to enhance their interpretation. The research focuses on a site located in the Meuse and Haute-Marne departments of France, which has been under investigation since 1994 [...] Read more.
This study aims to analyze spatio-temporal piezometric data and integrate them with geological, geotechnical, and geophysical data to enhance their interpretation. The research focuses on a site located in the Meuse and Haute-Marne departments of France, which has been under investigation since 1994 as part of the surface facilities characterization for the Meuse-Haute-Marne underground laboratory and the CIGEO (Centre Industriel de stockage Géologique) Andra project. These investigations span different spatial and temporal scales. We observed the contribution of water masses associated with external forcing and identified two types of aquifer responses: a rapid response to rainfall events when fractures are well-connected, and minor reactivity at the matrix level. Additionally, we demonstrated that the matrix compartment can be finely characterized through a combined interpretation of piezometric response analysis, fracture analysis, and surface nuclear magnetic resonance (SNMR) soundings. The methodology developed in this project offers an improved understanding of karst piezometry and/or unsaturated zone extension, which is essential for comprehend ding flow dynamics and better constraining the functioning of karst aquifers. Furthermore, this site serves as an ideal workshop for studying flow in fractured media, providing valuable insights into hydrodynamic behavior in complex subsurface environments. Full article
Show Figures

Figure 1

13 pages, 3683 KiB  
Article
Sound-Evoked Neural Activity in Normal-Hearing Tinnitus: Effects of Frequency and Stimulated Ear Side
by Shahin Safazadeh, Marc Thioux, Remco J. Renken and Pim van Dijk
Brain Sci. 2024, 14(6), 544; https://doi.org/10.3390/brainsci14060544 - 27 May 2024
Cited by 3 | Viewed by 2223
Abstract
Tinnitus is a common phantom auditory percept believed to be related to plastic changes in the brain due to hearing loss. However, tinnitus can also occur in the absence of any clinical hearing loss. In this case, since there is no hearing loss, [...] Read more.
Tinnitus is a common phantom auditory percept believed to be related to plastic changes in the brain due to hearing loss. However, tinnitus can also occur in the absence of any clinical hearing loss. In this case, since there is no hearing loss, the mechanisms that drive plastic changes remain largely enigmatic. Previous studies showed subtle differences in sound-evoked brain activity associated with tinnitus in subjects with tinnitus and otherwise normal hearing, but the results are not consistent across studies. Here, we aimed to investigate these differences using monaural rather than binaural stimuli. Sound-evoked responses were measured using functional magnetic resonance imaging (MRI) in participants with and without tinnitus. All participants had clinically normal audiograms. The stimuli were pure tones with frequencies between 353 and 8000 Hz, presented monaurally. A Principal Component Analysis (PCA) of the response in the auditory cortex revealed no difference in tonotopic organization, which confirmed earlier studies. A GLM analysis showed hyperactivity in the lateral areas of the bilateral auditory cortex. Consistent with the tonotopic map, this hyperactivity mainly occurred in response to low stimulus frequencies. This may be related to hyperacusis. Furthermore, there was an interaction between stimulation side and tinnitus in the parahippocampus. This may reflect an interference between tinnitus and spatial orientation. Full article
Show Figures

Figure 1

18 pages, 2898 KiB  
Review
Dual Representation of the Auditory Space
by Stephanie Clarke, Sandra Da Costa and Sonia Crottaz-Herbette
Brain Sci. 2024, 14(6), 535; https://doi.org/10.3390/brainsci14060535 - 24 May 2024
Cited by 1 | Viewed by 1599
Abstract
Auditory spatial cues contribute to two distinct functions, of which one leads to explicit localization of sound sources and the other provides a location-linked representation of sound objects. Behavioral and imaging studies demonstrated right-hemispheric dominance for explicit sound localization. An early clinical case [...] Read more.
Auditory spatial cues contribute to two distinct functions, of which one leads to explicit localization of sound sources and the other provides a location-linked representation of sound objects. Behavioral and imaging studies demonstrated right-hemispheric dominance for explicit sound localization. An early clinical case study documented the dissociation between the explicit sound localizations, which was heavily impaired, and fully preserved use of spatial cues for sound object segregation. The latter involves location-linked encoding of sound objects. We review here evidence pertaining to brain regions involved in location-linked representation of sound objects. Auditory evoked potential (AEP) and functional magnetic resonance imaging (fMRI) studies investigated this aspect by comparing encoding of individual sound objects, which changed their locations or remained stationary. Systematic search identified 1 AEP and 12 fMRI studies. Together with studies of anatomical correlates of impaired of spatial-cue-based sound object segregation after focal brain lesions, the present evidence indicates that the location-linked representation of sound objects involves strongly the left hemisphere and to a lesser degree the right hemisphere. Location-linked encoding of sound objects is present in several early-stage auditory areas and in the specialized temporal voice area. In these regions, emotional valence benefits from location-linked encoding as well. Full article
(This article belongs to the Special Issue Recent Advances in Brain Lateralization)
Show Figures

Figure 1

10 pages, 2881 KiB  
Case Report
Diffusion-Weighted Magnetic Resonance Imaging (dMRI) and Cochlear Implant Outcomes in Axonal Auditory Neuropathy: A Case Report
by Gary Rance, Raoul Wills, Andrew Kornberg and Julien Zanin
J. Clin. Med. 2024, 13(11), 3072; https://doi.org/10.3390/jcm13113072 - 24 May 2024
Cited by 1 | Viewed by 1576
Abstract
Background: Progressive auditory dysfunction is common in patients with generalized neurodegenerative conditions, but clinicians currently lack the diagnostic tools to determine the location/degree of the pathology and, hence, to provide appropriate intervention. In this study, we present the white-matter microstructure measurements derived from [...] Read more.
Background: Progressive auditory dysfunction is common in patients with generalized neurodegenerative conditions, but clinicians currently lack the diagnostic tools to determine the location/degree of the pathology and, hence, to provide appropriate intervention. In this study, we present the white-matter microstructure measurements derived from a novel diffusion-weighted magnetic resonance imaging (dMRI) technique in a patient with axonal auditory neuropathy and consider the findings in relation to the auditory intervention outcomes. Methods: We tracked the hearing changes in an adolescent with Riboflavin Transporter Deficiency (Type 2), evaluating the sound detection/discrimination, auditory evoked potentials, and both structural- and diffusion-weighted MRI findings over a 3-year period. In addition, we explored the effect of bilateral cochlear implantation in this individual. Results: Between the ages of 15 years and 18 years, the patient showed a complete loss of functional hearing ability. The auditory brainstem response testing indicated an auditory neuropathy with evidence of normal cochlear function but disrupted auditory neural activity. While three structural MRI assessments across this period showed a clinically normal cochleovestibular anatomy, the dMRI evaluation revealed a significant loss of fiber density consistent with axonopathy. The subsequent cochlear implant function was affected with the high levels of current required to elicit auditory sensations and concomitant vestibular and facial nerve stimulation issues. Conclusions: The case study demonstrates the ability of dMRI technologies to identify the subtle white-matter microstructure changes in the auditory pathway, which may disrupt the neural function in patients with auditory axonopathy. Full article
(This article belongs to the Special Issue The Journey of Hearing and Hearing-Related Disorders over Time)
Show Figures

Figure 1

16 pages, 9165 KiB  
Article
Envelope Extraction Algorithm for Magnetic Resonance Sounding Signals Based on Adaptive Gaussian Filters
by Baofeng Tian, Haoyu Duan, Yue-Der Lin and Hui Luan
Remote Sens. 2024, 16(10), 1713; https://doi.org/10.3390/rs16101713 - 11 May 2024
Cited by 1 | Viewed by 1816
Abstract
Magnetic resonance sounding is a geophysical method for quantitatively determining the state for groundwater storage that has gained international attention in recent years. However, the practical acquisition of magnetic resonance sounding signals, which are on the nanovolt scale, is susceptible to various types [...] Read more.
Magnetic resonance sounding is a geophysical method for quantitatively determining the state for groundwater storage that has gained international attention in recent years. However, the practical acquisition of magnetic resonance sounding signals, which are on the nanovolt scale, is susceptible to various types of interference, such as power-line harmonics, random noise, and spike noise. Such interference can degrade the quality of magnetic resonance sounding signals and, in severe cases, be completely drowned out by noise. This paper introduces an adaptive Gaussian filtering algorithm that is well-suited for handling intricate noise signals due to its adaptive solving characteristics and iterative sifting approach. Notably, the algorithm can process signals without relying on prior knowledge. The adaptive Gaussian filtering algorithm is applied for the envelope extraction of noisy magnetic resonance sounding signals, and the reliability and effectiveness of the method are rigorously validated. The simulation results reveal that, even under strong noise interference (with original signal-to-noise ratios ranging from −7 dB to −25 dB), the magnetic resonance sounding signal obtained after algorithmic processing is compared to the ideal signal, with 16 sets of data statistics, and the algorithm ensures an initial amplitude uncertainty within 4nV and restricts the uncertainty of the relaxation time within a 6 ms range. The signal-to-noise ratio can be boosted by up to 53 dB. The comparative assessments with classical algorithms such as empirical mode decomposition and the harmonic modeling method confirm the superior performance of the adaptive Gaussian filtering algorithm. The processing of the field data also fully proved the practical application effects of the algorithm. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

23 pages, 10705 KiB  
Article
Two Separate Brain Networks for Predicting Trainability and Tracking Training-Related Plasticity in Working Dogs
by Gopikrishna Deshpande, Sinan Zhao, Paul Waggoner, Ronald Beyers, Edward Morrison, Nguyen Huynh, Vitaly Vodyanoy, Thomas S. Denney and Jeffrey S. Katz
Animals 2024, 14(7), 1082; https://doi.org/10.3390/ani14071082 - 2 Apr 2024
Cited by 2 | Viewed by 3160
Abstract
Functional brain connectivity based on resting-state functional magnetic resonance imaging (fMRI) has been shown to be correlated with human personality and behavior. In this study, we sought to know whether capabilities and traits in dogs can be predicted from their resting-state connectivity, as [...] Read more.
Functional brain connectivity based on resting-state functional magnetic resonance imaging (fMRI) has been shown to be correlated with human personality and behavior. In this study, we sought to know whether capabilities and traits in dogs can be predicted from their resting-state connectivity, as in humans. We trained awake dogs to keep their head still inside a 3T MRI scanner while resting-state fMRI data was acquired. Canine behavior was characterized by an integrated behavioral score capturing their hunting, retrieving, and environmental soundness. Functional scans and behavioral measures were acquired at three different time points across detector dog training. The first time point (TP1) was prior to the dogs entering formal working detector dog training. The second time point (TP2) was soon after formal detector dog training. The third time point (TP3) was three months’ post detector dog training while the dogs were engaged in a program of maintenance training for detection work. We hypothesized that the correlation between resting-state FC in the dog brain and behavior measures would significantly change during their detection training process (from TP1 to TP2) and would maintain for the subsequent several months of detection work (from TP2 to TP3). To further study the resting-state FC features that can predict the success of training, dogs at TP1 were divided into a successful group and a non-successful group. We observed a core brain network which showed relatively stable (with respect to time) patterns of interaction that were significantly stronger in successful detector dogs compared to failures and whose connectivity strength at the first time point predicted whether a given dog was eventually successful in becoming a detector dog. A second ontologically based flexible peripheral network was observed whose changes in connectivity strength with detection training tracked corresponding changes in behavior over the training program. Comparing dog and human brains, the functional connectivity between the brain stem and the frontal cortex in dogs corresponded to that between the locus coeruleus and left middle frontal gyrus in humans, suggestive of a shared mechanism for learning and retrieval of odors. Overall, the findings point toward the influence of phylogeny and ontogeny in dogs producing two dissociable functional neural networks. Full article
Show Figures

Figure 1

13 pages, 923 KiB  
Review
Future Directions in the Assessment of Axillary Lymph Nodes in Patients with Breast Cancer
by Filippo Pesapane, Luciano Mariano, Francesca Magnoni, Anna Rotili, Davide Pupo, Luca Nicosia, Anna Carla Bozzini, Silvia Penco, Antuono Latronico, Maria Pizzamiglio, Giovanni Corso and Enrico Cassano
Medicina 2023, 59(9), 1544; https://doi.org/10.3390/medicina59091544 - 25 Aug 2023
Cited by 5 | Viewed by 3619
Abstract
Background and Objectives: Breast cancer (BC) is a leading cause of morbidity and mortality worldwide, and accurate assessment of axillary lymph nodes (ALNs) is crucial for patient management and outcomes. We aim to summarize the current state of ALN assessment techniques in [...] Read more.
Background and Objectives: Breast cancer (BC) is a leading cause of morbidity and mortality worldwide, and accurate assessment of axillary lymph nodes (ALNs) is crucial for patient management and outcomes. We aim to summarize the current state of ALN assessment techniques in BC and provide insights into future directions. Materials and Methods: This review discusses various imaging techniques used for ALN evaluation, including ultrasound, computed tomography, magnetic resonance imaging, and positron emission tomography. It highlights advancements in these techniques and their potential to improve diagnostic accuracy. The review also examines landmark clinical trials that have influenced axillary management, such as the Z0011 trial and the IBCSG 23-01 trial. The role of artificial intelligence (AI), specifically deep learning algorithms, in improving ALN assessment is examined. Results: The review outlines the key findings of these trials, which demonstrated the feasibility of avoiding axillary lymph node dissection (ALND) in certain patient populations with low sentinel lymph node (SLN) burden. It also discusses ongoing trials, including the SOUND trial, which investigates the use of axillary ultrasound to identify patients who can safely avoid sentinel lymph node biopsy (SLNB). Furthermore, the potential of emerging techniques and the integration of AI in enhancing ALN assessment accuracy are presented. Conclusions: The review concludes that advancements in ALN assessment techniques have the potential to improve patient outcomes by reducing surgical complications while maintaining accurate disease staging. However, challenges such as standardization of imaging protocols and interpretation criteria need to be addressed. Future research should focus on large-scale clinical trials to validate emerging techniques and establish their efficacy and cost-effectiveness. Over-all, this review provides valuable insights into the current status and future directions of ALN assessment in BC, highlighting opportunities for improving patient care. Full article
(This article belongs to the Special Issue Recent Advances in Breast Cancer Screening)
Show Figures

Figure 1

Back to TopTop