Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,517)

Search Parameters:
Keywords = magnetic information

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2487 KiB  
Article
Feasibility of Sodium and Amide Proton Transfer-Weighted Magnetic Resonance Imaging Methods in Mild Steatotic Liver Disease
by Diana M. Lindquist, Mary Kate Manhard, Joel Levoy and Jonathan R. Dillman
Tomography 2025, 11(8), 89; https://doi.org/10.3390/tomography11080089 (registering DOI) - 6 Aug 2025
Abstract
Background/Objectives: Fat and inflammation confound current magnetic resonance imaging (MRI) methods for assessing fibrosis in liver disease. Sodium or amide proton transfer-weighted MRI methods may be more specific for assessing liver fibrosis. The purpose of this study was to determine the feasibility [...] Read more.
Background/Objectives: Fat and inflammation confound current magnetic resonance imaging (MRI) methods for assessing fibrosis in liver disease. Sodium or amide proton transfer-weighted MRI methods may be more specific for assessing liver fibrosis. The purpose of this study was to determine the feasibility of sodium and amide proton transfer-weighted MRI in individuals with liver disease and to determine if either method correlated with clinical markers of fibrosis. Methods: T1 and T2 relaxation maps, proton density fat fraction maps, liver shear stiffness maps, amide proton transfer-weighted (APTw) images, and sodium images were acquired at 3T. Image data were extracted from regions of interest placed in the liver. ANOVA tests were run with disease status, age, and body mass index as independent factors; significance was set to p < 0.05. Post-hoc t-tests were run when the ANOVA showed significance. Results: A total of 36 participants were enrolled, 34 of whom were included in the final APTw analysis and 24 in the sodium analysis. Estimated liver tissue sodium concentration differentiated participants with liver disease from those without, whereas amide proton transfer-weighted MRI did not. Estimated liver tissue sodium concentration negatively correlated with the Fibrosis-4 score, but amide proton transfer-weighted MRI did not correlate with any clinical marker of disease. Conclusions: Amide proton-weighted imaging was not different between groups. Estimated liver tissue sodium concentrations did differ between groups but did not provide additional information over conventional methods. Full article
(This article belongs to the Section Abdominal Imaging)
Show Figures

Figure 1

26 pages, 9773 KiB  
Review
A Narrative Review of the Clinical Applications of Echocardiography in Right Heart Failure
by North J. Noelck, Heather A. Perry, Phyllis L. Talley and D. Elizabeth Le
J. Clin. Med. 2025, 14(15), 5505; https://doi.org/10.3390/jcm14155505 - 5 Aug 2025
Abstract
Background/Objectives: Historically, echocardiographic imaging of the right heart has been challenging because its abnormal geometry is not conducive to reproducible anatomical and functional assessment. With the development of advanced echocardiographic techniques, it is now possible to complete an integrated assessment of the right [...] Read more.
Background/Objectives: Historically, echocardiographic imaging of the right heart has been challenging because its abnormal geometry is not conducive to reproducible anatomical and functional assessment. With the development of advanced echocardiographic techniques, it is now possible to complete an integrated assessment of the right heart that has fewer assumptions, resulting in increased accuracy and precision. Echocardiography continues to be the first-line imaging modality for diagnostic analysis and the management of acute and chronic right heart failure because of its portability, versatility, and affordability compared to cardiac computed tomography, magnetic resonance imaging, nuclear scintigraphy, and positron emission tomography. Virtually all echocardiographic parameters have been well-validated and have demonstrated prognostic significance. The goal of this narrative review of the echocardiographic parameters of the right heart chambers and hemodynamic alterations associated with right ventricular dysfunction is to present information that must be acquired during each examination to deliver a comprehensive assessment of the right heart and to discuss their clinical significance in right heart failure. Methods: Using a literature search in the PubMed database from 1985 to 2025 and the Cochrane database, which included but was not limited to terminology that are descriptive of right heart anatomy and function, disease states involving acute and chronic right heart failure and pulmonary hypertension, and the application of conventional and advanced echocardiographic modalities that strive to elucidate the pathophysiology of right heart failure, we reviewed randomized control trials, observational retrospective and prospective cohort studies, societal guidelines, and systematic review articles. Conclusions: In addition to the conventional 2-dimensional echocardiography and color, spectral, and tissue Doppler measurements, a contemporary echocardiographic assessment of a patient with suspected or proven right heart failure must include 3-dimensional echocardiographic-derived measurements, speckle-tracking echocardiography strain analysis, and hemodynamics parameters to not only characterize the right heart anatomy but to also determine the underlying pathophysiology of right heart failure. Complete and point-of-care echocardiography is available in virtually all clinical settings for routine care, but this imaging tool is particularly indispensable in the emergency department, intensive care units, and operating room, where it can provide an immediate assessment of right ventricular function and associated hemodynamic changes to assist with real-time management decisions. Full article
(This article belongs to the Special Issue Cardiac Imaging in the Diagnosis and Management of Heart Failure)
Show Figures

Figure 1

19 pages, 7531 KiB  
Article
Evaluating the Impact of 2D MRI Slice Orientation and Location on Alzheimer’s Disease Diagnosis Using a Lightweight Convolutional Neural Network
by Nadia A. Mohsin and Mohammed H. Abdulameer
J. Imaging 2025, 11(8), 260; https://doi.org/10.3390/jimaging11080260 - 5 Aug 2025
Abstract
Accurate detection of Alzheimer’s disease (AD) is critical yet challenging for early medical intervention. Deep learning methods, especially convolutional neural networks (CNNs), have shown promising potential for improving diagnostic accuracy using magnetic resonance imaging (MRI). This study aims to identify the most informative [...] Read more.
Accurate detection of Alzheimer’s disease (AD) is critical yet challenging for early medical intervention. Deep learning methods, especially convolutional neural networks (CNNs), have shown promising potential for improving diagnostic accuracy using magnetic resonance imaging (MRI). This study aims to identify the most informative combination of MRI slice orientation and anatomical location for AD classification. We propose an automated framework that first selects the most relevant slices using a feature entropy-based method applied to activation maps from a pretrained CNN model. For classification, we employ a lightweight CNN architecture based on depthwise separable convolutions to efficiently analyze the selected 2D MRI slices extracted from preprocessed 3D brain scans. To further interpret model behavior, an attention mechanism is integrated to analyze which feature level contributes the most to the classification process. The model is evaluated on three binary tasks: AD vs. mild cognitive impairment (MCI), AD vs. cognitively normal (CN), and MCI vs. CN. The experimental results show the highest accuracy (97.4%) in distinguishing AD from CN when utilizing the selected slices from the ninth axial segment, followed by the tenth segment of coronal and sagittal orientations. These findings demonstrate the significance of slice location and orientation in MRI-based AD diagnosis and highlight the potential of lightweight CNNs for clinical use. Full article
(This article belongs to the Section AI in Imaging)
Show Figures

Figure 1

20 pages, 1291 KiB  
Review
Ultrasound Imaging Modalities in the Evaluation of the Dog’s Stifle Joint
by Anargyros T. Karatrantos, Aikaterini I. Sideri, Pagona G. Gouletsou, Christina G. Bektsi and Mariana S. Barbagianni
Vet. Sci. 2025, 12(8), 734; https://doi.org/10.3390/vetsci12080734 - 4 Aug 2025
Abstract
This review presents a comprehensive overview of various ultrasound imaging techniques employed in the evaluation of the canine knee joint. It critically analyzes studies conducted on both human and animal subjects, with a focus on the diagnostic accuracy of B-mode ultrasound, Doppler examination, [...] Read more.
This review presents a comprehensive overview of various ultrasound imaging techniques employed in the evaluation of the canine knee joint. It critically analyzes studies conducted on both human and animal subjects, with a focus on the diagnostic accuracy of B-mode ultrasound, Doppler examination, contrast-enhanced ultrasound, and elastography in both normal and pathological conditions. The review underscores the necessity of strict adherence to the protocols of each ultrasound modality and emphasizes the importance of a thorough understanding of the anatomical region to achieve optimal outcomes. The findings suggest that these ultrasound techniques can significantly enhance the diagnostic process, providing valuable insights into anatomy, size, blood supply, and tissue elasticity. Additionally, in cases where advanced imaging modalities such as computed tomography (CT) or magnetic resonance imaging (MRI) are cost-prohibitive or less accessible, ultrasound serves as a reliable alternative, delivering high diagnostic accuracy and critical information regarding mechanical changes in the joint and neovascularization. Full article
Show Figures

Figure 1

18 pages, 5151 KiB  
Article
An Adaptive Bandpass Full-Order Observer with a Compensated PLL for Sensorless IPMSMs
by Qiya Wu, Jia Zhang, Dongyi Meng, Ye Liu and Lijun Diao
Actuators 2025, 14(8), 387; https://doi.org/10.3390/act14080387 - 4 Aug 2025
Abstract
Model-based sensorless control of interior permanent-magnet synchronous motors (IPMSMs) typically employs an estimation observer with embedded position information, followed by a position extraction process. Although a type-2 phase-locked loop (PLL) is widely adopted for position and speed extraction, it suffers from steady-state tracking [...] Read more.
Model-based sensorless control of interior permanent-magnet synchronous motors (IPMSMs) typically employs an estimation observer with embedded position information, followed by a position extraction process. Although a type-2 phase-locked loop (PLL) is widely adopted for position and speed extraction, it suffers from steady-state tracking errors under variable-speed operation, leading to torque bias in IPMSM torque control. To mitigate this issue, this paper first proposes an adaptive bandpass full-order observer in the stationary reference frame. Subsequently, a Kalman filter (KF)-based compensation strategy is introduced for the PLL to eliminate tracking errors while maintaining system stability. Experimental validation on a 300 kW platform confirms the effectiveness of the proposed sensorless torque control algorithm, demonstrating significant reductions in position error and torque fluctuations during acceleration and deceleration. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

14 pages, 2283 KiB  
Article
Mechanistic Insights into Nano-Maillard Reaction Products Regulating the Quality of Dried Abalones
by Jialei Shi, Hongbo Ling, Yueling Wu, Deyang Li and Siqi Wang
Foods 2025, 14(15), 2726; https://doi.org/10.3390/foods14152726 - 4 Aug 2025
Abstract
Broth cooking is a traditional pretreatment and ripening strategy for high-commercial-value dehydrated marine food, effectively enhancing its texture and rehydration properties. In this work, we characterized the structural information of Maillard reaction products (MRPs) derived from beef scrap stock and investigated their effects [...] Read more.
Broth cooking is a traditional pretreatment and ripening strategy for high-commercial-value dehydrated marine food, effectively enhancing its texture and rehydration properties. In this work, we characterized the structural information of Maillard reaction products (MRPs) derived from beef scrap stock and investigated their effects on the texture and rehydration performance of dehydrated abalone. The optical and structural properties of the MRPs were analyzed using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and fluorescence spectroscopy. These MRPs showed osmosis in abalone processing including pretreatment and drying. Low-field nuclear magnetic resonance (LF-NMR) results revealed that MRP pretreatment improved the moisture migration and physicochemical properties of dehydrated abalone. These findings suggest that MRPs, owing to their high osmotic efficiency and nanoscale size, could serve as promising food additives and potential alternatives to traditional penetrating agents in the food industry, enhancing the rehydration performance of dried seafood and reducing quality deterioration. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

21 pages, 4147 KiB  
Article
OLTEM: Lumped Thermal and Deep Neural Model for PMSM Temperature
by Yuzhong Sheng, Xin Liu, Qi Chen, Zhenghao Zhu, Chuangxin Huang and Qiuliang Wang
AI 2025, 6(8), 173; https://doi.org/10.3390/ai6080173 - 31 Jul 2025
Viewed by 271
Abstract
Background and Objective: Temperature management is key for reliable operation of permanent magnet synchronous motors (PMSMs). The lumped-parameter thermal network (LPTN) is fast and interpretable but struggles with nonlinear behavior under high power density. We propose OLTEM, a physics-informed deep model that combines [...] Read more.
Background and Objective: Temperature management is key for reliable operation of permanent magnet synchronous motors (PMSMs). The lumped-parameter thermal network (LPTN) is fast and interpretable but struggles with nonlinear behavior under high power density. We propose OLTEM, a physics-informed deep model that combines LPTN with a thermal neural network (TNN) to improve prediction accuracy while keeping physical meaning. Methods: OLTEM embeds LPTN into a recurrent state-space formulation and learns three parameter sets: thermal conductance, inverse thermal capacitance, and power loss. Two additions are introduced: (i) a state-conditioned squeeze-and-excitation (SC-SE) attention that adapts feature weights using the current temperature state, and (ii) an enhanced power-loss sub-network that uses a deep MLP with SC-SE and non-negativity constraints. The model is trained and evaluated on the public Electric Motor Temperature dataset (Paderborn University/Kaggle). Performance is measured by mean squared error (MSE) and maximum absolute error across permanent-magnet, stator-yoke, stator-tooth, and stator-winding temperatures. Results: OLTEM tracks fast thermal transients and yields lower MSE than both the baseline TNN and a CNN–RNN model for all four components. On a held-out generalization set, MSE remains below 4.0 °C2 and the maximum absolute error is about 4.3–8.2 °C. Ablation shows that removing either SC-SE or the enhanced power-loss module degrades accuracy, confirming their complementary roles. Conclusions: By combining physics with learned attention and loss modeling, OLTEM improves PMSM temperature prediction while preserving interpretability. This approach can support motor thermal design and control; future work will study transfer to other machines and further reduce short-term errors during abrupt operating changes. Full article
Show Figures

Figure 1

13 pages, 559 KiB  
Article
Dynamic Modeling and Online Updating of Full-Power Converter Wind Turbines Based on Physics-Informed Neural Networks and Bayesian Neural Networks
by Yunyang Xu, Bo Zhou, Xinwei Sun, Yuting Tian and Xiaofeng Jiang
Electronics 2025, 14(15), 2985; https://doi.org/10.3390/electronics14152985 - 26 Jul 2025
Viewed by 184
Abstract
This paper presents a dynamic model for full-power converter permanent magnet synchronous wind turbines based on Physics-Informed Neural Networks (PINNs). The model integrates the physical dynamics of the wind turbine directly into the loss function, enabling high-accuracy equivalent modeling with limited data and [...] Read more.
This paper presents a dynamic model for full-power converter permanent magnet synchronous wind turbines based on Physics-Informed Neural Networks (PINNs). The model integrates the physical dynamics of the wind turbine directly into the loss function, enabling high-accuracy equivalent modeling with limited data and overcoming the typical “black-box” constraints and large data requirements of traditional data-driven approaches. To enhance the model’s real-time adaptability, we introduce an online update mechanism leveraging Bayesian Neural Networks (BNNs) combined with a clustering-guided strategy. This mechanism estimates uncertainty in the neural network weights in real-time, accurately identifies error sources, and performs local fine-tuning on clustered data. This improves the model’s ability to track real-time errors and addresses the challenge of parameter-specific adjustments. Finally, the data-driven model is integrated into the CloudPSS platform, and its multi-scenario modeling accuracy is validated across various typical cases, demonstrating the robustness of the proposed approach. Full article
Show Figures

Figure 1

16 pages, 610 KiB  
Article
Wired Differently? Brain Temporal Complexity and Intelligence in Autism Spectrum Disorder
by Moses O. Sokunbi, Oumayma Soula, Bertha Ochieng and Roger T. Staff
Brain Sci. 2025, 15(8), 796; https://doi.org/10.3390/brainsci15080796 - 26 Jul 2025
Viewed by 932
Abstract
Background: Autism spectrum disorder (ASD) is characterised by atypical behavioural and cognitive diversity, yet the neural underpinnings linking brain activity and individual presentations remain poorly understood. In this study, we investigated the relationship between resting-state functional magnetic resonance imaging (fMRI) signal complexity and [...] Read more.
Background: Autism spectrum disorder (ASD) is characterised by atypical behavioural and cognitive diversity, yet the neural underpinnings linking brain activity and individual presentations remain poorly understood. In this study, we investigated the relationship between resting-state functional magnetic resonance imaging (fMRI) signal complexity and intelligence (full-scale intelligence quotient (FIQ); verbal intelligence quotient (VIQ); and performance intelligence quotient (PIQ)) in male adults with ASD (n = 14) and matched neurotypical controls (n = 15). Methods: We used three complexity-based metrics: Hurst exponent (H), fuzzy approximate entropy (fApEn), and fuzzy sample entropy (fSampEn) to characterise resting-state fMRI signal dynamics, and correlated these measures with standardised intelligence scores. Results: Using a whole-brain measure, ASD participants showed significant negative correlations between PIQ and both fApEn and fSampEn, suggesting that increased neural irregularity may relate to reduced cognitive–perceptual performance in autistic individuals. No significant associations between entropy (fApEn and fSampEn) and PIQ were found in the control group. Group differences in brain–behaviour associations were confirmed through formal interaction testing using Fisher’s r-to-z transformation, which showed significantly stronger correlations in the ASD group. Complementary regression analyses with interaction terms further demonstrated that the entropy (fApEn and fSampEn) and PIQ relationship was significantly moderated by group, reinforcing evidence for autism-specific neural mechanisms underlying cognitive function. Conclusions: These findings provide insight into how cognitive functions in autism may not only reflect deficits but also an alternative neural strategy, suggesting that distinct temporal patterns may be associated with intelligence in ASD. These preliminary findings could inform clinical practice and influence health and social care policies, particularly in autism diagnosis and personalised support planning. Full article
(This article belongs to the Special Issue Understanding the Functioning of Brain Networks in Health and Disease)
Show Figures

Figure 1

18 pages, 3870 KiB  
Article
Universal Vector Calibration for Orientation-Invariant 3D Sensor Data
by Wonjoon Son and Lynn Choi
Sensors 2025, 25(15), 4609; https://doi.org/10.3390/s25154609 - 25 Jul 2025
Viewed by 243
Abstract
Modern electronic devices such as smartphones, wearable devices, and robots typically integrate three-dimensional sensors to track the device’s movement in the 3D space. However, sensor measurements in three-dimensional vectors are highly sensitive to device orientation since a slight change in the device’s tilt [...] Read more.
Modern electronic devices such as smartphones, wearable devices, and robots typically integrate three-dimensional sensors to track the device’s movement in the 3D space. However, sensor measurements in three-dimensional vectors are highly sensitive to device orientation since a slight change in the device’s tilt or heading can change the vector values. To avoid complications, applications using these sensors often use only the magnitude of the vector, as in geomagnetic-based indoor positioning, or assume fixed device holding postures such as holding a smartphone in portrait mode only. However, using only the magnitude of the vector loses the directional information, while ad hoc posture assumptions work under controlled laboratory conditions but often fail in real-world scenarios. To resolve these problems, we propose a universal vector calibration algorithm that enables consistent three-dimensional vector measurements for the same physical activity, regardless of device orientation. The algorithm works in two stages. First, it transforms vector values in local coordinates to those in global coordinates by calibrating device tilting using pitch and roll angles computed from the initial vector values. Second, it additionally transforms vector values from the global coordinate to a reference coordinate when the target coordinate is different from the global coordinate by correcting yaw rotation to align with application-specific reference coordinate systems. We evaluated our algorithm on geomagnetic field-based indoor positioning and bidirectional step detection. For indoor positioning, our vector calibration achieved an 83.6% reduction in mismatches between sampled magnetic vectors and magnetic field map vectors and reduced the LSTM-based positioning error from 31.14 m to 0.66 m. For bidirectional step detection, the proposed algorithm with vector calibration improved step detection accuracy from 67.63% to 99.25% and forward/backward classification from 65.54% to 100% across various device orientations. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

12 pages, 620 KiB  
Review
Manganese-Based Contrast Agents as Alternatives to Gadolinium: A Comprehensive Review
by Linda Poggiarelli, Caterina Bernetti, Luca Pugliese, Federico Greco, Bruno Beomonte Zobel and Carlo A. Mallio
Clin. Pract. 2025, 15(8), 137; https://doi.org/10.3390/clinpract15080137 - 25 Jul 2025
Viewed by 300
Abstract
Background/Objectives: Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic tool capable of capturing detailed anatomical and physiological information. MRI contrast agents enhance image contrast but, especially linear gadolinium-based compounds, have been associated with safety concerns. This has prompted interest in alternative contrast [...] Read more.
Background/Objectives: Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic tool capable of capturing detailed anatomical and physiological information. MRI contrast agents enhance image contrast but, especially linear gadolinium-based compounds, have been associated with safety concerns. This has prompted interest in alternative contrast agents. Manganese-based contrast agents offer a promising substitute, owing to manganese’s favorable magnetic properties, natural biological role, and strong T1 relaxivity. This review aims to critically assess the structure, mechanisms, applications, and challenges of manganese-based contrast agents in MRI. Methods: This review synthesizes findings from preclinical and clinical studies involving various types of manganese-based contrast agents, including small-molecule chelates, nanoparticles, theranostic platforms, responsive agents, and controlled-release systems. Special attention is given to pharmacokinetics, biodistribution, and safety evaluations. Results: Mn-based agents demonstrate promising imaging capabilities, with some achieving relaxivity values comparable to gadolinium compounds. Targeted uptake mechanisms, such as hepatocyte-specific transport via organic anion-transporting polypeptides, allow for enhanced tissue contrast. However, concerns remain regarding the in vivo release of free Mn2+ ions, which could lead to toxicity. Preliminary toxicity assessments report low cytotoxicity, but further comprehensive long-term safety studies should be carried out. Conclusions: Manganese-based contrast agents present a potential alternative to gadolinium-based MRI agents pending further validation. Despite promising imaging performance and biocompatibility, further investigation into stability and safety is essential. Additional research is needed to facilitate the clinical translation of these agents. Full article
Show Figures

Figure 1

24 pages, 4430 KiB  
Article
Early Bearing Fault Diagnosis in PMSMs Based on HO-VMD and Weighted Evidence Fusion of Current–Vibration Signals
by Xianwu He, Xuhui Liu, Cheng Lin, Minjie Fu, Jiajin Wang and Jian Zhang
Sensors 2025, 25(15), 4591; https://doi.org/10.3390/s25154591 - 24 Jul 2025
Viewed by 313
Abstract
To address the challenges posed by weak early fault signal features, strong noise interference, low diagnostic accuracy, poor reliability when using single information sources, and the limited availability of high-quality samples in practical applications for permanent magnet synchronous motor (PMSM) bearings, this paper [...] Read more.
To address the challenges posed by weak early fault signal features, strong noise interference, low diagnostic accuracy, poor reliability when using single information sources, and the limited availability of high-quality samples in practical applications for permanent magnet synchronous motor (PMSM) bearings, this paper proposes an early bearing fault diagnosis method based on Hippopotamus Optimization Variational Mode Decomposition (HO-VMD) and weighted evidence fusion of current–vibration signals. The HO algorithm is employed to optimize the parameters of VMD for adaptive modal decomposition of current and vibration signals, resulting in the generation of intrinsic mode functions (IMFs). These IMFs are then selected and reconstructed based on their kurtosis to suppress noise and harmonic interference. Subsequently, the reconstructed signals are demodulated using the Teager–Kaiser Energy Operator (TKEO), and both time-domain and energy spectrum features are extracted. The reliability of these features is utilized to adaptively weight the basic probability assignment (BPA) functions. Finally, a weighted modified Dempster–Shafer evidence theory (WMDST) is applied to fuse multi-source feature information, enabling an accurate assessment of the PMSM bearing health status. The experimental results demonstrate that the proposed method significantly enhances the signal-to-noise ratio (SNR) and enables precise diagnosis of early bearing faults even in scenarios with limited sample sizes. Full article
Show Figures

Figure 1

19 pages, 8743 KiB  
Article
Role of Feature Diversity in the Performance of Hybrid Models—An Investigation of Brain Tumor Classification from Brain MRI Scans
by Subhash Chand Gupta, Shripal Vijayvargiya and Vandana Bhattacharjee
Diagnostics 2025, 15(15), 1863; https://doi.org/10.3390/diagnostics15151863 - 24 Jul 2025
Viewed by 314
Abstract
Introduction: Brain tumor, marked by abnormal and rapid cell growth, poses severe health risks and requires accurate diagnosis for effective treatment. Classifying brain tumors using deep learning techniques applied to Magnetic Resonance Imaging (MRI) images has attracted the attention of many researchers, [...] Read more.
Introduction: Brain tumor, marked by abnormal and rapid cell growth, poses severe health risks and requires accurate diagnosis for effective treatment. Classifying brain tumors using deep learning techniques applied to Magnetic Resonance Imaging (MRI) images has attracted the attention of many researchers, and specifically, reducing the bias of models and enhancing robustness is still a very pertinent active topic of attention. Methods: For capturing diverse information from different feature sets, we propose a Features Concatenation-based Brain Tumor Classification (FCBTC) Framework using Hybrid Deep Learning Models. For this, we have chosen three pretrained models—ResNet50; VGG16; and DensetNet121—as the baseline models. Our proposed hybrid models are built by the fusion of feature vectors. Results: The testing phase results show that, for the FCBTC Model-3, values for Precision, Recall, F1-score, and Accuracy are 98.33%, 98.26%, 98.27%, and 98.40%, respectively. This reinforces our idea that feature diversity does improve the classifier’s performance. Conclusions: Comparative performance evaluation of our work shows that, the proposed hybrid FCBTC Models have performed better than other proposed baseline models. Full article
(This article belongs to the Special Issue Machine Learning in Precise and Personalized Diagnosis)
Show Figures

Figure 1

13 pages, 1452 KiB  
Article
Prognostic Utility of Combining VI-RADS Scores and CYFRA 21-1 Levels in Bladder Cancer: A Retrospective Single-Center Study
by Shunsuke Ikuma, Jun Akatsuka, Godai Kaneko, Hayato Takeda, Yuki Endo, Go Kimura and Yukihiro Kondo
Curr. Oncol. 2025, 32(8), 415; https://doi.org/10.3390/curroncol32080415 - 24 Jul 2025
Viewed by 256
Abstract
The Vesical Imaging Reporting and Data System (VI-RADS) is used to detect muscle-invasive bladder cancer, with emerging prognostic implications. Integrating imaging parameters with molecular biomarkers may improve risk stratification in bladder cancer. This study evaluated whether combining VI-RADS scores with serum cytokeratin fragment [...] Read more.
The Vesical Imaging Reporting and Data System (VI-RADS) is used to detect muscle-invasive bladder cancer, with emerging prognostic implications. Integrating imaging parameters with molecular biomarkers may improve risk stratification in bladder cancer. This study evaluated whether combining VI-RADS scores with serum cytokeratin fragment 19 (CYFRA 21-1) levels—a clinically relevant biomarker for bladder cancer—could improve overall survival (OS) prediction. We retrospectively analyzed 134 patients who underwent transurethral resection of bladder tumors, magnetic resonance imaging, and postoperative serum CYFRA 21-1 measurements. In total, 15 cancer-specific deaths were observed during follow-up. Receiver operating characteristic curve analysis identified optimal prognostic cut-off values: VI-RADS score ≥ 4 and CYFRA 21-1 level ≥ 1.8 ng/mL. The 1-, 2-, and 3-year OS in patients with both high VI-RADS scores and CYFRA 21-1 levels were 42.9%, 16.7%, and 8.3%, respectively, significantly lower than those in other groups (p < 0.001, 0.002, and 0.003, respectively). Multivariate Cox proportional hazards analysis demonstrated that such patients had the poorest OS (hazard ratio: 7.51; p = 0.002). This suggests that combining VI-RADS and CYFRA 21-1 improves prognostic accuracy in bladder cancer, demonstrating potential clinical utility by informing individualized treatment strategies; however, limitations include the retrospective study design and absence of external validation. Full article
(This article belongs to the Section Genitourinary Oncology)
Show Figures

Graphical abstract

14 pages, 696 KiB  
Article
Perception of Quality of Life, Brain Regions, and Cognitive Performance in Hispanic Adults: A Canonical Correlation Approach
by Juan C. Lopez-Alvarenga, Jesus D. Melgarejo, Jesus Rivera-Sanchez, Lorena Velazquez-Alvarez, Isabel Omaña-Guzmán, Carlos Curtis-Lopez, Rosa V. Pirela, Luis J. Mena, John Blangero, Jose E. Cavazos, Michael C. Mahaney, Joseph D. Terwilliger, Joseph H. Lee and Gladys E. Maestre
Clin. Transl. Neurosci. 2025, 9(3), 33; https://doi.org/10.3390/ctn9030033 - 23 Jul 2025
Viewed by 277
Abstract
The quality of life (QoL) perception has been studied in neurological diseases; however, there is limited information linking brain morphological characteristics, QoL, and cognition. Human behavior and perception are associated with specific brain areas that interact through diffuse electrochemical networking. We used magnetic [...] Read more.
The quality of life (QoL) perception has been studied in neurological diseases; however, there is limited information linking brain morphological characteristics, QoL, and cognition. Human behavior and perception are associated with specific brain areas that interact through diffuse electrochemical networking. We used magnetic resonance imaging (MRI) to analyze the brain region volume (BRV) correlation with the scores of Rand’s 36-item Short Form Survey (SF-36) and cognitive domains (memory and dementia status). We analyzed data from 420 adult participants in the Maracaibo Aging Study (MAS). Principal component analysis with oblimin axis rotation was used to gather redundant information from brain parcels and SF-36 domains. Canonical correlation was used to analyze the relationships between SF-36 domains and BRV (adjusted for intracranial cavity), as well as sex, age, education, obesity, and hypertension. The average age (±SD) of subjects was 56 ± 11.5 years; 71% were female; 39% were obese; 12% had diabetes, 52% hypertension, and 7% dementia. No sex-related differences were found in memory and orientation scores, but women had lower QoL scores. The 1st and 2nd canonical correlation roots support the association of SF-36 domains (except social functioning and role emotional) and total brain volume, frontal lobe volume, frontal pole, lateral orbital lobe, cerebellar, and entorhinal areas. Other variables, including age, dementia, memory score, and systolic blood pressure, had a significant influence. The results of this study demonstrate significant correlations between BRV and SF-36 components, adjusted for covariates. The frontal lobe and insula were associated with the mental health component; the lateral-orbital frontal lobe and entorhinal area were correlated with the physical component. Full article
Show Figures

Graphical abstract

Back to TopTop