Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,013)

Search Parameters:
Keywords = magnetic resonance image

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1947 KiB  
Article
Quantitative Magnetic Resonance Imaging and Patient-Reported Outcomes in Patients Undergoing Hip Labral Repair or Reconstruction
by Kyle S. J. Jamar, Adam Peszek, Catherine C. Alder, Trevor J. Wait, Caleb J. Wipf, Carson L. Keeter, Stephanie W. Mayer, Charles P. Ho and James W. Genuario
J. Imaging 2025, 11(8), 261; https://doi.org/10.3390/jimaging11080261 - 5 Aug 2025
Abstract
This study evaluates the relationship between preoperative cartilage quality, measured by T2 mapping, and patient-reported outcomes following labral tear treatment. We retrospectively reviewed patients aged 14–50 who underwent primary hip arthroscopy with either labral repair or reconstruction. Preoperative T2 values of femoral, acetabular, [...] Read more.
This study evaluates the relationship between preoperative cartilage quality, measured by T2 mapping, and patient-reported outcomes following labral tear treatment. We retrospectively reviewed patients aged 14–50 who underwent primary hip arthroscopy with either labral repair or reconstruction. Preoperative T2 values of femoral, acetabular, and labral tissue were assessed from MRI by blinded reviewers. International Hip Outcome Tool (iHOT-12) scores were collected preoperatively and up to two years postoperatively. Associations between T2 values and iHOT-12 scores were analyzed using univariate mixed linear models. Twenty-nine patients were included (mean age of 32.5 years, BMI 24 kg/m2, 48.3% female, and 22 repairs). Across all patients, higher T2 values were associated with higher iHOT-12 scores at baseline and early postoperative timepoints (three months for cartilage and six months for labrum; p < 0.05). Lower T2 values were associated with higher 12- and 24-month iHOT-12 scores across all structures (p < 0.001). Similar trends were observed within the repair and reconstruction subgroups, with delayed negative associations correlating with worse tissue quality. T2 mapping showed time-dependent correlations with iHOT-12 scores, indicating that worse cartilage or labral quality predicts poorer long-term outcomes. These findings support the utility of T2 mapping as a preoperative tool for prognosis in hip preservation surgery. Full article
(This article belongs to the Special Issue New Developments in Musculoskeletal Imaging)
Show Figures

Figure 1

17 pages, 4105 KiB  
Article
Evaluation of the Effect of X-Ray Therapy on Glioma Rat Model Using Chemical Exchange Saturation Transfer and Diffusion-Weighted Imaging
by Kazuki Onishi, Koji Itagaki, Sachie Kusaka, Tensei Nakano, Junpei Ueda and Shigeyoshi Saito
Cancers 2025, 17(15), 2578; https://doi.org/10.3390/cancers17152578 - 5 Aug 2025
Abstract
Background/Objectives: This study aimed to examine the changes in brain metabolites and water molecule diffusion using chemical exchange saturation transfer (CEST) imaging and diffusion-weighted imaging (DWI) after 15 Gy of X-ray irradiation in a rat model of glioma. Methods: The glioma-derived [...] Read more.
Background/Objectives: This study aimed to examine the changes in brain metabolites and water molecule diffusion using chemical exchange saturation transfer (CEST) imaging and diffusion-weighted imaging (DWI) after 15 Gy of X-ray irradiation in a rat model of glioma. Methods: The glioma-derived cell line, C6, was implanted into the striatum of the right brain of 7-week-old male Wistar rats. CEST imaging and DWI were performed on days 8, 10, and 17 after implantation using a 7T-magnetic resonance imaging. X-ray irradiation (15 Gy) was performed on day 9. Magnetization transfer ratio (MTR) and apparent diffusion coefficient (ADC) values were calculated for CEST and DWI, respectively. Results: On day 17, the MTR values at 1.2 ppm, 1.5 ppm, 1.8 ppm, 2.1 ppm, and 2.4 ppm in the irradiated group decreased significantly compared with those of the control group. The standard deviation for the ADC values on a pixel-by-pixel basis increased from day 8 to day 17 (0.6 ± 0.06 → 0.8 ± 0.17 (×10−3 mm2/s)) in the control group, whereas it remained nearly unchanged (0.6 ± 0.06 → 0.8 ± 0.11 (×10−3 mm2/s)) in the irradiated group. Conclusions: This study revealed the effects of 15 Gy X-ray irradiation in a rat model of glioma using CEST imaging and DWI. Full article
Show Figures

Figure 1

24 pages, 3788 KiB  
Review
Advances in Photoacoustic Imaging of Breast Cancer
by Yang Wu, Keer Huang, Guoxiong Chen and Li Lin
Sensors 2025, 25(15), 4812; https://doi.org/10.3390/s25154812 - 5 Aug 2025
Abstract
Breast cancer is the leading cause of cancer-related mortality among women world-wide, and early screening is critical for improving patient survival. Medical imaging plays a central role in breast cancer screening, diagnosis, and treatment monitoring. However, conventional imaging modalities—including mammography, ultrasound, and magnetic [...] Read more.
Breast cancer is the leading cause of cancer-related mortality among women world-wide, and early screening is critical for improving patient survival. Medical imaging plays a central role in breast cancer screening, diagnosis, and treatment monitoring. However, conventional imaging modalities—including mammography, ultrasound, and magnetic resonance imaging—face limitations such as low diagnostic specificity, relatively slow imaging speed, ionizing radiation exposure, and dependence on exogenous contrast agents. Photoacoustic imaging (PAI), a novel hybrid imaging technique that combines optical contrast with ultrasonic spatial resolution, has shown great promise in addressing these challenges. By revealing anatomical, functional, and molecular features of the breast tumor microenvironment, PAI offers high spatial resolution, rapid imaging, and minimal operator dependence. This review outlines the fundamental principles of PAI and systematically examines recent advances in its application to breast cancer screening, diagnosis, and therapeutic evaluation. Furthermore, we discuss the translational potential of PAI as an emerging breast imaging modality, complementing existing clinical techniques. Full article
(This article belongs to the Special Issue Optical Imaging for Medical Applications)
Show Figures

Figure 1

26 pages, 9773 KiB  
Review
A Narrative Review of the Clinical Applications of Echocardiography in Right Heart Failure
by North J. Noelck, Heather A. Perry, Phyllis L. Talley and D. Elizabeth Le
J. Clin. Med. 2025, 14(15), 5505; https://doi.org/10.3390/jcm14155505 - 5 Aug 2025
Abstract
Background/Objectives: Historically, echocardiographic imaging of the right heart has been challenging because its abnormal geometry is not conducive to reproducible anatomical and functional assessment. With the development of advanced echocardiographic techniques, it is now possible to complete an integrated assessment of the right [...] Read more.
Background/Objectives: Historically, echocardiographic imaging of the right heart has been challenging because its abnormal geometry is not conducive to reproducible anatomical and functional assessment. With the development of advanced echocardiographic techniques, it is now possible to complete an integrated assessment of the right heart that has fewer assumptions, resulting in increased accuracy and precision. Echocardiography continues to be the first-line imaging modality for diagnostic analysis and the management of acute and chronic right heart failure because of its portability, versatility, and affordability compared to cardiac computed tomography, magnetic resonance imaging, nuclear scintigraphy, and positron emission tomography. Virtually all echocardiographic parameters have been well-validated and have demonstrated prognostic significance. The goal of this narrative review of the echocardiographic parameters of the right heart chambers and hemodynamic alterations associated with right ventricular dysfunction is to present information that must be acquired during each examination to deliver a comprehensive assessment of the right heart and to discuss their clinical significance in right heart failure. Methods: Using a literature search in the PubMed database from 1985 to 2025 and the Cochrane database, which included but was not limited to terminology that are descriptive of right heart anatomy and function, disease states involving acute and chronic right heart failure and pulmonary hypertension, and the application of conventional and advanced echocardiographic modalities that strive to elucidate the pathophysiology of right heart failure, we reviewed randomized control trials, observational retrospective and prospective cohort studies, societal guidelines, and systematic review articles. Conclusions: In addition to the conventional 2-dimensional echocardiography and color, spectral, and tissue Doppler measurements, a contemporary echocardiographic assessment of a patient with suspected or proven right heart failure must include 3-dimensional echocardiographic-derived measurements, speckle-tracking echocardiography strain analysis, and hemodynamics parameters to not only characterize the right heart anatomy but to also determine the underlying pathophysiology of right heart failure. Complete and point-of-care echocardiography is available in virtually all clinical settings for routine care, but this imaging tool is particularly indispensable in the emergency department, intensive care units, and operating room, where it can provide an immediate assessment of right ventricular function and associated hemodynamic changes to assist with real-time management decisions. Full article
(This article belongs to the Special Issue Cardiac Imaging in the Diagnosis and Management of Heart Failure)
Show Figures

Figure 1

19 pages, 7531 KiB  
Article
Evaluating the Impact of 2D MRI Slice Orientation and Location on Alzheimer’s Disease Diagnosis Using a Lightweight Convolutional Neural Network
by Nadia A. Mohsin and Mohammed H. Abdulameer
J. Imaging 2025, 11(8), 260; https://doi.org/10.3390/jimaging11080260 - 5 Aug 2025
Abstract
Accurate detection of Alzheimer’s disease (AD) is critical yet challenging for early medical intervention. Deep learning methods, especially convolutional neural networks (CNNs), have shown promising potential for improving diagnostic accuracy using magnetic resonance imaging (MRI). This study aims to identify the most informative [...] Read more.
Accurate detection of Alzheimer’s disease (AD) is critical yet challenging for early medical intervention. Deep learning methods, especially convolutional neural networks (CNNs), have shown promising potential for improving diagnostic accuracy using magnetic resonance imaging (MRI). This study aims to identify the most informative combination of MRI slice orientation and anatomical location for AD classification. We propose an automated framework that first selects the most relevant slices using a feature entropy-based method applied to activation maps from a pretrained CNN model. For classification, we employ a lightweight CNN architecture based on depthwise separable convolutions to efficiently analyze the selected 2D MRI slices extracted from preprocessed 3D brain scans. To further interpret model behavior, an attention mechanism is integrated to analyze which feature level contributes the most to the classification process. The model is evaluated on three binary tasks: AD vs. mild cognitive impairment (MCI), AD vs. cognitively normal (CN), and MCI vs. CN. The experimental results show the highest accuracy (97.4%) in distinguishing AD from CN when utilizing the selected slices from the ninth axial segment, followed by the tenth segment of coronal and sagittal orientations. These findings demonstrate the significance of slice location and orientation in MRI-based AD diagnosis and highlight the potential of lightweight CNNs for clinical use. Full article
(This article belongs to the Section AI in Imaging)
Show Figures

Figure 1

18 pages, 1102 KiB  
Review
Exploring Human Sperm Metabolism and Male Infertility: A Systematic Review of Genomics, Proteomics, Metabolomics, and Imaging Techniques
by Achraf Zakaria, Idrissa Diawara, Amal Bouziyane and Noureddine Louanjli
Int. J. Mol. Sci. 2025, 26(15), 7544; https://doi.org/10.3390/ijms26157544 (registering DOI) - 5 Aug 2025
Abstract
Male infertility is a multifactorial condition often associated with disruptions in sperm metabolism and mitochondrial function, yet traditional semen analysis provides limited insight into these molecular mechanisms. Understanding sperm bioenergetics and metabolic dysfunctions is crucial for improving the diagnosis and treatment of conditions [...] Read more.
Male infertility is a multifactorial condition often associated with disruptions in sperm metabolism and mitochondrial function, yet traditional semen analysis provides limited insight into these molecular mechanisms. Understanding sperm bioenergetics and metabolic dysfunctions is crucial for improving the diagnosis and treatment of conditions such as asthenozoospermia and azoospermia. This systematic review synthesizes recent literature, focusing on advanced tools and techniques—including omics technologies, advanced imaging, spectroscopy, and functional assays—that enable comprehensive molecular assessment of sperm metabolism and development. The reviewed studies highlight the effectiveness of metabolomics, proteomics, and transcriptomics in identifying metabolic biomarkers linked to male infertility. Non-invasive imaging modalities such as Raman and magnetic resonance spectroscopy offer real-time metabolic profiling, while the seminal microbiome is increasingly recognized for its role in modulating sperm metabolic health. Despite these advances, challenges remain in clinical validation and implementation of these techniques in routine infertility diagnostics. Integrating molecular metabolic assessments with conventional semen analysis promises enhanced diagnostic precision and personalized therapeutic approaches, ultimately improving reproductive outcomes. Continued research is needed to standardize biomarkers and validate clinical utility. Furthermore, these metabolic tools hold significant potential to elucidate the underlying causes of previously misunderstood and unexplained infertility cases, offering new avenues for diagnosis and treatment. Full article
Show Figures

Figure 1

20 pages, 1291 KiB  
Review
Ultrasound Imaging Modalities in the Evaluation of the Dog’s Stifle Joint
by Anargyros T. Karatrantos, Aikaterini I. Sideri, Pagona G. Gouletsou, Christina G. Bektsi and Mariana S. Barbagianni
Vet. Sci. 2025, 12(8), 734; https://doi.org/10.3390/vetsci12080734 - 4 Aug 2025
Abstract
This review presents a comprehensive overview of various ultrasound imaging techniques employed in the evaluation of the canine knee joint. It critically analyzes studies conducted on both human and animal subjects, with a focus on the diagnostic accuracy of B-mode ultrasound, Doppler examination, [...] Read more.
This review presents a comprehensive overview of various ultrasound imaging techniques employed in the evaluation of the canine knee joint. It critically analyzes studies conducted on both human and animal subjects, with a focus on the diagnostic accuracy of B-mode ultrasound, Doppler examination, contrast-enhanced ultrasound, and elastography in both normal and pathological conditions. The review underscores the necessity of strict adherence to the protocols of each ultrasound modality and emphasizes the importance of a thorough understanding of the anatomical region to achieve optimal outcomes. The findings suggest that these ultrasound techniques can significantly enhance the diagnostic process, providing valuable insights into anatomy, size, blood supply, and tissue elasticity. Additionally, in cases where advanced imaging modalities such as computed tomography (CT) or magnetic resonance imaging (MRI) are cost-prohibitive or less accessible, ultrasound serves as a reliable alternative, delivering high diagnostic accuracy and critical information regarding mechanical changes in the joint and neovascularization. Full article
Show Figures

Figure 1

19 pages, 3739 KiB  
Article
Disturbances in Resting State Functional Connectivity in Schizophrenia: A Study of Hippocampal Subregions, the Parahippocampal Gyrus and Functional Brain Networks
by Raghad M. Makhdoum and Adnan A. S. Alahmadi
Diagnostics 2025, 15(15), 1955; https://doi.org/10.3390/diagnostics15151955 - 4 Aug 2025
Abstract
Background/Objectives: Schizophrenia exhibits symptoms linked to the hippocampus and parahippocampal gyrus. This includes the entorhinal cortex (ERC) and perirhinal cortex (PRC) as anterior parts, along with the posterior segment known as the parahippocampal cortex (PHC). However, recent research has detailed atlases based on [...] Read more.
Background/Objectives: Schizophrenia exhibits symptoms linked to the hippocampus and parahippocampal gyrus. This includes the entorhinal cortex (ERC) and perirhinal cortex (PRC) as anterior parts, along with the posterior segment known as the parahippocampal cortex (PHC). However, recent research has detailed atlases based on cytoarchitectural characteristics and the hippocampus divided into four subregions: cornu ammonis (CA), dentate gyrus (DG), subiculum (SUB), and hippocampal–amygdaloid transition (HATA). This study aimed to explore the functional connectivity (FC) changes between these hippocampal subregions and the parahippocampal gyrus structures (ERC, PRC, and PHC) as well as between hippocampal subregions and various functional brain networks in schizophrenia. Methods: In total, 50 individuals with schizophrenia and 50 matched healthy subjects were examined using resting state functional magnetic resonance imaging (rs-fMRI). Results: The results showed alterations characterized by increases and decreases in the strength of the positive connectivity between the parahippocampal gyrus structures and the four hippocampal subregions when comparing patients with schizophrenia with healthy subjects. Alterations were observed among the hippocampal subregions and functional brain networks, as well as the formation of new connections and absence of connections. Conclusions: There is strong evidence that the different subregions of the hippocampus have unique functions and their connectivity with the parahippocampal cortices and brain networks are affected by schizophrenia. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

11 pages, 3222 KiB  
Article
Cervical Ectopic Pregnancies—Imaging and Endovascular Treatment
by Maciej Szmygin, Bartosz Kłobuszewski, Karolina Nieoczym, Weronika Dymara-Konopka, Sławomir Woźniak, Hanna Szmygin, Łukasz Światłowski and Krzysztof Pyra
Diagnostics 2025, 15(15), 1956; https://doi.org/10.3390/diagnostics15151956 - 4 Aug 2025
Abstract
Objective: Cervical pregnancy (CP) accounts for less than 1% of all ectopic pregnancies. The standard of management for CP is still under detailed investigation; however, among the known treatment methods, super-selective uterine artery embolization (UAE) and the use of methotrexate (MTX) have [...] Read more.
Objective: Cervical pregnancy (CP) accounts for less than 1% of all ectopic pregnancies. The standard of management for CP is still under detailed investigation; however, among the known treatment methods, super-selective uterine artery embolization (UAE) and the use of methotrexate (MTX) have emerged as effective and minimally invasive options in recent years. Our aim is to present our center’s experience and provide available evidence evaluating the efficacy of UAE in the treatment of CP. Materials and Methods: This single-center and retrospective study evaluated the procedural and clinical outcomes of patients with CP who underwent endovascular uterine embolization with MTX between 2017 and 2024. Both procedural and clinical efficacy and safety, as well as the rate of complications and long-term outcomes, were noted. Results: A total of nine patients were diagnosed with CP (imaging examination included transvaginal ultrasound and/or magnetic resonance imaging) and referred for endovascular treatment. The mean age of the patients was 36.7 years, and the mean gestational age on admission was 9 weeks. In all cases, selective catheterization of supplying vessels and subsequent embolization with a mixture of methotrexate and gel sponge was carried out. The technical success rate was 100% with no complications. Follow-up ultrasound confirmed the disappearance of the flow signal around the intracervical gestational sac in all cases. Conclusions: In conclusion, this retrospective study demonstrated the procedural and clinical safety and efficacy of uterine artery embolization in patients with cervical pregnancy. This is why endovascular therapy should be proposed to these individuals and be included in treatment options discussed during multidisciplinary boards. Full article
Show Figures

Figure 1

6 pages, 1018 KiB  
Case Report
Boomerang Sign in the Splenium of the Corpus Callosum After Vestibullar Schwannoma Treatment: Case Report and Review of the Literature
by Maciej Laskowski, Bartłomiej Błaszczyk, Marcin Setlak, Adam Rudnik, Ewa Warmuz-Uhma and Jan Herzyk
Reports 2025, 8(3), 136; https://doi.org/10.3390/reports8030136 - 4 Aug 2025
Abstract
Background and Clinical Significance: The term “boomerang sign” refers to a boomerang-shaped area of cytotoxic edema in the splenium of the corpus callosum. It is seen as hyperintense lesions on T2-weighted images, FLAIR and DWI in MRI. No specific pathomechanism leading to [...] Read more.
Background and Clinical Significance: The term “boomerang sign” refers to a boomerang-shaped area of cytotoxic edema in the splenium of the corpus callosum. It is seen as hyperintense lesions on T2-weighted images, FLAIR and DWI in MRI. No specific pathomechanism leading to these changes in the splenium have been yet found; however, authors have listed a variety of potential causes. Case Presentation: The case presents a 38-year-old male patient after left cerebellopontine angle tumor resection with an abnormal, increased signal intensity within the corpus callosum (boomerang sign) in FLAIR MRI sequence. In the case of our patient, unlike the patients described in the literature, the changes in the commissure persist. Conclusions: These lesions could be caused by several factors such as the development of cerebellar edema and subarachnoid bleeding or hypertonic salt usage while in the intensive care unit. Full article
Show Figures

Figure 1

16 pages, 2030 KiB  
Article
Myocardial Strain Measurements Obtained with Fast-Strain-Encoded Cardiac Magnetic Resonance for the Risk Prediction and Early Detection of Chemotherapy-Related Cardiotoxicity Compared to Left Ventricular Ejection Fraction
by Daniel Lenihan, James Whayne, Farouk Osman, Rafael Rivero, Moritz Montenbruck, Arne Kristian Schwarz, Sebastian Kelle, Pia Wülfing, Susan Dent, Florian Andre, Norbert Frey, Grigorios Korosoglou and Henning Steen
Diagnostics 2025, 15(15), 1948; https://doi.org/10.3390/diagnostics15151948 - 3 Aug 2025
Viewed by 65
Abstract
Background: Breast and hematological cancer treatments, especially with anthracyclines, have been shown to be associated with an increased risk of cardiotoxicity (CTX). An accurate prediction of cardiotoxicity risk and early detection of myocardial injury may allow for effective cardioprotection to be instituted and [...] Read more.
Background: Breast and hematological cancer treatments, especially with anthracyclines, have been shown to be associated with an increased risk of cardiotoxicity (CTX). An accurate prediction of cardiotoxicity risk and early detection of myocardial injury may allow for effective cardioprotection to be instituted and tailored to reverse cardiac dysfunction and prevent the discontinuation of essential cancer treatments. Objectives: The PRoactive Evaluation of Function to Evade Cardio Toxicity (PREFECT) study sought to evaluate the ability of fast-strain-encoded (F-SENC) cardiac magnetic resonance imaging (CMR) and 2D echocardiography (2D Echo) to stratify patients at risk of CTX prior to initiating cancer treatment, detect early signs of cardiac dysfunction, including subclinical CTX (sub-CTX) and CTX, and monitor for recovery (REC) during cardioprotective therapy. Methods: Fifty-nine patients with breast cancer or lymphoma were prospectively monitored for CTX with F-SENC CMR and 2D Echo over at least 1 year for evidence of cardiac dysfunction during anthracycline based chemotherapy. F-SENC CMR also monitored myocardial deformation in 37 left ventricular (LV) segments to obtain a MyoHealth risk score based on both longitudinal and circumferential strain. Sub-CTX and CTX were classified based on pre-specified cardiotoxicity definitions. Results: CTX was observed in 9/59 (15%) and sub-CTX in 24/59 (41%) patients undergoing chemotherapy. F-SENC CMR parameters at baseline predicted CTX with a lower LVEF (57 ± 5% vs. 61 ± 5% for all, p = 0.05), as well as a lower MyoHealth (70 ± 9 vs. 79 ± 11 for all, p = 0.004) and a worse global circumferential strain (GCS) (−18 ± 1 vs. −20 ± 1 for all, p < 0.001). Pre-chemotherapy MyoHealth had a higher accuracy in predicting the development of CTX compared to CMR LVEF and 2D Echo LVEF (AUC = 0.85, 0.69, and 0.57, respectively). The 2D Echo parameters on baseline imaging did not stratify CTX risk. F-SENC CMR obtained good or excellent images in 320/322 (99.4%) scans. During cancer treatment, MyoHealth had a high accuracy of detecting sub-CTX or CTX (AUC = 0.950), and the highest log likelihood ratio (indicating a higher probability of detecting CTX) followed by F-SENC GLS and F-SENC GCS. CMR LVEF and CMR LV stroke volume index (LVSVI) also significantly worsened in patients developing CTX during cancer treatment. Conclusions: F-SENC CMR provided a reliable and accurate assessment of myocardial function during anthracycline-based chemotherapy, and demonstrated accurate early detection of CTX. In addition, MyoHealth allows for the robust identification of patients at risk for CTX prior to treatment with higher accuracy than LVEF. Full article
(This article belongs to the Special Issue New Perspectives in Cardiac Imaging)
Show Figures

Figure 1

12 pages, 682 KiB  
Article
Structural Posterior Fossa Malformations: MR Imaging and Neurodevelopmental Outcome
by Jorden Halevy, Hadar Doitch Amdurski, Michal Gafner, Shalev Fried, Tomer Ziv-Baran and Eldad Katorza
Diagnostics 2025, 15(15), 1945; https://doi.org/10.3390/diagnostics15151945 - 3 Aug 2025
Viewed by 115
Abstract
Objectives: The increasing use of fetal MRI has increased the diagnosis of posterior fossa malformations, yet the long-term neurodevelopmental outcomes of affected fetuses remain unclear. This study aims to examine the long-term neurodevelopmental outcomes of fetuses with structural posterior fossa malformation diagnosed [...] Read more.
Objectives: The increasing use of fetal MRI has increased the diagnosis of posterior fossa malformations, yet the long-term neurodevelopmental outcomes of affected fetuses remain unclear. This study aims to examine the long-term neurodevelopmental outcomes of fetuses with structural posterior fossa malformation diagnosed on fetal MRI. Methods: A historical cohort study was conducted at a single tertiary referral center, including fetuses diagnosed with structural posterior fossa malformations and apparently healthy fetuses who underwent fetal brain MRI between 2011 and 2019. Maternal, pregnancy, and newborn characteristics were compared between groups, alongside long-term neurodevelopmental outcomes using the Vineland Adaptive Behavior Scales II (VABS-II) questionnaire. This included an extensive assessment of malformation types, additional structural, genetic, or neurodevelopmental anomalies, and outcomes. Results: A total of 126 fetuses met the inclusion criteria, of which 70 were apparently healthy fetuses, and 56 had structural posterior fossa malformations. Among the latter, 18 pregnancies were terminated, 4 resulted in neonatal death, and 11 were lost to follow-up. No significant differences were found in the overall neurodevelopmental outcomes between fetuses with structural posterior fossa malformation (93.4 ± 19.0) and apparently healthy fetuses (99.8 ± 13.8). Motor skills scores were lower among fetuses with structural posterior fossa malformations (87.7 ± 16.5 vs. 99.3 ± 17.2, p = 0.01) but remained within the normal range. Conclusion: Fetuses with structural posterior fossa malformations may exhibit normal long-term neurodevelopmental outcomes if no additional anomalies are detected during thorough prenatal screening that includes proper sonographic, biochemical and genetic screening, as well as fetal MRI. Further research with larger cohorts and longer-term assessments is recommended to validate these findings and support clinical decision-making. Full article
(This article belongs to the Special Issue Advances in Fetal Imaging)
Show Figures

Figure 1

10 pages, 3851 KiB  
Case Report
Secondary Prostate Lymphoma Mimicking Prostate Cancer Successfully Managed by Transurethral Resection to Relieve Urinary Retention
by Lorand-Tibor Reman, Ovidiu Malau, Daniel Porav-Hodade, Calin Chibelean, Arpad-Oliver Vida, Ciprian Todea, Veronica Ghirca, Alexandru Laslo, Raul-Dumitru Gherasim, Rares Vascul, Orsolya-Brigitta Katona, Raluca-Diana Hagău and Orsolya Martha
Pathophysiology 2025, 32(3), 38; https://doi.org/10.3390/pathophysiology32030038 - 2 Aug 2025
Viewed by 102
Abstract
Secondary lymphoma of the prostate is described as the involvement of the prostate gland by lymphomatous spread from a primary site. This condition is exceedingly rare and often presents diagnostic and therapeutic challenges. The symptoms often mimic those of benign prostatic hyperplasia or [...] Read more.
Secondary lymphoma of the prostate is described as the involvement of the prostate gland by lymphomatous spread from a primary site. This condition is exceedingly rare and often presents diagnostic and therapeutic challenges. The symptoms often mimic those of benign prostatic hyperplasia or prostate cancer, including LUTS (lower urinary tract symptoms) and even complete urinary retention. Here, we present a rare case of a 62-year-old male patient undergoing chemotherapy for stage IV mantle cell stomach lymphoma and subsequently secondary prostatic involvement. The patient presented with complete urinary retention, accompanied by biochemical (PSA = 11.7 ng/mL) and imaging (Magnetic Resonance Imaging-PIRADS V lesion) suspicion for prostate cancer. Histopathologic analysis of the MRI-targeted prostate fusion biopsy revealed secondary prostatic lymphoma. The chosen treatment was transurethral resection of the prostate (TUR-P) for relief of symptoms, which significantly improved urinary function (postoperative IPSS = 5 and Qmax = 17 mL/s). This case underscores the importance of considering prostatic lymphoma in the differential diagnosis of bladder outlet obstruction, especially in patients with a known lymphoma history. This report also provides a focused review of the literature on secondary prostatic lymphoma, highlighting the diagnostic challenges, treatment options, and clinical outcomes. Full article
(This article belongs to the Collection Feature Papers in Pathophysiology)
Show Figures

Figure 1

27 pages, 1326 KiB  
Systematic Review
Application of Artificial Intelligence in Pancreatic Cyst Management: A Systematic Review
by Donghyun Lee, Fadel Jesry, John J. Maliekkal, Lewis Goulder, Benjamin Huntly, Andrew M. Smith and Yazan S. Khaled
Cancers 2025, 17(15), 2558; https://doi.org/10.3390/cancers17152558 - 2 Aug 2025
Viewed by 188
Abstract
Background: Pancreatic cystic lesions (PCLs), including intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs), pose a diagnostic challenge due to their variable malignant potential. Current guidelines, such as Fukuoka and American Gastroenterological Association (AGA), have moderate predictive accuracy and may lead [...] Read more.
Background: Pancreatic cystic lesions (PCLs), including intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs), pose a diagnostic challenge due to their variable malignant potential. Current guidelines, such as Fukuoka and American Gastroenterological Association (AGA), have moderate predictive accuracy and may lead to overtreatment or missed malignancies. Artificial intelligence (AI), incorporating machine learning (ML) and deep learning (DL), offers the potential to improve risk stratification, diagnosis, and management of PCLs by integrating clinical, radiological, and molecular data. This is the first systematic review to evaluate the application, performance, and clinical utility of AI models in the diagnosis, classification, prognosis, and management of pancreatic cysts. Methods: A systematic review was conducted in accordance with PRISMA guidelines and registered on PROSPERO (CRD420251008593). Databases searched included PubMed, EMBASE, Scopus, and Cochrane Library up to March 2025. The inclusion criteria encompassed original studies employing AI, ML, or DL in human subjects with pancreatic cysts, evaluating diagnostic, classification, or prognostic outcomes. Data were extracted on the study design, imaging modality, model type, sample size, performance metrics (accuracy, sensitivity, specificity, and area under the curve (AUC)), and validation methods. Study quality and bias were assessed using the PROBAST and adherence to TRIPOD reporting guidelines. Results: From 847 records, 31 studies met the inclusion criteria. Most were retrospective observational (n = 27, 87%) and focused on preoperative diagnostic applications (n = 30, 97%), with only one addressing prognosis. Imaging modalities included Computed Tomography (CT) (48%), endoscopic ultrasound (EUS) (26%), and Magnetic Resonance Imaging (MRI) (9.7%). Neural networks, particularly convolutional neural networks (CNNs), were the most common AI models (n = 16), followed by logistic regression (n = 4) and support vector machines (n = 3). The median reported AUC across studies was 0.912, with 55% of models achieving AUC ≥ 0.80. The models outperformed clinicians or existing guidelines in 11 studies. IPMN stratification and subtype classification were common focuses, with CNN-based EUS models achieving accuracies of up to 99.6%. Only 10 studies (32%) performed external validation. The risk of bias was high in 93.5% of studies, and TRIPOD adherence averaged 48%. Conclusions: AI demonstrates strong potential in improving the diagnosis and risk stratification of pancreatic cysts, with several models outperforming current clinical guidelines and human readers. However, widespread clinical adoption is hindered by high risk of bias, lack of external validation, and limited interpretability of complex models. Future work should prioritise multicentre prospective studies, standardised model reporting, and development of interpretable, externally validated tools to support clinical integration. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

20 pages, 8858 KiB  
Article
Compressed Sensing Reconstruction with Zero-Shot Self-Supervised Learning for High-Resolution MRI of Human Embryos
by Kazuma Iwazaki, Naoto Fujita, Shigehito Yamada and Yasuhiko Terada
Tomography 2025, 11(8), 88; https://doi.org/10.3390/tomography11080088 (registering DOI) - 2 Aug 2025
Viewed by 171
Abstract
Objectives: This study investigates whether scan time in the high-resolution magnetic resonance imaging (MRI) of human embryos can be reduced without compromising spatial resolution by applying zero-shot self-supervised learning (ZS-SSL), a deep-learning-based reconstruction method. Methods: Simulations using a numerical phantom were [...] Read more.
Objectives: This study investigates whether scan time in the high-resolution magnetic resonance imaging (MRI) of human embryos can be reduced without compromising spatial resolution by applying zero-shot self-supervised learning (ZS-SSL), a deep-learning-based reconstruction method. Methods: Simulations using a numerical phantom were conducted to evaluate spatial resolution across various acceleration factors (AF = 2, 4, 6, and 8) and signal-to-noise ratio (SNR) levels. Resolution was quantified using a blur-based estimation method based on the Sparrow criterion. ZS-SSL was compared to conventional compressed sensing (CS). Experimental imaging of a human embryo at Carnegie stage 21 was performed at a spatial resolution of (30 μm)3 using both retrospective and prospective undersampling at AF = 4 and 8. Results: ZS-SSL preserved spatial resolution more effectively than CS at low SNRs. At AF = 4, image quality was comparable to that of fully sampled data, while noticeable degradation occurred at AF = 8. Experimental validation confirmed these findings, with clear visualization of anatomical structures—such as the accessory nerve—at AF = 4; there was reduced structural clarity at AF = 8. Conclusions: ZS-SSL enables significant scan time reduction in high-resolution MRI of human embryos while maintaining spatial resolution at AF = 4, assuming an SNR above approximately 15. This trade-off between acceleration and image quality is particularly beneficial in studies with limited imaging time or specimen availability. The method facilitates the efficient acquisition of ultra-high-resolution data and supports future efforts to construct detailed developmental atlases. Full article
Show Figures

Figure 1

Back to TopTop