Quantized Microcavity Polariton Lasing Based on InGaN Localized Excitons
Abstract
1. Introduction
2. Experimental Section
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deng, H.; Haug, H.; Yamamoto, Y. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 2010, 82, 1489–1537. [Google Scholar] [CrossRef]
- Kasprzak, J.; Richard, M.; Kundermann, S.; Baas, A.; Jeambrun, P.; Keeling, J.M.J.; Marchetti, F.M.; Szymańska, M.H.; André, R.; Staehli, J.L.; et al. Bose–Einstein condensation of exciton polaritons. Nature 2006, 443, 409–414. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, H.; Zhu, H.; Tang, Z.; Wang, Y.; Wei, H.; Su, S.; Shen, Y.; Shan, C. Robust Polariton Bose–Einstein Condensation Laser via a Strong Coupling Microcavity. Laser Photon. Rev. 2020, 14, 2000273. [Google Scholar] [CrossRef]
- Amo, A.; Lefrère, J.; Pigeon, S.; Adrados, C.; Ciuti, C.; Carusotto, I.; Houdré, R.; Giacobino, E.; Bramati, A. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 2009, 5, 805–810. [Google Scholar] [CrossRef]
- Egorov, O.A.; Skryabin, D.V.; Yulin, A.V.; Lederer, F. Bright Cavity Polariton Solitons. Phys. Rev. Lett. 2009, 102, 153904. [Google Scholar] [CrossRef] [PubMed]
- Lagoudakis, K.G.; Wouters, M.; Richard, M.; Baas, A.; Carusotto, I.; André, R.; Dang, L.S.; Deveaud-Plédran, B. Quantized vortices in an exciton–polariton condensate. Nat. Phys. 2008, 4, 706–710. [Google Scholar] [CrossRef]
- Sanvitto, D.; Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 2016, 15, 1061–1073. [Google Scholar] [CrossRef] [PubMed]
- Byrnes, T.; Kim, N.Y.; Yamamoto, Y. Exciton-polariton condensates. Nat. Phys. 2014, 10, 803–813. [Google Scholar] [CrossRef]
- Deng, H.; Weihs, G.; Snoke, D.; Bloch, J.; Yamamoto, Y. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc. Natl. Acad. Sci. USA 2003, 100, 15318–15323. [Google Scholar] [CrossRef]
- Deng, H.; Weihs, G.; Santori, C.; Bloch, J.; Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 2002, 298, 199–202. [Google Scholar] [CrossRef]
- Das, A.; Heo, J.; Jankowski, M.; Guo, W.; Zhang, L.; Deng, H.; Bhattacharya, P. Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser. Phys. Rev. Lett. 2011, 107, 066405. [Google Scholar] [CrossRef] [PubMed]
- Christmann, G.; Butté, R.; Feltin, E.; Carlin, J.-F.; Grandjean, N. Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 2008, 93, 051102. [Google Scholar] [CrossRef]
- Christopoulos, S.; von Högersthal, G.B.; Grundy, A.J.; Lagoudakis, P.G.; Kavokin, A.V.; Baumberg, J.J.; Christmann, G.; Butté, R.; Feltin, E.; Carlin, J.F.; et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 2007, 98, 4. [Google Scholar] [CrossRef] [PubMed]
- Chichibu, S.; Azuhata, T.; Sota, T.; Nakamura, S. Luminescences from localized states in InGaN epilayers. Appl. Phys. Lett. 1997, 70, 2822–2824. [Google Scholar] [CrossRef]
- Schneider, C.; Winkler, K.; Fraser, M.D.; Kamp, M.; Yamamoto, Y.; Ostrovskaya, E.A.; Höfling, S. Exciton-polariton trapping and potential landscape engineering. Rep. Prog. Phys. 2017, 80, 016503. [Google Scholar] [CrossRef] [PubMed]
- Ferrier, L.; Wertz, E.; Johne, R.; Solnyshkov, D.D.; Senellart, P.; Sagnes, I.; Lemaître, A.; Malpuech, G.; Bloch, J. Interactions in Confined Polariton Condensates. Phys. Rev. Lett. 2011, 106, 126401. [Google Scholar] [CrossRef] [PubMed]
- Balili, R.; Hartwell, V.; Snoke, D.; Pfeiffer, L.; West, K. Bose-Einstein Condensation of Microcavity Polaritons in a Trap. Science 2007, 316, 1007–1010. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.Y.; Kusudo, K.; Wu, C.; Masumoto, N.; Löffler, A.; Höfling, S.; Kumada, N.; Worschech, L.; Forchel, A.; Yamamoto, Y. Dynamical d-wave condensation of exciton–polaritons in a two-dimensional square-lattice potential. Nat. Phys. 2011, 7, 681–686. [Google Scholar] [CrossRef]
- Klembt, S.; Harder, T.H.; Egorov, O.A.; Winkler, K.; Ge, R.; Bandres, M.A.; Emmerling, M.; Worschech, L.; Liew, T.C.H.; Segev, M.; et al. Exciton-polariton topological insulator. Nature 2018, 562, 552–556. [Google Scholar] [CrossRef]
- St-Jean, P.; Goblot, V.; Galopin, E.; Lemaître, A.; Ozawa, T.; Le Gratiet, L.; Sagnes, I.; Bloch, J.; Amo, A. Lasing in topological edge states of a one-dimensional lattice. Nat. Photonics 2017, 11, 651–656. [Google Scholar] [CrossRef]
- Tosi, G.; Christmann, G.; Berloff, N.G.; Tsotsis, P.; Gao, T.; Hatzopoulos, Z.; Savvidis, P.G.; Baumberg, J.J. Sculpting oscillators with light within a nonlinear quantum fluid. Nat. Phys. 2012, 8, 190–194. [Google Scholar] [CrossRef]
- Cobet, M. Bosonic lasing and trapping of a dressed photon fluid in InGaN at room temperature. Phys. Rev. B 2016, 94, 075302. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Dong, H.; Tang, B.; Li, D.; Tian, C.; Xu, C.; Zhou, W. Room temperature exciton–polariton condensate in an optically-controlled trap. Nanoscale 2019, 11, 4496–4502. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.C.; Kuo, P.F.; Lin, T.Y.; Chen, Y.F.; Chen, K.H.; Chen, L.C.; Chyi, J.-I. Mechanism of luminescence in InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 2000, 76, 3712–3714. [Google Scholar] [CrossRef]
- Chichibu, S.F.; Sugiyama, M.; Onuma, T.; Kitamura, T.; Nakanishi, H.; Kuroda, T.; Tackeuchi, A.; Sota, T.; Ishida, Y.; Okumura, H. Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells. Appl. Phys. Lett. 2001, 79, 4319–4321. [Google Scholar] [CrossRef]
- Chichibu, S.F.; Uedono, A.; Onuma, T.; Haskell, B.A.; Chakraborty, A.; Koyama, T.; Fini, P.T.; Keller, S.; DenBaars, S.P.; Speck, J.S.; et al. Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors. Nat. Mater. 2006, 5, 810–816. [Google Scholar] [CrossRef]
- Davidson, J.A.; Dawson, P.; Wang, T.; Sugahara, T.; Orton, J.W.; Sakai, S. Photoluminescence studies of InGaN/GaN multi-quantum wells. Semicond. Sci. Technol. 2000, 15, 497–505. [Google Scholar] [CrossRef]
- Zhu, H.; Shan, C.X.; Li, B.H.; Zhang, Z.Z.; Zhang, J.Y.; Yao, B.; Shen, D.Z.; Fan, X.W. Enhanced photoluminescence caused by localized excitons observed in MgZnO alloy. J. Appl. Phys. 2009, 105, 103508. [Google Scholar] [CrossRef]
- Li, Q.; Xu, S.J.; Xie, M.H.; Tong, S.Y. Origin of the ‘S-shaped’ temperature dependence of luminescent peaks from semiconductors. J. Phys. Condens. Matter 2005, 17, 4853–4858. [Google Scholar] [CrossRef]
- Jain, K.P.; Soni, R.K.; Abbi, S.C. Resonant Raman scattering in mixed GaAs1-xPx crystals. Phys. Rev. B Condens. Matter 1985, 31, 6820–6823. [Google Scholar] [CrossRef]
- Ye, J.D.; Teoh, K.W.; Sun, X.W.; Lo, G.Q.; Kwong, D.L.; Zhao, H.; Gu, S.L.; Zhang, R.; Zheng, Y.D.; Oh, S.A.; et al. Effects of alloying and localized electronic states on the resonant Raman spectra of Zn1−xMgxO nanocrystals. Appl. Phys. Lett. 2007, 91, 091901. [Google Scholar] [CrossRef]
- Sun, H.D.; Calvez, S.; Dawson, M.D.; Gupta, J.A.; Aers, G.C.; Sproule, G.I. Thermal quenching mechanism of photoluminescence in 1.55 μm GaInNAsSb/Ga(N)As quantum-well structures. Appl. Phys. Lett. 2006, 89, 101909. [Google Scholar] [CrossRef]
- Hopfield, J.J. Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. Phys. Rev. B 1958, 112, 1555–1567. [Google Scholar] [CrossRef]
- Wertz, E.; Ferrier, L.; Solnyshkov, D.D.; Johne, R.; Sanvitto, D.; Lemaître, A.; Sagnes, I.; Grousson, R.; Kavokin, A.V.; Senellart, P.; et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys. 2010, 6, 860–864. [Google Scholar] [CrossRef]
- Daskalakis, K.S.; Maier, S.A.; Murray, R.; Kéna-Cohen, S. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 2014, 13, 272–279. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, H.; Tang, Z.; Wang, R.; Luo, X.; Shen, Y.; Yang, X.; Liu, K.-K.; Wang, S.; Deng, S.; et al. Spin-Polarization-Induced Chiral Polariton Lasing at Room Temperature. ACS Photonics 2023, 10, 1936–1943. [Google Scholar] [CrossRef]
- Kasprzak, J.; Richard, M.; Baas, A.; Deveaud, B.; André, R.; Poizat, J.-P.; Dang, L.S. Second-Order Time Correlations within a Polariton Bose-Einstein Condensate in a CdTe Microcavity. Phys. Rev. Lett. 2008, 100, 067402. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Zhang, B.; Wang, Z.; Fischer, J.; Brodbeck, S.; Kamp, M.; Schneider, C.; Höfling, S.; Deng, H. Coherent Polariton Laser. Phys. Rev. X 2016, 6, 011026. [Google Scholar] [CrossRef]
- Najer, D.; Söllner, I.; Sekatski, P.; Dolique, V.; Löbl, M.C.; Riedel, D.; Schott, R.; Starosielec, S.; Valentin, S.R.; Wieck, A.D.; et al. A gated quantum dot strongly coupled to an optical microcavity. Nature 2019, 575, 622–627. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Wang, R.; Gong, X.; Dong, J.; Wang, L.; Wang, J.; Zhang, Y.; Shen, Y.; Chen, H.; Zhang, B.; et al. Quantized Microcavity Polariton Lasing Based on InGaN Localized Excitons. Nanomaterials 2024, 14, 1197. https://doi.org/10.3390/nano14141197
Zheng H, Wang R, Gong X, Dong J, Wang L, Wang J, Zhang Y, Shen Y, Chen H, Zhang B, et al. Quantized Microcavity Polariton Lasing Based on InGaN Localized Excitons. Nanomaterials. 2024; 14(14):1197. https://doi.org/10.3390/nano14141197
Chicago/Turabian StyleZheng, Huying, Runchen Wang, Xuebing Gong, Junxing Dong, Lisheng Wang, Jingzhuo Wang, Yifan Zhang, Yan Shen, Huanjun Chen, Baijun Zhang, and et al. 2024. "Quantized Microcavity Polariton Lasing Based on InGaN Localized Excitons" Nanomaterials 14, no. 14: 1197. https://doi.org/10.3390/nano14141197
APA StyleZheng, H., Wang, R., Gong, X., Dong, J., Wang, L., Wang, J., Zhang, Y., Shen, Y., Chen, H., Zhang, B., & Zhu, H. (2024). Quantized Microcavity Polariton Lasing Based on InGaN Localized Excitons. Nanomaterials, 14(14), 1197. https://doi.org/10.3390/nano14141197