Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = macroscopic quantum coherence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 753 KB  
Article
A Coherent Electrodynamics Theory of Liquid Water
by Antonella De Ninno and Luca Gamberale
Liquids 2025, 5(4), 30; https://doi.org/10.3390/liquids5040030 - 5 Nov 2025
Viewed by 629
Abstract
This study presents a quantum electrodynamics (QED) framework that explains the anomalous behavior of liquid water. The theory posits that water consists of two coexisting phases: a coherent phase, in which molecules form phase-locked coherence domains (CDs), and an incoherent phase that behaves [...] Read more.
This study presents a quantum electrodynamics (QED) framework that explains the anomalous behavior of liquid water. The theory posits that water consists of two coexisting phases: a coherent phase, in which molecules form phase-locked coherence domains (CDs), and an incoherent phase that behaves like a dense van der Waals fluid. By solving polynomial-type equations, we derive key thermodynamic properties, including the minima in the isobaric heat capacity per particle (IHCP) and the isothermal compressibility, as well as the divergent behavior observed near 228 K. The theory also accounts for water’s high static dielectric constant. These results emerge from first-principles QED, integrating quantum coherence with macroscopic thermodynamics. The framework offers a unified explanation for water’s anomalies and has implications for biological systems, materials science, and fundamental physics. Future work will extend the theory to include phase transitions, solute interactions, and the freezing process. Full article
(This article belongs to the Special Issue Energy Transfer in Liquids)
Show Figures

Graphical abstract

27 pages, 5776 KB  
Review
From “Information” to Configuration and Meaning: In Living Systems, the Structure Is the Function
by Paolo Renati and Pierre Madl
Int. J. Mol. Sci. 2025, 26(15), 7319; https://doi.org/10.3390/ijms26157319 - 29 Jul 2025
Viewed by 1717
Abstract
In this position paper, we argue that the conventional understanding of ‘information’ (as generally conceived in science, in a digital fashion) is overly simplistic and not consistently applicable to living systems, which are open systems that cannot be reduced to any kind of [...] Read more.
In this position paper, we argue that the conventional understanding of ‘information’ (as generally conceived in science, in a digital fashion) is overly simplistic and not consistently applicable to living systems, which are open systems that cannot be reduced to any kind of ‘portion’ (building block) ascribed to the category of quantity. Instead, it is a matter of relationships and qualities in an indivisible analogical (and ontological) relationship between any presumed ‘software’ and ‘hardware’ (information/matter, psyche/soma). Furthermore, in biological systems, contrary to Shannon’s definition, which is well-suited to telecommunications and informatics, any kind of ‘information’ is the opposite of internal entropy, as it depends directly on order: it is associated with distinction and differentiation, rather than flattening and homogenisation. Moreover, the high degree of structural compartmentalisation of living matter prevents its energetics from being thermodynamically described by using a macroscopic, bulk state function. This requires the Second Principle of Thermodynamics to be redefined in order to make it applicable to living systems. For these reasons, any static, bit-related concept of ‘information’ is inadequate, as it fails to consider the system’s evolution, it being, in essence, the organized coupling to its own environment. From the perspective of quantum field theory (QFT), where many vacuum levels, symmetry breaking, dissipation, coherence and phase transitions can be described, a consistent picture emerges that portrays any living system as a relational process that exists as a flux of context-dependent meanings. This epistemological shift is also associated with a transition away from the ‘particle view’ (first quantisation) characteristic of quantum mechanics (QM) towards the ‘field view’ possible only in QFT (second quantisation). This crucial transition must take place in life sciences, particularly regarding the methodological approaches. Foremost because biological systems cannot be conceived as ‘objects’, but rather as non-confinable processes and relationships. Full article
Show Figures

Figure 1

16 pages, 1681 KB  
Article
Thermal–Condensate Collisional Effects on Atomic Josephson Junction Dynamics
by Klejdja Xhani and Nick P. Proukakis
Atoms 2025, 13(8), 68; https://doi.org/10.3390/atoms13080068 - 22 Jul 2025
Viewed by 1353
Abstract
We investigate how collisional interactions between the condensate and the thermal cloud influence the distinct dynamical regimes (Josephson plasma, phase-slip-induced dissipative regime, and macroscopic quantum self-trapping) emerging in ultracold atomic Josephson junctions at non-zero subcritical temperatures. Specifically, we discuss how the self-consistent dynamical [...] Read more.
We investigate how collisional interactions between the condensate and the thermal cloud influence the distinct dynamical regimes (Josephson plasma, phase-slip-induced dissipative regime, and macroscopic quantum self-trapping) emerging in ultracold atomic Josephson junctions at non-zero subcritical temperatures. Specifically, we discuss how the self-consistent dynamical inclusion of collisional processes facilitating the exchange of particles between the condensate and the thermal cloud impacts both the condensate and the thermal currents, demonstrating that their relative importance depends on the system’s dynamical regime. Our study is performed within the full context of the Zaremba–Nikuni–Griffin (ZNG) formalism, which couples a dissipative Gross–Pitaevskii equation for the condensate dynamics to a quantum Boltzmann equation with collisional terms for the thermal cloud. In the Josephson plasma oscillation and vortex-induced dissipative regimes, collisions markedly alter dynamics at intermediate-to-high temperatures, amplifying damping in the condensate imbalance mode and inducing measurable frequency shifts. In the self-trapping regime, collisions destabilize the system even at low temperatures, prompting a transition to Josephson-like dynamics on a temperature-dependent timescale. Our results show the interplay between coherence, dissipation, and thermal effects in a Bose–Einstein condensate at a finite temperature, providing a framework for tailoring Josephson junction dynamics in experimentally accessible regimes. Full article
(This article belongs to the Special Issue Quantum Technologies with Ultracold Atoms)
Show Figures

Figure 1

28 pages, 1450 KB  
Review
N00N State Generation by Floquet Engineering
by Yusef Maleki
Mathematics 2025, 13(10), 1667; https://doi.org/10.3390/math13101667 - 19 May 2025
Viewed by 1442
Abstract
We review quantum architectures for engineering the N00N state, a bipartite maximally entangled state essential in quantum metrology. These schemes transform the initial state |N|0 into the N00N state, [...] Read more.
We review quantum architectures for engineering the N00N state, a bipartite maximally entangled state essential in quantum metrology. These schemes transform the initial state |N|0 into the N00N state, 12(|N|0+|0|N), where |N and |0 are Fock states with N and 0 excitations, respectively. We demonstrate that this state can be generated through superpositions of quantum light modes, hybrid light–matter interactions, or spin ensembles. Our approach also enables the creation of mesoscopic and macroscopic entangled states, including entangled coherent and squeezed states. Furthermore, we show that a broad class of maximally entangled states can be realized within this framework. Extensions to multi-mode state engineering are also explored. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

13 pages, 524 KB  
Article
At the Edge of Uncertainty: Decoding the Cosmological Constant Value with the Bose–Einstein Distribution
by Ahmed Farag Ali and Nader Inan
Astronomy 2025, 4(2), 8; https://doi.org/10.3390/astronomy4020008 - 13 May 2025
Viewed by 1512
Abstract
We propose that the observed value of the cosmological constant may be explained by a fundamental uncertainty in the spacetime metric, which arises when combining the principle that mass and energy curve spacetime with the quantum uncertainty associated with particle localization. Since the [...] Read more.
We propose that the observed value of the cosmological constant may be explained by a fundamental uncertainty in the spacetime metric, which arises when combining the principle that mass and energy curve spacetime with the quantum uncertainty associated with particle localization. Since the position of a quantum particle cannot be sharply defined, the gravitational influence of such particles leads to intrinsic ambiguity in the formation of spacetime geometry. Recent experimental studies suggest that gravitational effects persist down to length scales of approximately 105 m, while quantum coherence and macroscopic quantum phenomena such as Bose–Einstein condensation and superfluidity also manifest at similar scales. Motivated by these findings, we identify a length scale of spacetime uncertainty, LZ2.2×105 m, which corresponds to the geometric mean of the Planck length and the radius of the observable universe. We argue that this intermediate scale may act as an effective cutoff in vacuum energy calculations. Furthermore, we explore the interpretation of dark energy as a Bose–Einstein distribution with a characteristic reduced wavelength matching this uncertainty scale. This approach provides a potential bridge between cosmological and quantum regimes and offers a phenomenologically motivated perspective on the cosmological constant problem. Full article
Show Figures

Figure 1

18 pages, 592 KB  
Article
Enhancing the Cooling of a Rotating Mirror in a Laguerre–Gaussian Cavity Optorotational System via Nonlinear Cross-Kerr Interaction
by Xinyue Cao, Sumei Huang, Li Deng and Aixi Chen
Photonics 2024, 11(10), 960; https://doi.org/10.3390/photonics11100960 - 13 Oct 2024
Cited by 1 | Viewed by 1410
Abstract
The cooling of a macroscopic mechanical oscillator to its quantum ground state is an important step for achieving coherent control over mechanical quantum states. Here, we theoretically study the cooling of a rotating mirror in a Laguerre–Gaussian (L-G) cavity optorotational system with a [...] Read more.
The cooling of a macroscopic mechanical oscillator to its quantum ground state is an important step for achieving coherent control over mechanical quantum states. Here, we theoretically study the cooling of a rotating mirror in a Laguerre–Gaussian (L-G) cavity optorotational system with a nonlinear cross-Kerr (CK) interaction. We discuss the effects of the nonlinear CK coupling strength, the cavity detuning, the power of the input Gaussian beam, the topological charge (TC) of the L-G cavity mode, the mass of the rotating mirror, and the cavity length on the cooling of the rotating mirror. We find that it is only possible to realize the improvement in the cooling of the rotating mirror by the nonlinear CK interaction when the cavity detuning is less than the mechanical frequency. Compared to the case without the nonlinear CK interaction, we find that the cooling of the rotating mirror can be improved by the nonlinear CK interaction at lower laser powers, smaller TCs of the L-G cavity mode, larger masses of a rotating mirror, and longer optorotational cavities. We show that the cooling of the rotating mirror can be enhanced by the nonlinear CK interaction by a factor of about 23.3 compared to that without the nonlinear CK interaction. Full article
(This article belongs to the Section Quantum Photonics and Technologies)
Show Figures

Figure 1

28 pages, 13451 KB  
Article
The Nature of Pointer States and Their Role in Macroscopic Quantum Coherence
by Philip Turner and Laurent Nottale
Condens. Matter 2024, 9(3), 29; https://doi.org/10.3390/condmat9030029 - 17 Jul 2024
Viewed by 2171
Abstract
This article begins with an interdisciplinary review of a hydrodynamic approach to understanding the origins and nature of macroscopic quantum phenomena in high-temperature superconductivity, superfluidity, turbulence and biological systems. Building on this review, we consider new theoretical insights into the origin and nature [...] Read more.
This article begins with an interdisciplinary review of a hydrodynamic approach to understanding the origins and nature of macroscopic quantum phenomena in high-temperature superconductivity, superfluidity, turbulence and biological systems. Building on this review, we consider new theoretical insights into the origin and nature of pointer states and their role in the emergence of quantum systems. The approach includes a theory of quantum coherence underpinned by turbulence, generated by a field of pointer states, which take the form of recirculating, spin-1/2 vortices (toroids), interconnected via a cascade of spin-1 vortices. Decoherence occurs when the bosonic network connecting pointer states is disrupted, leading to their localisation. Building further on this work, we explore how quantum particles (in the form of different vortex structures) could emerge as the product of a causal dynamic process, within a turbulent (fractal) spacetime. The resulting particle structures offer new insights into intrinsic spin, the probabilistic nature of the wave function and how we might consider pointer states within the standard “point source” representation of a quantum particle, which intuitively requires a more complexed description. Full article
(This article belongs to the Special Issue Feature Papers from Condensed Matter Editorial Board Members)
Show Figures

Figure 1

12 pages, 8570 KB  
Article
Quantized Microcavity Polariton Lasing Based on InGaN Localized Excitons
by Huying Zheng, Runchen Wang, Xuebing Gong, Junxing Dong, Lisheng Wang, Jingzhuo Wang, Yifan Zhang, Yan Shen, Huanjun Chen, Baijun Zhang and Hai Zhu
Nanomaterials 2024, 14(14), 1197; https://doi.org/10.3390/nano14141197 - 14 Jul 2024
Viewed by 2132
Abstract
Exciton–polaritons, which are bosonic quasiparticles with an extremely low mass, play a key role in understanding macroscopic quantum effects related to Bose–Einstein condensation (BEC) in solid-state systems. The study of trapped polaritons in a potential well provides an ideal platform for manipulating polariton [...] Read more.
Exciton–polaritons, which are bosonic quasiparticles with an extremely low mass, play a key role in understanding macroscopic quantum effects related to Bose–Einstein condensation (BEC) in solid-state systems. The study of trapped polaritons in a potential well provides an ideal platform for manipulating polariton condensates, enabling polariton lasing with specific formation in k-space. Here, we realize quantized microcavity polariton lasing in simple harmonic oscillator (SHO) states based on spatial localized excitons in InGaN/GaN quantum wells (QWs). Benefiting from the high exciton binding energy (90 meV) and large oscillator strength of the localized exciton, room-temperature (RT) polaritons with large Rabi splitting (61 meV) are obtained in a strongly coupled microcavity. The manipulation of polariton condensates is performed through a parabolic potential well created by optical pump control. Under the confinement situation, trapped polaritons are controlled to be distributed in the selected quantized energy sublevels of the SHO state. The maximum energy spacing of 11.3 meV is observed in the SHO sublevels, indicating the robust polariton trapping of the parabolic potential well. Coherent quantized polariton lasing is achieved in the ground state of the SHO state and the coherence property of the lasing is analyzed through the measurements of spatial interference patterns and g(2)(τ). Our results offer a feasible route to explore the manipulation of macroscopic quantum coherent states and to fabricate novel polariton devices towards room-temperature operations. Full article
(This article belongs to the Special Issue Nanoscale Materials and Their Photonic Devices)
Show Figures

Figure 1

45 pages, 697 KB  
Article
The Computational Universe: Quantum Quirks and Everyday Reality, Actual Time, Free Will, the Classical Limit Problem in Quantum Loop Gravity and Causal Dynamical Triangulation
by Piero Chiarelli and Simone Chiarelli
Quantum Rep. 2024, 6(2), 278-322; https://doi.org/10.3390/quantum6020020 - 20 Jun 2024
Viewed by 2887
Abstract
The simulation analogy presented in this work enhances the accessibility of abstract quantum theories, specifically the stochastic hydrodynamic model (SQHM), by relating them to our daily experiences. The SQHM incorporates the influence of fluctuating gravitational background, a form of dark energy, into quantum [...] Read more.
The simulation analogy presented in this work enhances the accessibility of abstract quantum theories, specifically the stochastic hydrodynamic model (SQHM), by relating them to our daily experiences. The SQHM incorporates the influence of fluctuating gravitational background, a form of dark energy, into quantum equations. This model successfully addresses key aspects of objective-collapse theories, including resolving the ‘tails’ problem through the definition of quantum potential length of interaction in addition to the De Broglie length, beyond which coherent Schrödinger quantum behavior and wavefunction tails cannot be maintained. The SQHM emphasizes that an external environment is unnecessary, asserting that the quantum stochastic behavior leading to wavefunction collapse can be an inherent property of physics in a spacetime with fluctuating metrics. Embedded in relativistic quantum mechanics, the theory establishes a coherent link between the uncertainty principle and the constancy of light speed, aligning seamlessly with finite information transmission speed. Within quantum mechanics submitted to fluctuations, the SQHM derives the indeterminacy relation between energy and time, offering insights into measurement processes impossible within a finite time interval in a truly quantum global system. Experimental validation is found in confirming the Lindemann constant for solid lattice melting points and the 4He transition from fluid to superfluid states. The SQHM’s self-consistency lies in its ability to describe the dynamics of wavefunction decay (collapse) and the measure process. Additionally, the theory resolves the pre-existing reality problem by showing that large-scale systems naturally decay into decoherent states stable in time. Continuing, the paper demonstrates that the physical dynamics of SQHM can be analogized to a computer simulation employing optimization procedures for realization. This perspective elucidates the concept of time in contemporary reality and enriches our comprehension of free will. The overall framework introduces an irreversible process impacting the manifestation of macroscopic reality at the present time, asserting that the multiverse exists solely in future states, with the past comprising the formed universe after the current moment. Locally uncorrelated projective decays of wavefunction, at the present time, function as a reduction of the multiverse to a single universe. Macroscopic reality, characterized by a foam-like consistency where microscopic domains with quantum properties coexist, offers insights into how our consciousness perceives dynamic reality. It also sheds light on the spontaneous emergence of gravity in discrete quantum spacetime evolution, and the achievement of the classical general relativity limit in quantum loop gravity and causal dynamical triangulation. The simulation analogy highlights a strategy focused on minimizing information processing, facilitating the universal simulation in solving its predetermined problem. From within, reality becomes the manifestation of specific physical laws emerging from the inherent structure of the simulation devised to address its particular issue. In this context, the reality simulation appears to employ an optimization strategy, minimizing information loss and data management in line with the simulation’s intended purpose. Full article
Show Figures

Figure 1

19 pages, 2260 KB  
Article
Quantum Dynamics of Cavity–Bose–Einstein Condensates in a Gravitational Field
by Zhen Li, Wang-Jun Lu and Ya-Feng Jiao
Photonics 2024, 11(3), 205; https://doi.org/10.3390/photonics11030205 - 24 Feb 2024
Viewed by 2887
Abstract
We theoretically studied the quantum dynamics of a cavity–Bose–Einstein condensate (BEC) system in a gravitational field, which is composed of a Fabry–Pérot cavity and a BEC. We also show how to deterministically generate the transient macroscopic quantum superposition states (MQSSs) of the cavity [...] Read more.
We theoretically studied the quantum dynamics of a cavity–Bose–Einstein condensate (BEC) system in a gravitational field, which is composed of a Fabry–Pérot cavity and a BEC. We also show how to deterministically generate the transient macroscopic quantum superposition states (MQSSs) of the cavity by the use of optomechanical coupling between the cavity field and the BEC. The quantum dynamics of the cavity–BEC system specifically include phase space trajectory dynamics, system excitation number dynamics, quantum entanglement dynamics, and quantum coherence dynamics. We found that the system performs increasingly complex trajectories for larger values of the Newtonian gravity parameter. Moreover, the number of phonon excitations of the system can be increased by coupling the cavity–BEC system to Newtonian gravity, which is analogous to an external direct current drive. The scattering of atoms inside the BEC affects the periodicity of the quantum dynamics of the system. We demonstrate a curious complementarity relation between the quantum entanglement and quantum coherence of cavity–BEC systems and found that the complementarity property can be sustained to some extent, despite being in the presence of the cavity decay. This phenomenon also goes some way to show that quantum entanglement and quantum coherence can be referred to together as quantum resources. Full article
Show Figures

Figure 1

17 pages, 811 KB  
Article
Gauge-Invariant Quantum Thermodynamics: Consequences for the First Law
by Lucas C. Céleri and Łukasz Rudnicki
Entropy 2024, 26(2), 111; https://doi.org/10.3390/e26020111 - 25 Jan 2024
Cited by 7 | Viewed by 3022
Abstract
The universality of classical thermodynamics rests on the central limit theorem, due to which, measurements of thermal fluctuations are unable to reveal detailed information regarding the microscopic structure of a macroscopic body. When small systems are considered and fluctuations become important, thermodynamic quantities [...] Read more.
The universality of classical thermodynamics rests on the central limit theorem, due to which, measurements of thermal fluctuations are unable to reveal detailed information regarding the microscopic structure of a macroscopic body. When small systems are considered and fluctuations become important, thermodynamic quantities can be understood in the context of classical stochastic mechanics. A fundamental assumption behind thermodynamics is therefore that of coarse graining, which stems from a substantial lack of control over all degrees of freedom. However, when quantum systems are concerned, one claims a high level of control. As a consequence, information theory plays a major role in the identification of thermodynamic functions. Here, drawing from the concept of gauge symmetry—essential in all modern physical theories—we put forward a new possible intermediate route. Working within the realm of quantum thermodynamics, we explicitly construct physically motivated gauge transformations which encode a gentle variant of coarse graining behind thermodynamics. As a first application of this new framework, we reinterpret quantum work and heat, as well as the role of quantum coherence. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

33 pages, 4382 KB  
Article
Weak versus Deterministic Macroscopic Realism, and Einstein–Podolsky–Rosen’s Elements of Reality
by Jesse Fulton, Manushan Thenabadu, Run Yan Teh and Margaret D. Reid
Entropy 2024, 26(1), 11; https://doi.org/10.3390/e26010011 - 21 Dec 2023
Cited by 9 | Viewed by 2774
Abstract
The violation of a Leggett–Garg inequality confirms the incompatibility between quantum mechanics and the combined premises (called macro-realism) of macroscopic realism (MR) and noninvasive measurability (NIM). Arguments can be given that the incompatibility arises because MR fails for systems in a superposition of [...] Read more.
The violation of a Leggett–Garg inequality confirms the incompatibility between quantum mechanics and the combined premises (called macro-realism) of macroscopic realism (MR) and noninvasive measurability (NIM). Arguments can be given that the incompatibility arises because MR fails for systems in a superposition of macroscopically distinct states—or else, that NIM fails. In this paper, we consider a strong negation of macro-realism, involving superpositions of coherent states, where the NIM premise is replaced by Bell’s locality premise. We follow recent work and propose the validity of a subset of Einstein–Podolsky–Rosen (EPR) and Leggett–Garg premises, referred to as weak macroscopic realism (wMR). In finding consistency with wMR, we identify that the Leggett–Garg inequalities are violated because of failure of both MR and NIM, but also that both are valid in a weaker (less restrictive) sense. Weak MR is distinguished from deterministic macroscopic realism (dMR) by recognizing that a measurement involves a reversible unitary interaction that establishes the measurement setting. Weak MR posits that a predetermined value for the outcome of a measurement can be attributed to the system after the interaction, when the measurement setting is experimentally specified. An extended definition of wMR considers the “element of reality” defined by EPR for system A, where one can predict with certainty the outcome of a measurement on A by performing a measurement on system B. Weak MR posits that this element of reality exists once the unitary interaction determining the measurement setting at B has occurred. We demonstrate compatibility of systems violating Leggett–Garg inequalities with wMR but point out that dMR has been shown to be falsifiable. Other tests of wMR are proposed, the predictions of wMR agreeing with quantum mechanics. Finally, we compare wMR with macro-realism models discussed elsewhere. An argument in favour of wMR is presented: wMR resolves a potential contradiction pointed out by Leggett and Garg between failure of macro-realism and assumptions intrinsic to quantum measurement theory. Full article
(This article belongs to the Special Issue Quantum Correlations, Contextuality, and Quantum Nonlocality)
Show Figures

Figure 1

13 pages, 2324 KB  
Article
Phase-Controlled Tunable Unconventional Photon Blockade in a Single-Atom-Cavity System
by Hong Li, Ming Liu, Feng Yang, Siqi Zhang and Shengping Ruan
Micromachines 2023, 14(11), 2123; https://doi.org/10.3390/mi14112123 - 19 Nov 2023
Cited by 1 | Viewed by 2129
Abstract
In the past few years, cavity optomechanical systems have received extensive attention and research and have achieved rapid development both theoretically and experimentally. The systems play an important role in many fields, such as quantum information processing, optomechanical storage, high-precision measurement, macroscopic entanglement, [...] Read more.
In the past few years, cavity optomechanical systems have received extensive attention and research and have achieved rapid development both theoretically and experimentally. The systems play an important role in many fields, such as quantum information processing, optomechanical storage, high-precision measurement, macroscopic entanglement, ultrasensitive sensors and so on. Photon manipulation has always been one of the key tasks in quantum information science and technology. Photon blockade is an important way to realize single photon sources and plays an important role in the field of quantum information. Due to the nonlinear coupling of the optical force system, the energy level is not harmonic, resulting in a photon blockade effect. In this paper, we study the phase-controlled tunable unconventional photon blockade in a single-atom-cavity system, and the second-order nonlinear crystals are attached to the cavity. The cavity interacts with squeezed light, which results in a nonlinear process. The system is driven by a complex pulsed laser, and the strength of the coherent driving contains the phase. We want to study the effect of squeezed light and phase. We use the second-order correlation function to numerically and theoretically analyze the photon blockade effect. We show that quantum interference of two-photon excitation between three different transition pathways can cause a photon blockade effect. When there is no squeezed light, the interference pathways becomes two, but there are still photon blockade effects. We explore the influence of the tunable phase and second-order nonlinear strength on the photon blockade effect. We calculate the correlation function and compare the numerical results with the analytical results under certain parameters and find that the agreement is better. Full article
(This article belongs to the Special Issue Chip Scale Quantum Technologies)
Show Figures

Figure 1

21 pages, 9092 KB  
Review
Neutron Interferometer Experiments Studying Fundamental Features of Quantum Mechanics
by Armin Danner, Hartmut Lemmel, Richard Wagner, Stephan Sponar and Yuji Hasegawa
Atoms 2023, 11(6), 98; https://doi.org/10.3390/atoms11060098 - 15 Jun 2023
Cited by 5 | Viewed by 3135
Abstract
Quantum theory provides us with the best account of microscopic components of matter as well as of radiation. It was introduced in the twentieth century and has experienced a wide range of success. Although the theory’s probabilistic predictions of final experimental outcomes is [...] Read more.
Quantum theory provides us with the best account of microscopic components of matter as well as of radiation. It was introduced in the twentieth century and has experienced a wide range of success. Although the theory’s probabilistic predictions of final experimental outcomes is found to be correct with high precision, there is no general consensus regarding what is actually going on with a quantum system “en route”, or rather the perceivable intermediate behavior of a quantum system, e.g., the particle’s behavior in the double-slit experiment. Neutron interferometry using single silicon perfect crystals is established as a versatile tool to test fundamental phenomena in quantum mechanics, where an incident neutron beam is coherently split in two or three beam paths with macroscopic separation of several centimeters. Here, we present quantum optical experiments with these matter-wave interferometers, studying the effect of the quantum Cheshire Cat in some variants, the neutron’s presence in the paths of the interferometer as well as the direct test of a commutation relation. To reduce disturbances induced by the measurement, the interaction strength is lessened and so-called weak interactions are exploited by employing pre- and post-selection procedures. All results of the experiments confirm the predictions of quantum theory; the observed behaviors of the neutron between the pre- and post-selection in space and time emphasize striking and counter-intuitive aspects of quantum theory. Full article
(This article belongs to the Special Issue Advances in and Prospects for Matter Wave Interferometry)
Show Figures

Figure 1

11 pages, 3187 KB  
Article
Quantum Coherence in Loopless Superconductive Networks
by Massimiliano Lucci, Valerio Campanari, Davide Cassi, Vittorio Merlo, Francesco Romeo, Gaetano Salina and Matteo Cirillo
Entropy 2022, 24(11), 1690; https://doi.org/10.3390/e24111690 - 18 Nov 2022
Cited by 4 | Viewed by 2167
Abstract
Measurements indicating that planar networks of superconductive islands connected by Josephson junctions display long-range quantum coherence are reported. The networks consist of superconducting islands connected by Josephson junctions and have a tree-like topological structure containing no loops. Enhancements of superconductive gaps over specific [...] Read more.
Measurements indicating that planar networks of superconductive islands connected by Josephson junctions display long-range quantum coherence are reported. The networks consist of superconducting islands connected by Josephson junctions and have a tree-like topological structure containing no loops. Enhancements of superconductive gaps over specific branches of the networks and sharp increases in pair currents are the main signatures of the coherent states. In order to unambiguously attribute the observed effects to branches being embedded in the networks, comparisons with geometrically equivalent—but isolated—counterparts are reported. Tuning the Josephson coupling energy by an external magnetic field generates increases in the Josephson currents, along the above-mentioned specific branches, which follow a functional dependence typical of phase transitions. Results are presented for double comb and star geometry networks, and in both cases, the observed effects provide positive quantitative evidence of the predictions of existing theoretical models. Full article
(This article belongs to the Special Issue Quantum Information and Quantum Optics)
Show Figures

Figure 1

Back to TopTop