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Abstract: The universality of classical thermodynamics rests on the central limit theorem, due to
which, measurements of thermal fluctuations are unable to reveal detailed information regarding the
microscopic structure of a macroscopic body. When small systems are considered and fluctuations
become important, thermodynamic quantities can be understood in the context of classical stochastic
mechanics. A fundamental assumption behind thermodynamics is therefore that of coarse graining,
which stems from a substantial lack of control over all degrees of freedom. However, when quantum
systems are concerned, one claims a high level of control. As a consequence, information theory
plays a major role in the identification of thermodynamic functions. Here, drawing from the concept
of gauge symmetry—essential in all modern physical theories—we put forward a new possible
intermediate route. Working within the realm of quantum thermodynamics, we explicitly construct
physically motivated gauge transformations which encode a gentle variant of coarse graining behind
thermodynamics. As a first application of this new framework, we reinterpret quantum work and
heat, as well as the role of quantum coherence.
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1. Introduction

Classical thermodynamics and quantum thermodynamics rely on very different
paradigms. Classical thermodynamics is based on a fundamental fact that we do not
have access to microscopic degrees of freedom of a macroscopic system. Measurements
reveal an average over space and time since our clocks and rules are not able to follow
the underlying complex dynamics of the system. This is referred to here as low ability
of controlling the system at hand, also known as coarse graining, and it constitutes the
well-known thermodynamic limit from which the thermodynamic variables emerge [1].
Leaving such limit and diving towards smaller and smaller scales where fluctuations be-
come important, we still expect classical thermodynamics to hold on average, and statistical
mechanics can be employed in order to properly describe the system [2–5].

Diving even deeper, we enter the realm of quantum mechanics, where thermodynam-
ics acquires a different flavor. Here, the focus is often on systems with a few degrees of
freedom, subject to a high level of control. By this we mean that in order to compute or
measure thermodynamic quantities in this regime we do need to know the state of the
system and, most of the times, also the state of the environment. In contrast to classical
thermodynamics, we can perform sharp measurements in the quantum realm. It is under
this context that information theory starts playing a crucial role [6–9] in the sense that
thermodynamic quantities are operationally defined in terms of informational ones [9].

Here, we propose a new route towards quantum thermodynamics, which at the same
time aims to keep the spirit of classical thermodynamics. From the point of view of ther-
modynamics, the quantum state caries too much information, introducing a redundancy

Entropy 2024, 26, 111. https://doi.org/10.3390/e26020111 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26020111
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-5120-8176
https://doi.org/10.3390/e26020111
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26020111?type=check_update&version=2


Entropy 2024, 26, 111 2 of 17

that should be eliminated, in the same spirit that in classical thermodynamics, the com-
plete knowledge of the positions and velocities of all particles constituting the system is
redundant and washed away by the average process discussed above (see Figure 1 for an
illustration). There is a fundamental principle in physics, named gauge invariance, that
does precisely this [10]. The basic idea behind this principle is that physical quantities are
invariant under certain symmetry transformations of the system.

Figure 1. Emergent gauge theory of quantum thermodynamics. Quantum description of systems and
their dynamics, taken together with the limited access to the details, characteristic to thermodynamics,
do form an intermediate theory: quantum thermodynamics subject to an emergent gauge symmetry.
Note that full quantum description is richer than full classical description. This means that while
for the classical description it seems enough to employ averaging, for the quantum description
it is not sufficient. This is because in quantum physics we also carry information about bases of
the Hilbert space, in particular, the eigenbasis of the Hamiltonian. That is the reason we do need
something more than just an average process to wash away all the redundancy of the quantum
description. Importantly, this redundancy is truly redundant only while discussed from a more
classical point of view on thermodynamics. From the information theory point of view (quantum
dynamics, e.g., Schrödinger equation), this is not redundant at all.

The main goal of the present work is to build a gauge group for quantum thermo-
dynamics that is able to remove the aforementioned redundant information stored in a
quantum system and then define the relevant physical quantities, like work and heat, based
on the gauge invariance principle. In other words, we propose a new framework, based on
the gauge principle, from which quantum thermodynamic quantities emerge.

It is important to observe that there is a crucial difference between the gauge symmetry
of classical and quantum field theories, and the one we identify behind thermodynamics.
In the former case, the fundamental gauge transformations take us from potentials (e.g.,
vector potential in electrodynamics) to physically meaningful quantities such as scattering
amplitudes [10]. As already mentioned, in our theory, the gauge takes us from information
theory to the thermodynamic quantities. In other words, the principle of gauge invariance
is employed here exactly to wash away information which is “too detailed”. However,
this redundancy is not fundamental, as in the case of classical and quantum field theories,
but is redundant only in the context of thermodynamics and not, for instance, in the context
of information theory. That is why we speak about an emergent gauge theory. Figure 2
illustrates this idea.



Entropy 2024, 26, 111 3 of 17

Figure 2. Emergent thermodynamic gauge. The panel on the left illustrates the fundamental gauge
behind field theories, both classical and quantum. The set of potentials Aµ(x) does not have any
physical meaning and the gauge transformations take us from this set to the scattering amplitudes that
can be experimentally investigated. The right panel represents the emergent thermodynamic gauge
G proposed in this work. Such transformations take us from the set of time-dependent information
carriers ρt, that convey no thermodynamic meaning, to the set of thermodynamically meaningful
quantities. The gauge emerges from the coarse-graining nature of thermodynamics, being, in this
sense, not fundamental as the one behind field theories. In other words, the information here is only
redundant from the thermodynamic point of view, in the same sense that the positions and velocities
of individual molecules of a gas are redundant in the context of classical thermodynamics.

Although our theory is built with reference to mean energy, which is always un-
ambiguously defined, it provides a general framework to define every thermodynamic
quantity. As an application, we infer conclusions relevant for the first law of quantum
thermodynamics. In particular, we construct notions of invariant work and heat. Moreover,
our framework allows us to clarify the role of quantum coherences, because the resulting
gauge-invariant notion of heat covers delocalized energy, thus being present even in closed
quantum systems. Note that in classical thermodynamics, when a system is taken out
of equilibrium, energy fluxes (in the form of heat) can be generated inside the system.
Thus, the concept of heat in closed classical systems is well-known [1], even in relativistic
systems [11]. In the context of quantum thermodynamics, the notion of heat in closed
systems contains some subtleties —as well as the notion of work— but it is not a new issue
and has been considered in terms of the generation of quantum coherences in the energy
eigenbasis (see Refs. [12–15], just to mention a few). However, it is important to observe
here that our theory goes far beyond such results. It is just a coincidence that these earlier
definitions agree with our theory. Actually, as such notions naturally emerge from the
gauge group proposed here, our results put these earlier definitions under the umbrella of
gauge symmetry. Note that the more frequently adopted approach, in which heat does not
exist in closed quantum systems, does not agree with our theory in general, as explained in
detail in the text.

The paper is organized as follows. The next section is devoted to the definition of the
emergent thermodynamic gauge, where it is explicitly built and motivated. Based on the
gauge invariance principle, the new definitions of average work and heat are presented in
Sections 3 and 4, respectively. After presenting illustrative examples in Section 5, we finish
with a discussion in Section 6, where we also outline some consequences of our approach
for the statistical definitions of work and heat.
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2. Emergent Thermodynamic Gauge

In field theories, the potentials do not have physical meaning in the sense that they
cannot be measured. The gauge transformations enter here as fundamental symmetries of
the system, coming from the redundancy in the description of the relevant degrees of free-
dom. Considering thermodynamics, carriers of quantum information—the physical states
of the system—play the same role as the potentials do, while thermodynamic quantities are
considered as the physically relevant ones. The gauge, in this sense, is not fundamental
since all thermodynamic quantities emerge from a microscopic description by a process of
coarse graining. The gauge emerges from this process. At the same time, the microscopic
description is physically meaningful, and experimentally accessible. Though, not from the
perspective of standard thermodynamics.

The main goal of this section is to propose a gauge formalism that is able to extract
relevant information from a quantum state of the system. Relevant only in the context of
thermodynamics. Therefore, the primary connection between the gauge theory proposed
here and the one in field theories is that in both cases, the gauge invariance principle is
employed to eliminate redundant information.

To be precise, let Ht be a (possibly time-dependent) Hamiltonian of our system, and let
ρt be a density matrix describing it, which, considered in its entity, is here ascribed to the
domain of information theory. In the present analysis, we restrict the attention to these two
fundamental objects, however, the developed formalism can easily be extended to include
more observables, such as the total number of particles.

In a thermodynamic, coarse-grained description, we are only interested in a par-
ticular set of quantities, such as the mean energy which is essential for the first law of
thermodynamics

U[ρt] = Tr(ρtHt). (1)

In our notation, the mean energy is a functional depending on the density matrix, with the
latter being a function of time.

The next crucial quantity is work associated with a given process that takes place
during the time interval t ∈ [0, τ], defined as [16]

Wu[ρt] =
∫ τ

0
dtTr

(
ρt

dHt

dt

)
. (2)

We add a subscript “u”, derived from a word “usual”, to emphasize the fact that we start
the discussion with standard notions met in quantum thermodynamics. Later on, we
construct gauge transformations which lead us to the corresponding invariant quantities,
later being denoted with the subscript “inv”.

From now one we shall use the dot to denote time derivatives, so that the integrand
in (2) becomes Tr

(
ρtḢt

)
. The functional Wu, even though we do not write that explicitly,

depends on the time derivative of the Hamiltonian. We omit this dependence because the
Hamiltonian does not belong to the set of dependent variables of the theory.

Furthermore, we consider an associated functional

Qu[ρt] =
∫ τ

0
dtTr(ρ̇tHt). (3)

which is the usual notion of heat [16,17]. This functional apparently depends on the time
derivative of the density matrix. However, due to energy conservation Qu = U − Wu,
the heat defined in (3) can be expressed solely by ρt.

In fundamental physics, gauge is realized as an action of a gauge group. Elements of
this group act on variables describing a given theory (potentials). In our parallel, the role of
the potentials is played by the carriers of quantum information, namely, the density matrix
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ρt. Therefore, emergent gauge transformations need to be represented as (some) unitary
matrices Vt acting as follows

ρt 7→ VtρtV†
t . (4)

The emergent gauge is allowed to be time-dependent, the same way as the standard
one in field theories depends on space and time. As a consequence, the time derivative of
the density matrix transforms as

ρ̇t 7→ Vtρ̇tV†
t + V̇tρtV†

t + VtρtV̇†
t , (5)

again resembling familiar transformation patterns.
From a more operational perspective we can think about the transformation (4) as

about a choice of a (time-dependent) basis in which we wish to describe the state of the
system. On the other hand, the eigenbasis of the Hamiltonian plays the role of a fixed
reference frame. Therefore, a more general transformation rule in which together with
(4) the Hamiltonian is being “covariantly” transformed as Ht 7→ VtHtV†

t , is not the route
followed here. While such a transformation not only preserves the mean energy but, more
importantly, resembles Lorentz transformations in Special and diffeomorphisms in General
Relativity, the resulting theory assuming invariance with respect to it is void. This happens
because the associated gauge group contains all unitary transformations, simply being
too large. As we will convince ourselves soon, the gauge group stemming from (4) is
more gentle.

We now observe that, in field theories, only the quantities which are gauge-invariant are
considered as being measurable and physically meaningful. Within our framework of the
emergent gauge in thermodynamics, we adopt the same philosophy, namely, we require
thermodynamically meaningful quantities to be invariant with respect to the proposed
emergent gauge defined in Equation (4). Clearly, not all unitary transformations can be
allowed to render the emergent gauge transformations, as otherwise the theory would be
trivial. To select a desired set of transformations we will build on the primary notion of our
framework, namely, the mean energy which has to be unambiguously gauge-invariant. We
therefore define:

Definition 1 (Emergent thermodynamic gauge). Unitary transformations are admissible gauge
transformations if they preserve the mean energy, independently of a particular state of the system,
i.e.,

U[VtρtV†
t ] = U[ρt] (6)

for all ρt.

Such a definition splits the state space into equivalence classes, under the mean energy.
Inside each element of this set, all the density operators lead to the same mean energy,
although they can hold very different informational meanings. That is precisely the sense
in which we say that the gauge is emergent and not a fundamental one. It is based on our
lack of control over the system and not on a fundamental redundancy in the description of
the system. This is very natural when we talk about quantum systems since, in general, we
are only able to perform a limited set of measurements and the complete reconstruction of
the density matrix is not practical. For instance, in the experiment described in Ref. [18],
although dealing with a closed quantum system, quantum state tomography is prohibitive
due to the dimension of the Hilbert space, and only energy measurements are allowed.
If we consider continuous quantum systems, not even sharp energy measurements are
allowed and energy measurements encompass a finite size energy window.

By virtue of the above definition we are in position to explicitly construct the gauge.
The invariance of the mean energy of any state requires that Tr

[
ρt
(
V†

t HtVt − Ht
)]

= 0 in-
dependently of ρt, which simply means that the unitary operations need to commute with
the Hamiltonian, i.e., [Vt, Ht] = 0 =

[
V†

t , Ht
]
. Therefore, thermodynamic gauge transfor-

mations are simply unitary channels which commute with the Hamiltonian. It is important
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to observe that our emergent gauge is not equivalent to the well-known thermal operations
employed in the resource theory of thermodynamics as free transformations [19,20]. The
gauge group we built involves trivial thermal operations in which there is no interaction
between the system and a potentially present bath. Consequently, the bath can be traced
out, as it plays no role in defining the gauge process. The emergent gauge rather forms a
very particular subclass of the latter operations which, importantly, are not attributed to
additional physical interpretation.

While exploring the structure of the gauge, we first assume that we work with a
d-dimensional system. Then, Vt ∈ U (d), with U (d) representing the set of d × d unitary
matrices. In fact, unitaries which commute with Ht, by definition form a subgroup of
U (d). In this way we again obtain a very close contact with the fundamental gauge in field
theories, as this subgroup can be called the emergent gauge group.

Now, since the Hamiltonian is Hermitian, we can conveniently parametrize all the
members of the emergent gauge group. To this end we express the Hamiltonian as

Ht = ut

( p⊕
k=1

εk(t)1nk

)
u†

t ≡ uthtu†
t , (7)

where p is the number of its distinct eigenvalues, nk is the multiplicity of each εk(t), such
that ∑

p
k=1 nk = d, and ut ∈ U (d). For the sake of clarity, we assume that the degeneracy of

the Hamiltonian does not change in time, however, below and whenever appropriate, we
pinpoint the consequences of an alternative scenario. A detailed mathematical account of
the latter is left for future work.

Every complex d × d matrix M commutes with (7) if and only if it is of the form

M = ut

( p⊕
k=1

Mk

)
u†

t , (8)

where each Mk is an nk × nk block with arbitrary matrix elements. The constraint [Vt, Ht] = 0
therefore enforces

Vt = ut

( p⊕
k=1

vk

)
u†

t , (9)

with vk ∈ U (nk). From a topological point of view, the emergent gauge group is isomorphic
to

G = U (n1)×U (n2)× . . . ×U
(
np
)
. (10)

As long as the degeneracy of Ht does not change in time, the above structure remains intact.
If this is not the case, it just means that the topological structure in Equation (10) does
change as well. Moreover, we observe that even in the non-degenerate case, i.e., when p = d
and n1 = · · · = nd = 1, the group is more than just a d-fold tensor product of trivial phases
just being U(1) elements. For example, all time-dependent unitary operations generated
by Ht belong to G.

On the group G there is an invariant Haar measure induced from that on U (d). There-
fore, the group averaging allows one to assign to each relevant quantity its gauge-invariant
version:

Definition 2 (Gauge-invariant quantities). Given a functional F[ρt], its counterpart invariant
with respect to the emergent gauge is

Finv[ρt] =
∫

dGF
[
VtρtV†

t

]
, (11)

where Vt is given in (9) and dG is the Haar measure on the group G defined in Equation (10).
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It is important to remember that the Haar measure is normalized, i.e.,
∫

dG = 1. When
the degeneracy of Ht is not fixed, this normalized measure just needs to be replaced by an
appropriate (still normalized) functional measure DGt where Gt is a counterpart of (10),
with all {nk} and p being time-dependent.

Before proceeding to a particularly relevant case of work and heat, let us point out that
there is a natural class of quantities which are gauge-invariant by construction. These are all
quantities solely defined on the equilibrium manifold, or even on a family of instantaneous
equilibrium operators ρ

β
t ∼ e−βHt , with β being the inverse temperature. Also, other states

which solely depend on the Hamiltonian, e.g., the microcanonical state, are preserved.
As a final comment, it is important to make it clear that we have two transformations

here. First, we have the unitary transformations that are elements of the gauge group
G. These are only symmetry transformations, not dynamical processes. Their role is
to identify the set of states, at every instant of time, that cannot be distinguished by
measuring thermodynamic variables. The other set of transformations are the physical
processes, which can be any completely positive and trace preserving map, including
adiabatic (reversible) transformations. These are the ones governing the time evolution of
the physical system. Therefore, our theory applies to both equilibrium and non-equilibrium
transformations.

3. Gauge-Invariant Work

It is an easy task to recognize that the average work defined in (2) transforms as

Wu[ρt] 7→ Wu[ρt] +
∫ τ

0
dtTr[Ht, ρt]V†

t V̇t,

with the last term being not invariant with respect to the emergent gauge. This transfor-
mation rule has a deep physical meaning, as the work functional defined in Equation (2)
turns out to be gauge-invariant only when [Ht, ρt] = 0 for all t. The latter means that the
process is adiabatic in the sense that no coherences are generated during time evolution (no
transitions between energy eigenstates are allowed). Such a restriction is required since we
want the invariance to hold for all choices of Vt ∈ G. It is interesting that such a notion of
adiabatic transformation was already considered in literature [12,13]. We will comment
more on this when discussing the invariant heat.

However, the general formalism presented in the preceding section allows us to
provide the notion of work which is invariant with respect to the emergent gauge.

Theorem 1 (Gauge-invariant work). Let ht = u†
t Htut be the diagonal form of the Hamiltonian

Ht, with ut unitary. Then the notion of work which is invariant with respect to the emergent
thermodynamic gauge is given by

Winv[ρt] =
∫ τ

0
dtTr

[
ρtut ḣtu†

t

]
. (12)

It is straightforward to recognize that the right hand side is indeed invariant. Never-
theless, we make a formal proof in the Appendix A. Importantly, the above result does also
hold if the degeneracy of Ht changes in time, as potential contribution coming from that
fact is of zero measure with respect to the time integral. It is a bit more involved to show
that the invariant notion of work is the same as would be given by Equation (11). This fact
is also demonstrated in the Appendix A, with the help of the group averaging techniques.

In order to make closer contact with the usual gauge theory, let us introduce a Hermi-
tian potential At defined by the relation At = iu̇tu†

t . Using this definition, we can rewrite
the invariant work as

Winv[ρt] =
∫ τ

0
dtTr[ρtDtHt], (13)
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with Dt· = ∂t ·+i[At, ·] being a covariant derivative. Note that we have the same functional
form of the usual work defined in Equation (2) but with the covariant derivative instead of
the regular one. Our covariant derivative transforms as

Dt· 7→ D′
t· = ∂t ·+i

[
A′

t, ·
]
, (14)

where
A′

t = V†
t AtVt − iV†

t V̇t, (15)

can be recognized to be the standard non-abelian gauge transformation of the potential.
Note that since the notion of work obtained in Theorem 1 is invariant, we obtain the relation∫ τ

0
dtTr

[
ρtD′

tHt
]
=
∫ τ

0
dtTr[ρtDtHt]. (16)

4. Gauge-Invariant Heat

Taking the invariant notion of work together with primordial invariance of the energy,
the gauge-invariant notion of heat Qinv immediately follows from energy conservation.
The explicit form of the heat is given below, after the role of quantum coherence is discussed
in light of our findings.

We represent the invariant heat as consisting of two independent contributions,
Qinv = Qu + Qc, where the usual heat has already been defined in (3), while the coherent
heat is now defined as

Qc =
∫ τ

0
dtTr

[
ρtu̇thtu†

t + ρtuthtu̇†
t

]
(17)

The quantity Qu has very frequently appeared in the literature as a natural definition
of heat [16,17,21,22]. It is important to note that this term is zero for any closed evolution
since Tr[ρ̇tHt] = 0 via the von Neumann equation. Therefore, such a definition of heat is
associated only with the energy exchanged between the system under consideration and
some other system, like and environment for instance. However, as mentioned earlier,
thermodynamics is a theory about closed systems and well-defined notions of heat in closed
systems are established both for classical and quantum systems. While in classical systems
heat is associated with the energy transferred to the fast oscillating modes of the system (in
a normal mode description) [1], in quantum systems, it is linked with the uncertainty in the
energy measurement, which is caused by the generations of quantum coherences in the
energy eigenbasis [12,13]. Therefore, adiabatic transformations are those that do not allow
for the generations of coherences, implying Qinv = 0 and all the energy transferred to the
system being equal to the invariant notion of work. In this case, the usual notion of work
clearly coincides with the invariant one proposed here.

Indeed, the additional term Qc, the presence of which distinguishes the invariant heat
with respect to the usual one, contains only contributions from the coherences. This fact
can be seen after writing it in the energy eigenbasis.

Let {|ak(t)⟩} and {εk} be the set of time-dependent energy eigenstates and eigenval-
ues, respectively. For simplicity, we for a moment assume that the Hamiltonian is non-
degenerate, i.e., all nk = 1. Qualitatively, however, the same results can be obtained without
this assumption. Since we are talking about work, heat and thermodynamics in general,
the energy eigenbasis seems to be the most appropriate one. At any instant of time, the den-
sity matrix of the system can be represented in this basis as ρt = ∑jl cjl(t)

∣∣aj(t)
〉
⟨al(t)|.

In Appendix A we show that Qc depends only on the differences ε j(t)− εk(t) and,
consequently, all the terms containing the diagonal coefficients of the density matrix, cii(t),
do vanish. This is a universal result stating that the development of internal coherences are
part of the heat. This result provides a gauge flavor to earlier definitions of heat in closed
quantum systems [12–15]. It is important to mention here that, although these studies
consider heat and work in the context of quantum coherences, their definitions are not
mathematically or physically equivalent to ours. All of these references considered distinct
set of transformations or distinct physical motivations in order to define their notions of
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thermodynamic quantities. Our work builds a symmetry group that is able to implement a
sort of (information) coarse-graining procedure from which the thermodynamic quantities
uniquely emerge.

In terms of the covariant derivative introduced earlier, we can rewrite the heat simply
as

Qinv =
∫ τ

0
dtTr[HtDtρt], (18)

which, again, takes the same form as the usual definition of heat, but with the covariant
derivative replacing the standard one.

It is interesting to observe that work and (total) heat are independent of the coherences
in the energy eigenbasis, contrary to the standard quantum definitions. The average total
energy can be written as U[ρt] = ∑k ckk(t)εk(t), while the invariant work takes the form
Winv =

∫ τ
0 dt ∑k ckk(t)ε̇k(t) and the heat is written as Qinv = ∑k ċkk(t)εk(t). Such results

are intuitively expected and are fully compatible with our classical notions of work and
heat, in agreement with the strategy adopted while proposing the gauge-invariant theory
of quantum thermodynamics. This does not imply that the coherences play no role in the
transfer of energy. The generation of coherences are related to the rate at which energy
is being transferred to the system in the form of work and/or heat, thus affecting all
thermodynamic processes, including work extraction and the efficiency of heat engines.
We will come back to this discussion while presenting some examples in the next section.

5. Applications

As explained in the last section, deviations between the two approaches appear
together with quantum effects. This can be seen in the examples discussed in this section,
where the role of coherences is being exposed.

Let us first discuss a single qubit, described by the Hamiltonian Ht = αtσz, undergoing
a non-unitary evolution described by the generalized amplitude damping or the phase
damping channels. These processes can be described by Lindblad master equations of the
general form

ρ̇t = −i[Ht, ρt] +D[ρt],

with D being the non-unitary part of the dynamics (dissipator).
For the dephasing channel the dissipator is given by

D[ρ] = −Γdec
2

[σz, [σz, ρ]], (19)

with σs being the s-th Pauli matrix, while Γdec represents the decoherence rate. The general-
ized amplitude damping is described by the dissipator

D[ρ] = Γa(n̄ + 1)
[

σ−ρσ+ − 1
2
{σ+σ−, ρ}

]
+ Γan̄

[
σ+ρσ− − 1

2
{σ−σ+, ρ}

]
, (20)

where σ+ and σ− are the usual spin ladder operators while n̄ =
(
eβω − 1

)−1 stands for
the mean excitation number of the bath mode with frequency ω. β stands for the inverse
temperature while Γa is the decoherence rate.

Since the Hamiltonian is already diagonal we take ut = 1, implying that ḣt = α̇tσz.
This leads to the following result for the invariant work

Winv =
∫ τ

0
dtα̇t

〈
∂Ht

∂αt

〉
, (21)
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for both channels. Of course, Winv = 0 if αt is time independent. Note that the above
calculations do not assume any specific form of the driving. What matters is the power, i.e,
the rate of energy transfer which is, as expected, influenced by the generation of coherences.

Let us now move to the invariant heat. Since ut is time independent, we have
Qinv = Qu, resulting in

Qinv =
∫ τ

0
dt tr{D[ρt]Ht}. (22)

For the case of the dephasing channel we obtain Qdeph
inv = 0. There is no heat in this

case due to the fact that the coherences are destroyed by the decoherence process induced
by the action of the bath. The final state is diagonal in the energy eigenbasis and there is no
energy flux from the system to the environment (the interaction Hamiltonian is diagonal).
Therefore, all the energy transferred to the system by the driving must be in the form
or work.

In the case of the generalized amplitude damping the invariant heat takes the form
Qgad

inv =
∫ τ

0 dtΦt
E, with Φt

E being the instantaneous energy flux. In this case, the final state of
the system is also diagonal. However, beyond the decoherence process induced by the bath,
there is also an energy exchange between the system and the environment. This energy is
the heat.

Since the dephasing channel only involves the exchange of phase information between
the system and the environment, while the amplitude damping is characterized by energy
exchange, the above results agree with what is expected from classical thermodynam-
ics. It is therefore important to stress that our gauge-invariant approach agrees with the
standard one in cases which are consistently described from a point of view of classical
thermodynamics, but may differ when this is not the case.

Let us now consider the unitary evolution of an externally driven single qubit whose
Hamiltonian can be written as Ht = σz + γtσx, where γt is a time-dependent driven
frequency. In this case we will have coherences being generated during the evolution.
In the appendix we show that the invariant heat is directly linked with the generations of
coherences while the invariant work comes from the changes in the eigenenergies of the
system. Figure 3 shows (see Appendix B for details) the invariant heat and work, along
with the relative entropy of coherence. The latter quantity is a well-behaving measure of
quantum coherence defined as [23]

C = S(ρdiag)− S(ρ), (23)

where ρdiag is the density operator with the off-diagonal (in the the energy eigenbasis)
elements removed, while S stands for the von Neumann entropy.

Note that this example is in deep contrast with the usual understanding met in
quantum thermodynamics, where it is assumed that a unitary evolution does not in-
volve heat [16,17,21,22]. However, as mentioned, this is in perfect agreement with the
notion of heat introduced for closed systems and the definition of quantum adiabatic
processes [12,13]. Therefore, our results provide a firm physical ground—the gauge invari-
ance principle—upon which we can justify why heat in closed quantum systems is linked
with the delocalization of energy, explaining its oscillations for a closed evolution, where
coherences change in time.

As our last example, let us consider a driven LMG model [24]

H =
λ(t)

j
J2
x − Jz, (24)

where λ(t) = (1/4)(tanh[α(t − 1)] + tanh[α]), α is a constant while Ji denotes the i-th
component of the angular momentum operator, whose value is j [so the dimension of the
associated Hilbert space is (2j + 1)]. This choice has two advantages. First, the intensity of
the squeezing parameter λ is in the interval [0, 0.5], which assures that the energy spectrum
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is not degenerated and we also avoid the critical points of the model. Secondly, we can
consider situations from a very slow driving, when α ≪ 1, to sudden quenches, when
α → ∞. The details of the numerical calculations are given in Appendix B and in Figure 4
we present the invariant heat as well as the quantum coherence, considering distinct values
of α.

Figure 3. Energies and coherence. The red dashed line represents the invariant work Winv while
the solid black line is the coherence and the dotted blue line is the invariant heat. We considered
γt = cos(t) and we start from the ground state of the initial Hamiltonian. It is clear that the heat
dynamics are perfectly correlated with the coherence, as can be seen from the calculations shown in
Appendix B.

Figure 4. Heat and coherence. From left to right we show the relative entropy of coherence C and the
invariant heat Qinv as functions of time, for distinct values of the speed of the protocol α. The blue
arrow in the top panel shows the direction in which α is increasing, from α = 1 to α = 10. We choose
j = 50 for all curves and the starting point was the energy ground state for t = 0.

This example shows how the heat scales with the generation of coherences. As we can
see, as time passes, we transition from an adiabatic transformation of the Hamiltonian (too
slow to create coherences) towards a regime where coherences are indeed generated and
we also observe the increase in the generation of heat. In this regime, transitions between
energy eigenstates are inevitably induced by the fast changes in the Hamiltonian and such
transitions are associated with heat.

Beyond the fundamental relevance, the above results are important for the thermody-
namic analysis of heat engines. For instance, let us consider an Otto cycle consisting of four
stages, two non-unitaries (equilibration with thermal baths) and two controlled unitary
transformations. In general, heat is associated with the non-unitary dynamics while all
the energy transferred to/from the system during the unitary transformations is regarded
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as work. Since the efficiency is defined as the ratio between the extracted work and the
heat absorbed from the hot bath, under the present approach, where part of the energy
during the unitary stages is heat, the efficiency of the engine will decrease as we increase
the speed at which these transformations are performed (see Figure 4). This is in complete
agreement with the expected behavior of a heat engine, since fast processes take us far
from equilibrium and, thus, more entropy must be produced and the engine efficiency
must decrease, in accord with the second law of thermodynamics. Our theory naturally
encompasses such behavior.

6. Discussion

Concerning the first law of thermodynamics, the usual notions of heat and work
are based on the Clausius theorem. Heat is associated with the change in the thermo-
dynamic entropy while work is linked with the changes in some externally controlled
parameter. Such notions cannot be simply extended to the quantum world, thus leading to
several definitions of work and heat that are, in general, nonequivalent, but operationally
well-defined [25]. The theory proposed here leads to gauge-invariant definitions of thermo-
dynamic quantities, in particular, heat and work that are not solely related with the change
in the information entropy. Work is associated with the eigenvalues of the Hamiltonian
while heat is connected with the change in the eigenbasis of the Hamiltonian, thus being
deeply linked with energy delocalization. This implies that we can have heat even in a
closed quantum system, which is in sharp contrast with the usual notions of quantum
heat [16,17,21,22]. However, we must remember that such a notion is well-understood in
classical physics, where heat is associated with energy transferred to the degrees of freedom
that are averaged out due to the coarse-grained nature of macroscopic measurements [1].
In quantum physics, things are trickier and, when considering closed systems, heat is usu-
ally associated with transitions (generation of coherences) in the energy eigenbasis [12,13].
In the adopted perspective, coherences in the energy eigenbasis indicate that the energy
variance does not vanish and this uncertainty is here interpreted as heat. Therefore, our
work shows that this notion naturally emerges from the framework of gauge invariance,
a physical principle lying in the basis of all modern physics.

Regarding the notion of statistical work (and heat), the most considered definition
is based on the two-point measurement [26,27]. This protocol has been considered both
theoretically [21,26,28] and experimentally [18,29–34] in distinct contexts within quantum
thermodynamics. Although widely accepted, such scheme does not take into account
the coherences, which are destroyed by the measurements. Therefore, statistical work is
gauge-invariant by construction. Fully quantum fluctuation theorems were developed
in order to take into account this contribution [35–40]. A naturally arising question is
to scrutinize or generalize/modify the fluctuation theorems from the perspective of the
invariant work and heat presented in this work. The implications of such definitions for
the irreversible entropy production will certainly deepen our understanding of quantum
coherence in non-equilibrium thermodynamics.

Another question that can be addressed under this theory is the local thermaliza-
tion of closed quantum many-body systems and how this is linked with the eigenstate
thermalization hypothesis [41] and irreversible entropy production [21].

Perhaps the most important and broad message of the current work is relevant for all
aspects of quantum technologies associated with operational principles behind potential
quantum engines, batteries or refrigerators. Our approach might in the future allow for the
delineation of the boundaries between controlled quantum systems and their thermody-
namic behavior, forming a bridge between classical and quantum thermodynamics, which
starts in the latter paradigm and expands towards the former one.
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Appendix A. Gauge Invariance of Work

We first present a formal proof that Winv defined in Equation (12) in the main text is
invariant with respect to the emergent gauge transformations. To this end we study

Winv[VtρtV†
t ] =

∫ τ

0
dtTr

[
VtρtV†

t ut ḣtu†
t

]
. (A1)

Substituting the explicit form of Vt and ht we find

Tr
[
VtρtV†

t ut ḣtu†
t

]
= Tr

[
ρtut

( p⊕
k=1

v†
k ε̇k(t)vk

)
u†

t

]
. (A2)

Since v†
k ε̇k(t)vk = ε̇k(t)1nk , we obtain the desired result.

In the next step we pass to the second assertion, namely, we study the invariant
work from the perspective of group averaging. To this end, we insert Equation (2) in the
Definition 2, obtaining ∫

dGWu

[
VtρtV†

t

]
=
∫ τ

0
dtTr

[
ρtut ftu†

t

]
, (A3)

where

ft =
∫

dG
( p⊕

k=1

v†
k

)
u†

t Ḣtut

( p⊕
k=1

vk

)
. (A4)

Further we expand

u†
t Ḣtut = ḣt + htu̇†

t ut + u†
t u̇tht

= ḣt +
[

ht, u̇†
t ut

]
,

where the last line follows from unitarity of ut, which implies u†
t u̇t = −u̇†

t ut. Therefore,
using the arguments spelled out previously, we find

ft = ḣt + [ht, bt], (A5)

where

bt =
∫

dG
( p⊕

k=1

v†
k

)
u̇†

t ut

( p⊕
k=1

vk

)
. (A6)

Due to the fundamental property of unitary group averaging we know that bt =
⊕p

k=1 bk(t)1nk ,
for some functions bk(t). Therefore, we find that [ht, bt] = 0, so the group averaged work is
the same as the invariant work proposed in Theorem 1.
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Finally, let us consider the heat and its connections to quantum coherence. In the
energy eigenbasis the coherent heat Equation (17) reads

Qc =
∫ τ

0
dt ∑

jl
cjl(t)

[
ε j(t)

〈
al(t)

∣∣ȧj(t)
〉

(A7)

+ε l(t)
〈

ȧl(t)
∣∣aj(t)

〉 ]
. (A8)

Since for all times we have 〈
al(t)

∣∣aj(t)
〉
= δl j, (A9)

we also consequently obtain〈
al(t)

∣∣ȧj(t)
〉
+
〈

ȧl(t)
∣∣aj(t)

〉
= 0. (A10)

Therefore, we obtain the final result

Qc =
∫ τ

0
dt ∑

jl
cjl(t)

〈
ȧl(t)

∣∣aj(t)
〉 (

ε l(t)− ε j(t)
)
. (A11)

Clearly, only off-diagonal terms of the density matrix (coherences) contribute to this part
of heat.

Appendix B. Applications

Let us consider the unitary dynamics of a single qubit governed by the Hamiltonian

Ht = σz + γtσx. (A12)

This Hamiltonian can be put into a diagonal form ht = u†
t Htut = diag(−λt, λt), with

λ2
t = 1 + γ2

t . Here, ut is the matrix whose columns are the normalized eigenvectors of Ht

ut =

[
1−λt

n−
1+λt

n+
γt
n−

γt
n+

]
, (A13)

with n± =
√

2λt(λt ± 1). Denoting {|a1⟩, |a2⟩} the eigenstates of the Hamiltonian, one can
show that

⟨ȧ2|a1⟩ ≡ −⟨ȧ1|a2⟩ =
γ̇t

2λ2
t

and ⟨ȧi|ai⟩ = 0. (A14)

The invariant heat can be written as

Qinv = 2
∫ τ

0
dtRe[c12(t)]

γ̇t

λt
. (A15)

Note that the only contribution that we have here comes from the coherences of the density
operator in the energy eigenbasis. However, it is important to stress that, if the eigenbasis
is constant, the coherences does not matter and the heat is zero. The important thing here
is the change in the eigenbasis of the Hamiltonian.

The invariant work takes the form

Winv =
∫ τ

0
dt[c22(t)− c11(t)]λ̇t. (A16)

We shall numerically solve the evolution equation for the density operator (for notation
brevity we omit time dependence of cij coefficients)

dρt

dt
= −i[Ht, ρt] = −i ∑

i,j

[
Ht, cij

∣∣ai
〉〈

aj
∣∣]. (A17)
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Since
dρt

dt
= ∑

i,j

[
ċij
∣∣ai
〉〈

aj
∣∣+ cij

∣∣ȧi
〉〈

aj
∣∣+ cij

∣∣ai
〉〈

ȧj
∣∣], (A18)

one can in a straightforward way show that the coefficients cij fulfill the following set of
differential equations

ċ11 = − γ̇t

2λ2
t
(c12 + c21),

ċ12 = 2iλtc12 +
γ̇t

2λ2
t
(c11 − c22),

ċ21 = −2iλtc21 −
γ̇t

2λ2
t
(c22 − c11),

ċ22 =
γ̇t

2λ2
t
(c12 + c21). (A19)

Let us move now to the LMG model. The Schrödinger equation reads i ˙|ψ⟩ = H|ψ⟩.
We can expand the state |ψ⟩ at any time in the basis defined by the relations J2|j, m⟩ =
j(j + 1)|j, m⟩ and Jz|j, m⟩ = m|j, m⟩ in the form

|ψ⟩ =
j

∑
m=−j

cm(t)|j, m⟩.

By inserting this expansion in the Schrödinger equation and projecting the result into the
bra ⟨n| we obtain the following set of differential equations for the expansion coefficients

i
dcn(t)

dt
=

[
j(j + 1)− n2

2
− n

]
cn(t)

+
λ(t)

4

√
(j + n − 1)(j + n)(j − n + 1)(j − n + 2)cn−2(t)

+
λ(t)

4

√
(j + n + 1)(j − n)(j − n − 1)(j + n + 2)cn+2(t), (A20)

which can be numerically solved. From this we can reconstruct the density operator of the
system at any instant of time.

The next thing we calculate is the time derivative of the diagonal form of the Hamil-
tonian. This is easily performed by numerically diagonalizing the full Hamiltonian at
each instant of time and computing the time derivative of the eigenvalues. We do not
actually need to compute the time derivative of the unitary operator ut (that diagonalizes
the Hamiltonian), since we can write

dU
dt

=
dλ(t)

dt
Tr
[

∂H
∂λ

ρt

]
=

α

j
sech2[α(t − 1)]Tr

[
J2
xρt

]
. (A21)

Now, since we have
dU
dt

=
dWinv

dt
+

dQinv

dt
, (A22)

which is the first law, and
dWinv

dt
= Tr

[
ut

dh
dt

u†
t ρt

]
, (A23)

we can obtain the heat by integrating the last two equations. This will result in the coherent
heat since the system is closed and Qinv = Qc.
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