Neutron Interferometer Experiments Studying Fundamental Features of Quantum Mechanics
Abstract
:1. Introduction
2. Quantum Cheshire Cats
2.1. Initial Quantum Cheshire Cat
2.2. Delayed-Choice Quantum Cheshire Cat
2.3. Three-Path Quantum Cheshire Cat
2.4. Exchange of Grins in Photonic System
3. Path Presence
4. Direct Test of Commutation Relation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abs | absorber |
BARC | Bhabha Atomic Research Centre |
BBO | barium borate |
DC | direct-current |
ILL | Institut Laue-Langevin |
LHS | left-hand side |
MURR | University of Missouri Research Reactor Center |
PS | phase shifter |
RF | radio-frequency |
RHS | right-hand side |
SR | spin-rotator |
USA | United States of America |
References
- Cohen-Tannoudji, C.; Diu, B.; Laloë, F. Quantum Mechanics, 1st ed.; Wiley: New York, NY, USA, 1977; Trans. of: Mécanique quantique. Paris: Hermann, 1973. [Google Scholar]
- Schiff, L. Quantum Mechanics; Courier Corporation: Tokyo, Japan, 1968; Available online: https://books.google.at/books/about/Quantum_Mechanics.html?id=3aMTzgEACAAJ&redir_esc=y (accessed on 13 May 2023).
- Sakurai, J.J. Modern Quantum Mechanics (Revised Edition), 1st ed.; Addison Wesley: Boston, MA, USA, 1993. [Google Scholar]
- Wheeler, J.A.; Zurek, W.H. Quantum Theory and Measurement; Princeton University Press: Princeton, NJ, USA, 1983. [Google Scholar]
- Holland, P.R. The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics; Cambridge University Press: Cambridge, MA, USA, 1993. [Google Scholar] [CrossRef]
- Feynman, R.P.; Leighton, R.B.; Sands, M.L. The Feynman Lectures on Physics; Addison-Wesley: Boston, MA, USA, 1965. [Google Scholar]
- Merli, P.G.; Missiroli, G.F.; Pozzi, G. On the statistical aspect of electron interference phenomena. Am. J. Phys. 1976, 44, 306–307. [Google Scholar] [CrossRef] [Green Version]
- Tonomura, A. Applications of electron holography. Rev. Mod. Phys. 1987, 59, 639–669. [Google Scholar] [CrossRef]
- Sonnentag, P.; Hasselbach, F. Measurement of Decoherence of Electron Waves and Visualization of the Quantum-Classical Transition. Phys. Rev. Lett. 2007, 98, 200402. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.W.; Chen, Z.B.; Lu, C.Y.; Weinfurter, H.; Zeilinger, A.; Żukowski, M. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 2012, 84, 777–838. [Google Scholar] [CrossRef]
- Leibfried, D.; Blatt, R.; Monroe, C.; Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 2003, 75, 281–324. [Google Scholar] [CrossRef] [Green Version]
- Wineland, D.J. Nobel Lecture: Superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 2013, 85, 1103–1114. [Google Scholar] [CrossRef] [Green Version]
- Cornell, E.A.; Wieman, C.E. Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 2002, 74, 875–893. [Google Scholar] [CrossRef] [Green Version]
- Ketterle, W. Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys. 2002, 74, 1131–1151. [Google Scholar] [CrossRef] [Green Version]
- Cronin, A.D.; Schmiedmayer, J.; Pritchard, D.E. Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 2009, 81, 1051–1129. [Google Scholar] [CrossRef]
- Arndt, M.; Ekers, A.; von Klitzing, W.; Ulbricht, H. Focus on modern frontiers of matter wave optics and interferometry. New J. Phys. 2012, 14, 125006. [Google Scholar] [CrossRef]
- Sala, S.; Ariga, A.; Ereditato, A.; Ferragut, R.; Giammarchi, M.; Leone, M.; Pistillo, C.; Scampoli, P. First demonstration of antimatter wave interferometry. Sci. Adv. 2019, 5, eaav7610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauch, H.; Treimer, W.; Bonse, U. Test of a single crystal neutron interferometer. Phys. Lett. A 1974, 47, 369–371. [Google Scholar] [CrossRef]
- Rauch, H.; Werner, S.A. Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Wave-Particle Duality, and Entanglement; Oxford University Press: Oxford, UK, 2015. [Google Scholar] [CrossRef]
- Rauch, H.; Zeilinger, A.; Badurek, G.; Wilfing, A.; Bauspiess, W.; Bonse, U. Verification of coherent spinor rotation of fermions. Phys. Lett. A 1975, 54, 425–427. [Google Scholar] [CrossRef]
- Colella, R.; Overhauser, A.W.; Werner, S.A. Observation of Gravitationally Induced Quantum Interference. Phys. Rev. Lett. 1975, 34, 1472–1474. [Google Scholar] [CrossRef]
- Summhammer, J.; Badurek, G.; Rauch, H.; Kischko, U.; Zeilinger, A. Direct observation of fermion spin superposition by neutron interferometry. Phys. Rev. A 1983, 27, 2523–2532. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Loidl, R.; Badurek, G.; Baron, M.; Rauch, H. Violation of a Bell-like inequality in single-neutron interferometry. Nature 2003, 425, 45–48. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Loidl, R.; Badurek, G.; Durstberger-Rennhofer, K.; Sponar, S.; Rauch, H. Engineering of triply entangled states in a single-neutron system. Phys. Rev. A 2010, 81, 032121. [Google Scholar] [CrossRef] [Green Version]
- Klepp, J.; Sponar, S.; Hasegawa, Y. Fundamental phenomena of quantum mechanics explored with neutron interferometers. Prog. Theor. Exp. Phys. 2014, 2014, 082A01. [Google Scholar] [CrossRef] [Green Version]
- Sponar, S.; Sedmik, R.I.P.; Pitschmann, M.; Abele, H.; Hasegawa, Y. Tests of fundamental quantum mechanics and dark interactions with low-energy neutrons. Nat. Rev. Phys. 2021, 3, 309–327. [Google Scholar] [CrossRef]
- Aharonov, Y.; Albert, D.Z.; Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 1988, 60, 1351–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brun, T.A. A simple model of quantum trajectories. Am. J. Phys. 2002, 70, 719–737. [Google Scholar] [CrossRef] [Green Version]
- Aharonov, Y.; Popescu, S.; Tollaksen, J. A time-symmetric formulation of quantum mechanics. Phys. Today 2010, 63, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Kofman, A.G.; Ashhab, S.; Nori, F. Nonperturbative theory of weak pre- and post-selected measurements. Phys. Rep. 2012, 520, 43–133. [Google Scholar] [CrossRef] [Green Version]
- Hosoya, A.; Shikano, Y. Strange weak values. J. Phys. A 2010, 43, 385307. [Google Scholar] [CrossRef]
- Dressel, J.; Malik, M.; Miatto, F.M.; Jordan, A.N.; Boyd, R.W. Colloquium: Understanding quantum weak values: Basics and applications. Rev. Mod. Phys. 2014, 86, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Denkmayr, T.; Geppert, H.; Sponar, S.; Lemmel, H.; Matzkin, A.; Tollaksen, J.; Hasegawa, Y. Observation of a quantum Cheshire Cat in a matter-wave interferometer experiment. Nat. Commun. 2014, 5, 4492. [Google Scholar] [CrossRef] [Green Version]
- Wagner, R.; Kersten, W.; Lemmel, H.; Sponar, S.; Hasegawa, Y. Quantum causality emerging in a delayed-choice quantum Cheshire Cat experiment with neutrons. Sci. Rep. 2023, 13, 3865. [Google Scholar] [CrossRef] [PubMed]
- Danner, A.; Geerits, N.; Lemmel, H.; Wagner, R.; Sponar, S.; Hasegawa, Y. Three-Path Quantum Cheshire Cat Observed in Neutron Interferometry. arXiv 2023, arXiv:2303.18092. [Google Scholar]
- Lemmel, H.; Geerits, N.; Danner, A.; Hofmann, H.F.; Sponar, S. Quantifying the presence of a neutron in the paths of an interferometer. Phys. Rev. Res. 2022, 4, 023075. [Google Scholar] [CrossRef]
- Wagner, R.; Kersten, W.; Danner, A.; Lemmel, H.; Pan, A.K.; Sponar, S. Direct experimental test of commutation relation via imaginary weak value. Phys. Rev. Res. 2021, 3, 023243. [Google Scholar] [CrossRef]
- Carroll, L. Alice’s Adventures in Wonderland; MacMillan & Co.: London, UK, 1866; pp. 89–94. [Google Scholar]
- Aharonov, Y.; Popescu, S.; Rohrlich, D.; Skrzypczyk, P. Quantum Cheshire Cats. New J. Phys. 2013, 15, 113015. [Google Scholar] [CrossRef]
- Oreshkov, O.; Costa, F.; Brukner, Č. Quantum Correlations with No Causal Order. Nat. Commun. 2012, 3, 1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brukner, Č. Quantum Causality. Nat. Phys. 2014, 10, 259–263. [Google Scholar] [CrossRef]
- Wheeler, J.A. The “Past” and the “Delayed-Choice” Double-Slit Experiment. In Mathematical Foundations of Quantum Theory; Marlow, A.R., Ed.; Academic Press: Cambridge, MA, USA, 1978; pp. 9–48. [Google Scholar]
- Ma, X.S.; Kofler, J.; Zeilinger, A. Delayed-choice gedanken experiments and their realizations. Rev. Mod. Phys. 2016, 88, 015005. [Google Scholar] [CrossRef] [Green Version]
- Pan, A.K. Disembodiment of arbitrary number of properties in quantum Cheshire cat experiment. Eur. Phys. J. D 2020, 74, 151. [Google Scholar] [CrossRef]
- Stuckey, W.; Silberstein, M.; McDevitt, T. Concerning Quadratic Interaction in the Quantum Cheshire Cat Experiment. Int. J. Quantum Found. 2016, 2, 17. [Google Scholar]
- Liu, Z.H.; Pan, W.W.; Xu, X.Y.; Yang, M.; Zhou, J.; Luo, Z.Y.; Sun, K.; Chen, J.L.; Xu, J.S.; Li, C.F.; et al. Experimental exchange of grins between quantum Cheshire cats. Nat. Commun. 2020, 11, 3006. [Google Scholar] [CrossRef]
- Franson, J.D. Bell inequality for position and time. Phys. Rev. Lett. 1989, 62, 2205–2208. [Google Scholar] [CrossRef]
- Das, D.; Pati, A.K. Can two quantum Cheshire cats exchange grins? New J. Phys. 2020, 22, 063032. [Google Scholar] [CrossRef]
- Danan, A.; Farfurnik, D.; Bar-Ad, S.; Vaidman, L. Asking Photons Where They Have Been. Phys. Rev. Lett. 2013, 111, 240402. [Google Scholar] [CrossRef]
- Geppert-Kleinrath, H.; Denkmayr, T.; Sponar, S.; Lemmel, H.; Jenke, T.; Hasegawa, Y. Multifold paths of neutrons in the three-beam interferometer detected by a tiny energy kick. Phys. Rev. A 2018, 97, 052111. [Google Scholar] [CrossRef] [Green Version]
- Sponar, S.; Denkmayr, T.; Geppert, H.; Lemmel, H.; Matzkin, A.; Tollaksen, J.; Hasegawa, Y. Weak values obtained in matter-wave interferometry. Phys. Rev. A 2015, 92, 062121. [Google Scholar] [CrossRef] [Green Version]
- Englert, B.G. Fringe Visibility and Which-Way Information: An Inequality. Phys. Rev. Lett. 1996, 77, 2154–2157. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, H.F. Direct evaluation of measurement uncertainties by feedback compensation of decoherence. Phys. Rev. Res. 2021, 3, L012011. [Google Scholar] [CrossRef]
- Hall, M.J.W. Prior information: How to circumvent the standard joint-measurement uncertainty relation. Phys. Rev. A 2004, 69, 052113. [Google Scholar] [CrossRef] [Green Version]
- Ozawa, M. Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement. Phys. Rev. A 2003, 67, 042105. [Google Scholar] [CrossRef] [Green Version]
- Denkmayr, T.; Geppert, H.; Lemmel, H.; Waegell, M.; Dressel, J.; Hasegawa, Y.; Sponar, S. Experimental Demonstration of Direct Path State Characterization by Strongly Measuring Weak Values in a Matter-Wave Interferometer. Phys. Rev. Lett. 2017, 118, 010402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heisenberg, W. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. Phys. 1925, 33, 879–893. [Google Scholar] [CrossRef]
- Kennard, E.H. Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 1927, 44, 326–352. [Google Scholar] [CrossRef]
- Robertson, H.P. The Uncertainty Principle. Phys. Rev. 1929, 34, 163–164. [Google Scholar] [CrossRef]
- Arthurs, E.; Kelly, J.L., Jr. On the Simultaneous Measurement of a Pair of Conjugate Observables. Bell Labs Tech. J. 1965, 44, 725–729. [Google Scholar] [CrossRef]
- Busch, P. Indeterminacy relations and simultaneous measurements in quantum theory. Int. J. Theor. Phys. 1985, 24, 63–92. [Google Scholar] [CrossRef]
- Ozawa, M. Physical content of Heisenberg’s uncertainty relation: Limitation and reformulation. Phys. Lett. A 2003, 318, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Busch, P.; Lahti, P.; Werner, R.F. Proof of Heisenberg’s Error-Disturbance Relation. Phys. Rev. Lett. 2013, 111, 160405. [Google Scholar] [CrossRef] [Green Version]
- Busch, P.; Lahti, P.; Werner, R.F. Colloquium: Quantum root-mean-square error and measurement uncertainty relations. Rev. Mod. Phys. 2014, 86, 1261–1281. [Google Scholar] [CrossRef]
- Buscemi, F.; Hall, M.J.W.; Ozawa, M.; Wilde, M.M. Noise and Disturbance in Quantum Measurements: An Information-Theoretic Approach. Phys. Rev. Lett. 2014, 112, 050401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Branciard, C. Error-tradeoff and error-disturbance relations for incompatible quantum measurements. Proc. Natl. Acad. Sci. USA 2013, 110, 6742–6747. [Google Scholar] [CrossRef] [Green Version]
- Allman, B.E.; Kaiser, H.; Werner, S.A.; Wagh, A.G.; Rakhecha, V.C.; Summhammer, J. Observation of geometric and dynamical phases by neutron interferometry. Phys. Rev. A 1997, 56, 4420–4439. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lim, H.T.; Ra, Y.S.; Kim, Y.H. Experimental verification of the commutation relation for Pauli spin operators using single-photon quantum interference. Phys. Lett. A 2010, 374, 4393–4396. [Google Scholar] [CrossRef] [Green Version]
- Vaidman, L. Weak-measurement elements of reality. Found. Phys. 1996, 26, 895–906. [Google Scholar] [CrossRef] [Green Version]
- Aharonov, Y.; Cohen, E.; Landsberger, T. The Two-Time Interpretation and Macroscopic Time-Reversibility. Entropy 2017, 19, 111. [Google Scholar] [CrossRef] [Green Version]
(a) | Path I | Path II | |
---|---|---|---|
initial amplitudes | |||
initial probabilities | |||
(b) | Probability | Presence in Path I | Presence in Path II |
+ exit | |||
− exit | |||
average |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danner, A.; Lemmel, H.; Wagner, R.; Sponar, S.; Hasegawa, Y. Neutron Interferometer Experiments Studying Fundamental Features of Quantum Mechanics. Atoms 2023, 11, 98. https://doi.org/10.3390/atoms11060098
Danner A, Lemmel H, Wagner R, Sponar S, Hasegawa Y. Neutron Interferometer Experiments Studying Fundamental Features of Quantum Mechanics. Atoms. 2023; 11(6):98. https://doi.org/10.3390/atoms11060098
Chicago/Turabian StyleDanner, Armin, Hartmut Lemmel, Richard Wagner, Stephan Sponar, and Yuji Hasegawa. 2023. "Neutron Interferometer Experiments Studying Fundamental Features of Quantum Mechanics" Atoms 11, no. 6: 98. https://doi.org/10.3390/atoms11060098
APA StyleDanner, A., Lemmel, H., Wagner, R., Sponar, S., & Hasegawa, Y. (2023). Neutron Interferometer Experiments Studying Fundamental Features of Quantum Mechanics. Atoms, 11(6), 98. https://doi.org/10.3390/atoms11060098