Brain Health in Neuroradiology
Abstract
:1. Introduction
2. Technological Aspects
- (A)
- Computed tomography: Basically a rotating X-ray unit, CT has known immense advances since its early days, when the EMI-scanner was developed by G. Hounsfield [9]. With the development, at first, of faster rotating CT units and then of spiral scanning, allowing the acquisition of volumes [10] and, today, of multi-detector scanners and of scanners able to acquire images at various energies, as well as photon counting CTs [11], the technique has become very powerful and fast. Due to its speed and capacity to detect absorption of X-rays by an organ, it is very suited to emergency situations, where blood (containing iron) will be easily detected and bone alterations can be seen easily. CT can also provide examinations of the blood vessels with CT angiography, which is very helpful in the setting of stroke or hemorrhage, for example. CT is, however, associated with radiation, which has increased with its usage over the last few decades.
- (B)
- Magnetic resonance imaging: Magnetic resonance Imaging is a technique that relies on the use of scanners capable of creating a very high local magnetic field; radiofrequency pulses are sent that then are recuperated in order to create an image. This technique has the immense advantage of allowing even better multi-modality imaging due to its capacity to perform a series of sequences that will detect various types of information on the organ being examined: T1 and T2 images will demonstrate anatomy well, images of diffusion (DWI for diffusion weighted imaging) will detect water motion and are used in stroke and a variety of diseases [12], or perfusion using contrast [13] or not will demonstrate hemodynamic changes; it is also possible to demonstrate alterations in brain physiology by using for example spectroscopic MRI or even performing images using sodium instead of water as the molecule being investigated. Advanced imaging techniques such as fMRI, perfusion MRI, and diffusion tensor MRI play an increasingly important role in the management of patients with brain diseases but have the distinct problem of increasing examination time and post-processing needs that may make them less ideal for the global evaluation of large patient cohorts. These are only a few of the reasons why MRI has become the technique of choice to investigate the brain both clinically and for research purposes.
- (C)
- Neuro-angiography: Angiographic techniques that were the gold-standard techniques for examining the brain before the advent of CT and MRI have remained important techniques in modern neuroradiology. The focus has shifted towards vascular interventions that have now been made feasible by the development of modern catheterization techniques, as well as devices for treating aneurysms, stroke, and more complex malformations [14].
- (D)
- Other techniques: Nuclear medicine techniques such as PET and SPECT, while not directly in the domain of neuroradiology, have always been important for the investigation of the brain; their use in neuro-degenerative diseases and in neuro-oncology has increased over the last few decades, especially with the development of combined techniques, i.e., PET-CT and PET-MRI, in the interpretation of which neuroradiologists are increasingly involved. Indeed, both of these examinations provide the high spatial resolution of either CT and MRI but also have the capacity to detect alterations in local physiology detected by using various specific brain tracers for PET or even SPECT. Ultrasonic examination of the carotids, while an important established adjunct for monitoring patients with, for example, chronic cerebrovascular disease, is a technique mostly not in the hands of neuroradiologists [15].
3. Neuroradiology and Population Health
4. Neuroradiology and Prevention of Brain Diseases
5. Neuroradiology: Illuminating the Path to Public Brain Health
6. Neuroradiology as a Polluter
7. Neuroradiology Enhances Brain Health for Its Practitioners
8. Discussion
9. Conclusions
10. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Valavanis, A. The birth and evoluation of neuroradiology. Neuroradiol. Helv. 2003, 9, 8–11. [Google Scholar]
- Lövblad, K.-O. Neuroradiology and neuroimaging. J. Neuroradiol. 2014, 41, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Lövblad, K.-O. Highly specialized neuroradiology. J. Neuroradiol. 2015, 42, 191–192. [Google Scholar] [CrossRef]
- Lövblad, K.-O. Pereira VM Diagnostic neuroradiology: Ready for the neuro-interventional age? World J. Radiol. 2012, 4, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Cen, S.; Gebregziabher, M.; Moazami, S.; Azevedo, C.; Pelletier, D. Toward Precision Medicine Using a “Digital Twin” Approach: Modeling the Onset of Disease-Specific Brain Atrophy in Individuals with Multiple Sclerosis. Res. Sq. 2023, 13, 16279. [Google Scholar] [CrossRef] [PubMed]
- Sarris, A.L.; Sidiropoulos, E.; Paraskevopoulos, E.; Bamidis, P. Towards a Digital Twin in Human Brain: Brain Tumor Detection Using K-Means. Stud. Health Technol. Inform. 2023, 302, 1052–1056. [Google Scholar] [CrossRef] [PubMed]
- Lövblad, K.-O. Neuroradiology provides personalized medicine today! Clin. Transl. Neurosci. 2017, 1, 7. [Google Scholar] [CrossRef]
- Valavanis, A. Development of Neuroradiology in Switzerland. Neuroradiol. Helv. 2003, 9, 12–17. [Google Scholar]
- Hounsfield, G.N. Computerized transverse axial scanning (tomography): Part 1. Description of system. Br. J. Radiol. 1973, 46, 1016–1022. [Google Scholar] [CrossRef]
- Kalender, W.A.; Seissler, W.; Klotz, E.; Vock, P. Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 1990, 176, 181–183. [Google Scholar] [CrossRef] [PubMed]
- Hagar, M.T.; Schlett, C.L.; Oechsner, T.; Varga-Szemes, A.; Emrich, T.; Chen, X.Y.; Kravchenko, D.; Tremamunno, G.; Vecsey-Nagy, M.; Molina-Fuentes, M.F.; et al. Photon-Counting Detector CT: Advances and Clinical Applications in Cardiovascular Imaging. Fortschr. Röntgenstr. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Le Bihan, D.; Breton, E.; Lallemand, D.; Grenier, P.; Cabanis, E.; Laval-Jeantet, M. MR Imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Radiology 1986, 161, 401–407. [Google Scholar] [CrossRef]
- Rosen, B.R.; Belliveau, J.W.; Chien, D. Perfusion imaging by nuclear magnetic resonance. Magn. Reson. Q. 1989, 5, 263–281. [Google Scholar] [PubMed]
- Eskridge, J.M. Interventional neuroradiology. Radiology 1989, 172, 991–1006. [Google Scholar] [CrossRef] [PubMed]
- Lovblad, K.O.; Bouchez, L.; Altrichter, S.; Ratib, O.; Zaidi, H.; Vargas, M.I. PET CT in Neuroradiology. Clin. Trans. Neurosci. 2019, 3, 1–7. [Google Scholar] [CrossRef]
- Schlaug, G.; Benfield, A.; Baird, A.E.; Siewert, B.; Lövblad, K.O.; Parker, R.A.; Edelman, R.R.; Warach, S. The ischemic penumbra: Operationally defined by diffusion and perfusion MRI. Neurology 1999, 53, 1528–1537. [Google Scholar] [CrossRef] [PubMed]
- Manz, D.; Georgy, M.; Beall, D.P.; Baroud, G.; Georgy, B.A.; Muto, M. Vertebral augmentation with spinal implants: Third-generation vertebroplasty. Neuroradiology 2020, 62, 1607–1615. [Google Scholar] [CrossRef]
- Pereira, V.M.; Yilmaz, H.; Pellaton, A.; Slater, L.A.; Krings, T.; Lovblad, K.O. Current status of mechanical thrombectomy for acute stroke treatment. J. Neuroradiol. 2015, 42, 12–20. [Google Scholar] [CrossRef]
- Jovin, T.G.; Chamorro, A.; Cobo, E.; De Miquel, M.A.; Molina, C.A.; Rovira, A.; Román, L.S.; Serena, J.; Abilleira, S.; Ribo, M.; et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N. Engl. J. Med. 2015, 372, 2296–2306. [Google Scholar] [CrossRef]
- Saver, J.L.; Goyal, M.; Bonafe, A.; Diener, H.-C.; Levy, E.I.; Pereira, V.M.; Albers, G.W.; Cognard, C.; Cohen, D.J.; Hacke, W.; et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N. Engl. J. Med. 2015, 372, 2285–2295. [Google Scholar] [PubMed]
- Campbell, B.C.; Mitchell, P.J.; Kleinig, T.J.; Dewey, H.M.; Churilov, L.; Yassi, N.; Yan, B.; Dowling, R.J.; Parsons, M.W.; Oxley, T.J.; et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N. Engl. J. Med. 2015, 372, 1009–1018. [Google Scholar] [CrossRef]
- Goyal, M.; Demchuk, A.M.; Menon, B.K.; Eesa, M.; Rempel, J.L.; Thornton, J.; Roy, D.; Jovin, T.G.; Willinsky, R.A.; Sapkota, B.L.; et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. 2015, 372, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
- Bouchez, L.; Lovblad, K.O.; Kulcsar, Z. Pretherapeutic characterization of the clot in acute stroke. J. Neuroradiol. 2016, 43, 163–166. [Google Scholar] [CrossRef]
- Lövblad, K.O.; Bouchez, L.; Altrichter, A.; Ratib, O.; Machi, P.; Vargas, M.I.; Sztajzel, R. The Role of Advanced Neuroimaging Techniques in Ischemic Stroke Prevention. Clin. Transl. Neurosci. 2019, 3, 18. [Google Scholar] [CrossRef]
- Wanke, I.; Bijlenga, P.; Rufenacht, D. Neuroradiologie et neurochirurgie: Anévrysme intracrânien de découverte fortuite. Swiss Med. Forum 2017, 17. [Google Scholar] [CrossRef]
- Frisoni, G.B.; Festari, C.; Massa, F.; Ramusino, M.C.; Orini, S.; Aarsland, D.; Agosta, F.; Babiloni, C.; Borroni, B.; Cappa, S.F.; et al. European intersocietal recommendations for the biomarker-based diagnosis of neurocognitive disorders. Lancet Neurol. 2024, 23, 302–312. [Google Scholar] [CrossRef]
- Botta, D.; Lövblad, K.O. Neuroimaging and Neurodegeneration. Neurodegener. Dis. 2023, 23, 53–55. [Google Scholar] [CrossRef] [PubMed]
- Eddelman, R.R.; Warach, S. Magnetic Resonance Imaging (1). N. Engl. J. Med. 1993, 328, 708–716. [Google Scholar] [CrossRef]
- Edelman, R.R.; Warach, S. Magnetic resonance imaging (2). N. Engl. J. Med. 1993, 328, 785–791. [Google Scholar] [CrossRef]
- Mehdizade, A.; Somon, T.; Wetzel, S.; Kelekis, A.; Martin, J.B.; Scheidegger, J.R.; Sztajzel, R.; Lovblad, K.O.; Ruefenacht, D.A.; Delavelle, J. Diffusion weighted MR imaging on a low-field open magnet. Comparison with findings at 1.5T in 18 patients with cerebral ischemia. J. Neuroradiol. 2003, 30, 25–30. [Google Scholar] [PubMed]
- Lövblad, K.O.; Remonda, L.; Heid, O.; Schneider, J.; Gönner, F.; Schroth, G. Clinical single-shot diffusion-weighted MRI of the human brain on a short-bore medium-field imager. Neuroradiology 1999, 41, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Edjlali-Goujon, M.; Lövblad, K.O. The future combines high and low-field MRI. J. Neuroradiol. 2023, 50, 463. [Google Scholar] [CrossRef] [PubMed]
- Mehdizade, A.; Lovblad, K.O.; Wilhelm, K.E.; Somon, T.; Wetzel, S.G.; Kelekis, A.D.; Yilmaz, H.H.; Abdo, G.; Martin, J.B.; Viera, J.M.; et al. Radiation dose in vertebroplasty. Neuroradiology 2004, 46, 243–245. [Google Scholar] [CrossRef] [PubMed]
- Rovira, A.; Ben Salem, D.; Geraldo, A.F.; Cappelle, S.; del Poggio, A.; Cocozza, S.; Saatci, I.; Zlatareva, D.; Lojo, S.; Quattrocchi, C.C.; et al. Go Green in Neuroradiology: Towards reducing the environmental impact of its practice. Neuroradiology 2024, 66, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Radbruch, A. Gadolinium Deposition in the Brain: We Need to Differentiate between Chelated and Dechelated Gadolinium. Radiology 2018, 288, 434–435. [Google Scholar] [CrossRef] [PubMed]
- Radbruch, A. The Gadolinium Deposition Debate and the Streetlight Effect: Should We Really Focus on the Brain? Radiology 2020, 297, 417–418. [Google Scholar] [CrossRef]
- Hofmeister, J.; Bernava, G.; Rosi, A.; Vargas, M.I.; Carrera, E.; Montet, X.; Burgermeister, S.; Poletti, P.A.; Platon, A.; Lovblad, K.O.; et al. Clot-Based Radiomics Predict a Mechanical Thrombectomy Strategy for Successful Recanalization in Acute Ischemic Stroke. Stroke 2020, 51, 2488–2494. [Google Scholar] [CrossRef] [PubMed]
- LaGrange, D.D.; Hofmeister, J.; Rosi, A.; Vargas, M.I.; Wanke, I.; Machi, P.; Lövblad, K.O. Predictive value of clot imaging in acute ischemic stroke: A systematic review of artificial intelligence and conventional studies. Neurosci. Inform. 2023, 3, 100114. [Google Scholar] [CrossRef]
- Lövblad, K.O.; Bouchez, L.; Korchi, A.M.; Kulcsar, Z. Neurointerventional staffing: The next frontier. J. Neuroradiol. 2017, 44, 231–233. [Google Scholar] [CrossRef] [PubMed]
- Lövblad, K.O. Administrative neuroradiology: A new sub-specialty? J. Neuroradiol. 2020, 47, 1–2. [Google Scholar] [CrossRef]
- Valavanis, A. Neurowissenschaften quo Vadis? Ein Kritischer Blick auf die Heutige Hirnforschung; Klinisches Neurozentrum, Universitätsspital Zürich: Zürich, Switzerland, 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Swiss Federation of Clinical Neuro-Societies. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lövblad, K.-O.; Wanke, I.; Botta, D.; Kurz, F.T.; Wiest, R.; Rüfenacht, D.; Remonda, L. Brain Health in Neuroradiology. Clin. Transl. Neurosci. 2025, 9, 1. https://doi.org/10.3390/ctn9010001
Lövblad K-O, Wanke I, Botta D, Kurz FT, Wiest R, Rüfenacht D, Remonda L. Brain Health in Neuroradiology. Clinical and Translational Neuroscience. 2025; 9(1):1. https://doi.org/10.3390/ctn9010001
Chicago/Turabian StyleLövblad, Karl-Olof, Isabel Wanke, Daniele Botta, Felix T. Kurz, Roland Wiest, Daniel Rüfenacht, and Luca Remonda. 2025. "Brain Health in Neuroradiology" Clinical and Translational Neuroscience 9, no. 1: 1. https://doi.org/10.3390/ctn9010001
APA StyleLövblad, K.-O., Wanke, I., Botta, D., Kurz, F. T., Wiest, R., Rüfenacht, D., & Remonda, L. (2025). Brain Health in Neuroradiology. Clinical and Translational Neuroscience, 9(1), 1. https://doi.org/10.3390/ctn9010001