Mechanistic Insights into Nano-Maillard Reaction Products Regulating the Quality of Dried Abalones
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of MRPs
2.2. Characterization of MRPs
2.3. Calculation of Quantum Yield and Lifetime
2.4. Cytotoxicity Assessment of MRPs
2.5. Abalone Sample Preparation
2.6. Determination of Drying Kinetics and Rehydration Ratio
2.7. NMR Transverse Relaxation Measurements
2.8. Texture Profile Analysis
2.9. Thiobarbituric Acid-Reactive Substances
2.10. Statistical Analysis
3. Results and Discussion
3.1. Structural Properties and Cytotoxicity of the MRPs
3.2. Optical Properties of the MRPs
3.3. Drying Kinetics and Rehydration
3.4. NMR Analysis of Boiled, Dried, and Rehydrated Abalone
3.5. Evolution of TPA Parameters Related to Boiling and Rehydrating Process in Dried Abalone
3.6. Main Stage and Factor Analysis of Abalone Processing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Li, L.; Lai, P.; Wei, Y.; Lai, C.; Liu, Y.; Yang, M.; Zhou, S.; Chen, J.; Sun, J. Effects of Different Drying Methods on Physicochemical Properties and Nutritional Quality of Abalone Bioactive Peptides. Molecules 2025, 30, 1516. [Google Scholar] [CrossRef]
- Wu, W.; Li, H.; Chen, Y.; Luo, Y.; Zeng, J.; Huang, J.; Gao, T. Recent advances in drying processing technologies for aquatic products. Processes 2024, 12, 942. [Google Scholar] [CrossRef]
- Obajemihi, O.I.; Asipa, A.A. Effective moisture diffusivity and rehydration characteristics of osmo-air dehydrated tomato. Agric. Eng. Int. CIGR J. 2020, 22, 184–192. [Google Scholar]
- Feng, J.; Berton-Carabin, C.C.; Fogliano, V.; Schroën, K. Maillard reaction products as functional components in oil-in-water emulsions: A review highlighting interfacial and antioxidant properties. Trends Food Sci. Technol. 2022, 121, 129–141. [Google Scholar] [CrossRef]
- Nooshkam, M.; Falah, F.; Zareie, Z.; Tabatabaei Yazdi, F.; Shahidi, F.; Mortazavi, S.A. Antioxidant potential and antimicrobial activity of chitosan–inulin conjugates obtained through the Maillard reaction. Food Sci. Biotechnol. 2019, 28, 1861–1869. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Wang, H.; Zhu, Y.; Ma, J.; Ke, Y.; Wang, K.; Liu, Z.; Ni, L.; Lin, C.-C.; Zhang, Y. New insights into the umami and sweet taste of oolong tea: Formation of enhancer n-(1-carboxyethyl)-6-(hydroxymethyl) pyridinium-3-ol (alapyridaine) in roasting via maillard reaction. J. Agric. Food Chem. 2024, 72, 8760–8773. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Yuan, S.; Guo, Y.; Yu, H.; Cheng, Y.; Xie, Y.; Qian, H.; Yao, W. Carbon dots in fried breadcrumbs: In vitro toxicity to normal rat kidney cells and its control method. Process Biochem. 2024, 139, 125–136. [Google Scholar] [CrossRef]
- Xiong, K.; Li, M.-M.; Chen, Y.-Q.; Hu, Y.-M.; Jin, W. Formation and reductionof toxic compounds derived from the Maillard Reaction during the thermal processing of different food matrices. J. Food Prot. 2024, 87, 100338. [Google Scholar] [CrossRef]
- Hu, J.; Bi, J.; Bao, X.; Li, X. Pectin based Maillard reaction products: Formation mechanism and fluorescence characteristics. Food Chem. 2025, 478, 143614. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Y.; Zhang, X.; Liu, J.; Gong, P.; Su, Z.; Fan, L.; Li, G. Emerging nanoparticles in food: Sources, application, and safety. J. Agric. Food Chem. 2023, 71, 3564–3582. [Google Scholar] [CrossRef]
- Wang, N.; Wu, Y.; Zhao, X.; Lai, B.; Sun, N.; Tan, M. Food-borne nanocarriers from roast beef patties for iron delivery. Food Funct. 2019, 10, 6711–6719. [Google Scholar] [CrossRef]
- Zhang, K.; Li, J.; Tan, Z.; Yu, X.; Wang, S.; Zhou, D.; Li, D. Investigation of soy protein isolate-konjac glucomannan sodium salt hydrogel: Molecular docking, microstructure, rheological properties, and 3D printing characteristics. Food Bioprocess Technol. 2025, 18, 3313–3328. [Google Scholar] [CrossRef]
- Cao, J.; Yan, H.; Ye, B.; Shen, Y.; Liu, L. Effects of Maillard reaction products on myoglobin-mediated lipid oxidation during refrigerated storage of carp. Food Chem. 2024, 434, 137465. [Google Scholar] [CrossRef]
- Devi, M.; Rawat, S.; Sharma, S. A comprehensive review of the pyrolysis process: From carbon nanomaterial synthesis to waste treatment. Oxf. Open Mater. Sci. 2021, 1, itab014. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, W.; Chen, J.; Chen, J.; Deng, J.; Wu, G.; Zhou, C.; Jiang, G.; Guan, J.; Luo, D. Effect of ultrasound-assisted Maillard reaction on functional properties and flavor characteristics of Oyster protein enzymatic hydrolysates. Ultrason. Sonochem. 2024, 111, 107113. [Google Scholar] [CrossRef]
- El Hosry, L.; Elias, V.; Chamoun, V.; Halawi, M.; Cayot, P.; Nehme, A.; Bou-Maroun, E. Maillard Reaction: Mechanism, Influencing Parameters, Advantages, Disadvantages, and Food Industrial Applications: A Review. Foods 2025, 14, 1881. [Google Scholar] [CrossRef]
- Liu, Y.; Ran, C.; Zhang, H.; Cheng, Y.; Huanbieke, M.; Liu, Y.; Yang, J.; Mei, Y.; Qu, Y. Effects of the Maillard Reaction on the Structural and Functional Properties of Camel Whey Protein. Foods 2025, 14, 2201. [Google Scholar] [CrossRef] [PubMed]
- Surendran, P.; Lakshmanan, A.; Priya, S.S.; Balakrishnan, K.; Rameshkumar, P.; Kannan, K.; Geetha, P.; Hegde, T.A.; Vinitha, G. Bioinspired fluorescence carbon quantum dots extracted from natural honey: Efficient material for photonic and antibacterial applications. Nano-Struct. Nano-Objects 2020, 24, 100589. [Google Scholar] [CrossRef]
- Xiao, H.; Zhai, Y.; Xie, J.; Wang, T.; Wang, B.; Li, S.; Li, C. Speciation and transformation of nitrogen for spirulina hydrothermal carbonization. Bioresour. Technol. 2019, 286, 121385. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Zhang, S.; Ke, L.; Wu, Q.; Zhang, Q.; Cui, X.; Dai, A.; Xu, C.; Cobb, K.; Liu, Y. Research progress on pyrolysis of nitrogen-containing biomass for fuels, materials, and chemicals production. Sci. Total Environ. 2023, 872, 162214. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Li, S.; Ren, X.; Oladejo, A.O.; Lu, F.; Ma, H. Effects and mechanism of ultrasound pretreatment of protein on the Maillard reaction of protein-hydrolysate from grass carp (Ctenopharyngodon idella). Ultrason. Sonochem. 2020, 64, 104964. [Google Scholar] [CrossRef]
- Han, L.; Zhou, S.; Zhang, X.; Lu, K.; Qi, B.; Li, Y. Effect of carbohydrate type on the structural and functional properties of Maillard-reacted black bean protein. J. Food Sci. 2022, 87, 165–177. [Google Scholar] [CrossRef]
- Cho, S.; Jung, C.-W.; Lee, D.; Byun, Y.; Kim, H.; Han, H.; Kim, J.-H.; Kwon, W. Predictable incorporation of nitrogen into carbon dots: Insights from pinacol rearrangement and iminium ion cyclization. Nanoscale Adv. 2023, 5, 5613–5626. [Google Scholar] [CrossRef]
- Liu, S.; Sun, H.; Ma, G.; Zhang, T.; Wang, L.; Pei, H.; Li, X.; Gao, L. Insights into flavor and key influencing factors of Maillard reaction products: A recent update. Front. Nutr. 2022, 9, 973677. [Google Scholar] [CrossRef] [PubMed]
- Shengbu, M.; Ai, L.; Shi, Q.; Zhao, Q.; Liu, X.; Lai, X. Research Progress of Maillard Reaction and its Application in Processing of Traditional Chinese Medicine. Nat. Prod. Commun. 2024, 19, 1934578X241290620. [Google Scholar] [CrossRef]
- Ju, H.-Y.; Vidyarthi, S.K.; Karim, M.; Yu, X.-L.; Zhang, W.-P.; Xiao, H.-W. Drying quality and energy consumption efficient improvements in hot air drying of papaya slices by step-down relative humidity based on heat and mass transfer characteristics and 3D simulation. Dry. Technol. 2023, 41, 460–476. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Mohanty, P.; Sahu, J.K.; Sahu, J. A critical review on drying of food materials: Recent progress and key challenges. Int. Commun. Heat Mass Transf. 2024, 158, 107863. [Google Scholar] [CrossRef]
- Winiczenko, R.; Kaleta, A.; Górnicki, K. Application of a MOGA Algorithm and ANN in the Optimization of Apple Drying and Rehydration Processes. Processes 2021, 9, 1415. [Google Scholar] [CrossRef]
- Włodarczyk-Stasiak, M.; Mazurek, A.; Jamroz, J.; Pankiewicz, U.; Kowalski, R. Use of sweeteners in osmotic pretreatment before freeze-drying of pear and pineapple. Acta Aliment. 2019, 48, 150–159. [Google Scholar] [CrossRef]
- Sun, Q.; Chen, L.; Zhou, C.; Okonkwo, C.E.; Tang, Y. Effects of cutting and drying method (vacuum freezing, catalytic infrared, and hot air drying) on rehydration kinetics and physicochemical characteristics of ginger (Zingiber officinale Roscoe). J. Food Sci. 2022, 87, 3797–3808. [Google Scholar] [CrossRef]
- Qin, Z.; Han, Y.F.; Wang, N.N.; Liu, H.M.; Zheng, Y.Z.; Wang, X.D. Improvement of the oxidative stability of cold-pressed sesame oil using products from the Maillard reaction of sesame enzymatically hydrolyzed protein and reducing sugars. J. Sci. Food Agric. 2020, 100, 1524–1531. [Google Scholar] [CrossRef]
- Song, Y.; Huang, F.; Li, X.; Han, D.; Zhao, L.; Liang, H.; Rui, M.; Wang, J.; Zhang, C. Water status evolution of pork blocks at different cooking procedures: A two-dimensional LF-NMR T1-T2 relaxation study. Food Res. Int. 2021, 148, 110614. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ma, X.; Zhao, W.; Zhu, R.; Zhu, B.; Dong, X. Exploring the feasibility of Spanish mackerel flavour masking process screening using preference mapping and 2D-LF-NMR. LWT 2023, 181, 114736. [Google Scholar] [CrossRef]
- Luo, J.; Li, M.; Zhang, Y.; Zheng, M.; Chang, M. The low-field NMR studies the change in cellular water in tilapia fillet tissue during different drying conditions. Food Sci. Nutr. 2021, 9, 2644–2657. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Liang, Y.; Tan, Z.; Zhou, D.; Li, D. Characterization of a novel chickpea protein-pullulan hydrogels that efficiently load and release sodium salts: Microstructures, molecular dynamics, and rheological properties. Food Res. Int. 2025, 204, 115951. [Google Scholar] [CrossRef]
- Kheto, A.; Achary, J.V.; Bebartta, R.P.; Sehrawat, R.; Gul, K.; Mujumdar, A.S. Refractance window drying of Spanish cherry (Mimusops elengi Linn) pulp: Impacts on drying kinetics, color, and phytochemical properties. Dry. Technol. 2025, 43, 348–361. [Google Scholar] [CrossRef]
- Kumar, M.; Madhumita, M.; Prabhakar, P.K.; Basu, S. Refractance window drying of food and biological materials: Status on mechanisms, diffusion modelling and hybrid drying approach. Crit. Rev. Food Sci. Nutr. 2024, 64, 3458–3481. [Google Scholar] [CrossRef]
- Zeng, P.; Ruan, Q.; Zhang, Y.; Ning, Z.; Zhang, Y.; Cheng, J.; Wang, X. Effect of drying temperature and presalting methods on the quality and N-nitrosamine formation of dried mud carp (Cirrhinus molitorella). J. Food Process. Preserv. 2018, 42, e13703. [Google Scholar] [CrossRef]
- Özbay, S.; Sariçoban, C. Effects of different levels of salt and temperature on some physico-chemical and colour properties of microwave-dried beef round (M. semitendinosus). Br. Food J. 2021, 123, 2066–2078. [Google Scholar] [CrossRef]
- Dong, X.; Hou, Y.; Wang, Y.; Xu, X.; Wang, K.; Zhao, M.; Prakash, S.; Yu, C. Effect of temperature–time pretreatments on the texture and microstructure of abalone (Haliotis discus hanai). J. Texture Stud. 2018, 49, 503–511. [Google Scholar] [CrossRef]
- Feng, T.-T.; Wu, J.-H.; Liang, X.; Du, M.; Tan, M.-Q.; Qin, L.; Xu, X.-B. Quality properties and formation of α-dicarbonyl compounds in abalone muscle (Haliotis discus) as affected by tenderization and baking processes. J. Food Meas. Charact. 2018, 12, 1503–1512. [Google Scholar] [CrossRef]
- Caballero, D.; Pérez-Palacios, T.; Caro, A.; Antequera, T. Use of magnetic resonance imaging to analyse meat and meat products non-destructively. Food Rev. Int. 2023, 39, 424–440. [Google Scholar] [CrossRef]
- Zhuang, X.; Wang, L.; Jiang, X.; Chen, Y.; Zhou, G. The effects of three polysaccharides on the gelation properties of myofibrillar protein: Phase behaviour and moisture stability. Meat Sci. 2020, 170, 108228. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Con | Con-MRPs | MRPs | |
---|---|---|---|---|
Boiled | Elasticity | 0.85 ± 0.01 ab | - | 0.89 ± 0.05 a |
Chewiness | 4849.73 ± 274.63 b | - | 5849.69 ± 961.05 a | |
Hardness | 8238.61 ± 391.13 ab | - | 8568.76 ± 271.55 a | |
Dried | Elasticity | 0.65 ± 0.02 a | - | 0.63 ± 0.02 a |
Chewiness | 6274.03 ± 637.60 a | - | 5884.81 ± 1219.99 b | |
Hardness | 12,648.37 ± 513.86 b | - | 14,460.47 ± 500.98 a | |
Rehydration | Elasticity | 0.64 ± 0.03 b | 0.65 ± 0.02 ab | 0.67 ± 0.01 a |
Chewiness | 6225.65 ± 529.51 ab | 5979.24 ± 915.55 b | 6582.27 ± 161.47 a | |
Hardness | 13,064.74 ± 932.46 a | 13,209.61 ± 1866.91 a | 10,640.57 ± 433.56 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Ling, H.; Wu, Y.; Li, D.; Wang, S. Mechanistic Insights into Nano-Maillard Reaction Products Regulating the Quality of Dried Abalones. Foods 2025, 14, 2726. https://doi.org/10.3390/foods14152726
Shi J, Ling H, Wu Y, Li D, Wang S. Mechanistic Insights into Nano-Maillard Reaction Products Regulating the Quality of Dried Abalones. Foods. 2025; 14(15):2726. https://doi.org/10.3390/foods14152726
Chicago/Turabian StyleShi, Jialei, Hongbo Ling, Yueling Wu, Deyang Li, and Siqi Wang. 2025. "Mechanistic Insights into Nano-Maillard Reaction Products Regulating the Quality of Dried Abalones" Foods 14, no. 15: 2726. https://doi.org/10.3390/foods14152726
APA StyleShi, J., Ling, H., Wu, Y., Li, D., & Wang, S. (2025). Mechanistic Insights into Nano-Maillard Reaction Products Regulating the Quality of Dried Abalones. Foods, 14(15), 2726. https://doi.org/10.3390/foods14152726