Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = macrophysics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8260 KiB  
Article
Studying the Aerosol Effect on Deep Convective Clouds over the Global Oceans by Applying Machine Learning Techniques on Long-Term Satellite Observation
by Xuepeng Zhao, James Frech, Michael J. Foster and Andrew K. Heidinger
Remote Sens. 2024, 16(13), 2487; https://doi.org/10.3390/rs16132487 - 7 Jul 2024
Cited by 2 | Viewed by 1467
Abstract
Long-term (1982–2019) satellite climate data records (CDRs) of aerosols and clouds, reanalysis data of meteorological fields, and machine learning techniques are used to study the aerosol effect on deep convective clouds (DCCs) over the global oceans from a climatological perspective. Our analyses are [...] Read more.
Long-term (1982–2019) satellite climate data records (CDRs) of aerosols and clouds, reanalysis data of meteorological fields, and machine learning techniques are used to study the aerosol effect on deep convective clouds (DCCs) over the global oceans from a climatological perspective. Our analyses are focused on three latitude belts where DCCs appear more frequently in the climatology: the northern middle latitude (NML), tropical latitude (TRL), and southern middle latitude (SML). It was found that the aerosol effect on marine DCCs may be detected only in NML from long-term averaged satellite aerosol and cloud observations. Specifically, cloud particle size is more susceptible to the aerosol effect compared to other cloud micro-physical variables (e.g., cloud optical depth). The signature of the aerosol effect on DCCs can be easily obscured by meteorological covariances for cloud macro-physical variables, such as cloud cover and cloud top temperature (CTT). From a machine learning analysis, we found that the primary aerosol effect (i.e., the aerosol effect without meteorological feedbacks and covariances) can partially explain the aerosol convective invigoration in CTT and that meteorological feedbacks and covariances need to be included to accurately capture the aerosol convective invigoration. From our singular value decomposition (SVD) analysis, we found the aerosol effects in the three leading principal components (PCs) may explain about one third of the variance of satellite-observed cloud variables and significant positive or negative trends are only observed in the lead PC1 of cloud and aerosol variables. The lead PC1 component is an effective mode for detecting the aerosol effect on DCCs. Our results are valuable for the evaluation and improvement of aerosol-cloud interactions in the long-term climate simulations of global climate models. Full article
Show Figures

Figure 1

29 pages, 8442 KiB  
Article
Impact of Aerosols on the Macrophysical and Microphysical Characteristics of Ice-Phase and Mixed-Phase Clouds over the Tibetan Plateau
by Shizhen Zhu, Ling Qian, Xueqian Ma, Yujun Qiu, Jing Yang, Xin He, Junjun Li, Lei Zhu, Jing Gong and Chunsong Lu
Remote Sens. 2024, 16(10), 1781; https://doi.org/10.3390/rs16101781 - 17 May 2024
Cited by 1 | Viewed by 1412
Abstract
Using CloudSat/CALIPSO satellite data and ERA5 reanalysis data from 2006 to 2010, the effects of aerosols on ice- and mixed-phase, single-layer, non-precipitating clouds over the Tibetan Plateau during nighttime in the MAM (March to May), JJA (June to August), SON (September to November), [...] Read more.
Using CloudSat/CALIPSO satellite data and ERA5 reanalysis data from 2006 to 2010, the effects of aerosols on ice- and mixed-phase, single-layer, non-precipitating clouds over the Tibetan Plateau during nighttime in the MAM (March to May), JJA (June to August), SON (September to November), and DJF (December to February) seasons were examined. The results indicated the following: (1) The macrophysical and microphysical characteristics of ice- and mixed-phase clouds exhibit a nonlinear trend with increasing aerosol optical depth (AOD). When the logarithm of AOD (lnAOD) was ≤−4.0, with increasing AOD during MAM and JJA nights, the cloud thickness and ice particle effective radius of ice-phase clouds and mixed-phase clouds, the ice water path and ice particle number concentration of ice-phase clouds, and the liquid water path and cloud fraction of mixed-phase clouds all decreased; during SON and DJF nights, the cloud thickness of ice-phase clouds, cloud top height, liquid droplet number concentration, and liquid water path of mixed-phase clouds all decreased. When the lnAOD was >−4.0, with increasing AOD during MAM and JJA nights, the cloud top height, cloud base height, cloud fraction, and ice particle number concentration of ice-phase clouds, and the ice water path of mixed-phase clouds all increased; during SON and DJF nights, the cloud fraction of mixed-phase clouds and the ice water path of ice-phase clouds all increased. (2) Under the condition of excluding meteorological factors, including the U-component of wind, V-component of wind, pressure vertical velocity, temperature, and relative humidity at the atmospheric pressure heights near the average cloud top height, within the cloud, and the average cloud base height, as well as precipitable water vapor, convective available potential energy, and surface pressure. During MAM and JJA nights. When the lnAOD was ≤−4.0, an increase in aerosols may have led to a decrease in the thickness of ice and mixed-phase cloud layers, as well as a reduction in cloud water path values. In contrast, when the lnAOD was >−4.0, an increase in aerosols may contribute to elevated cloud base and cloud top heights for ice-phase clouds. During SON and DJF nights, changes in various cloud characteristics may be influenced by both aerosols and meteorological factors. Full article
(This article belongs to the Special Issue Remote Sensing of Aerosols, Planetary Boundary Layer, and Clouds)
Show Figures

Graphical abstract

19 pages, 7274 KiB  
Article
Study on the Effect of Post-Freezing Mechanical Properties of Polypropylene Fibre Concrete Based on BAS-BPNN
by Cundong Xu, Jun Cao, Jiahao Chen, Zhihang Wang and Wenhao Han
Buildings 2024, 14(5), 1289; https://doi.org/10.3390/buildings14051289 - 2 May 2024
Viewed by 1124
Abstract
An indoor accelerated freezing and thawing test of polypropylene fibre-reinforced concrete in chloride and sulphate environments was conducted using the “fast-freezing method” with the objective of investigating the damage law of the post-freezing mechanical properties of hydraulic concrete structures and studying the effects [...] Read more.
An indoor accelerated freezing and thawing test of polypropylene fibre-reinforced concrete in chloride and sulphate environments was conducted using the “fast-freezing method” with the objective of investigating the damage law of the post-freezing mechanical properties of hydraulic concrete structures and studying the effects of different mixing amounts of polypropylene fibres on the mechanical properties of concrete. Furthermore, in order to reduce the cost of concrete tests and shorten the time required for conducting concrete tests, a backpropagation neural network based on a Beetle Antenna Search algorithm (BAS-BPNN) was established to simulate and predict the mechanical properties of polypropylene fibre-reinforced concrete. The accuracy of the model was verified. The results indicate that the order of improvement in the macro-physical properties of concrete due to fibre doping is as follows: PPF1.2 exhibited the greatest improvement in macro-physical properties of concrete, followed by PPF0.9, PPF1.5, PPF0.6, and PC. When the freezing and thawing medium and the number of cycles are identical, all four assessment indexes (R2, RMSE, SI, MAPE) demonstrate that the four groups of polypropylene fibre concrete exhibit superior performance to the control group of ordinary concrete. This indicates that polypropylene fibre can enhance the mechanical properties and freezing resistance of the concrete matrix, delay the process of freezing and thawing damage to the matrix, and extend the lifespan of the matrix, yet cannot prevent the ultimate failure of the matrix. The application of intelligent algorithms to optimise the parameters of an artificial neural network model can enhance its capacity to generalise and predict the mechanical properties of concrete. In terms of the coefficient of determination (R2), the Beetle Antenna Search algorithm (0.9782) outperforms the Particle Swarm Optimization (PSO; 0.9676), the Genetic Algorithm (GA; 0.9645), and the backpropagation neural network (BPNN; 0.9460). The improved backpropagation neural network based on the Beetle Antenna Search algorithm not only avoids the trap of local optimality but also improves the model accuracy while further accelerating the convergence speed. This approach can address the complexity, non-linearity, and modelling difficulties encountered during the freezing process of concrete. Moreover, it offers relatively accurate prediction outcomes at a reduced cost in comparison to traditional experimental methodologies. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 5833 KiB  
Article
Lightning Stroke Strength and Its Correlation with Cloud Macro- and Microphysics over the Tibetan Plateau
by Lei Wei, Chen Xu and Zhuling Sun
Remote Sens. 2024, 16(5), 876; https://doi.org/10.3390/rs16050876 - 1 Mar 2024
Cited by 2 | Viewed by 1820
Abstract
Lightning stroke strength, characterized by energy and peak currents, over the Tibetan Plateau (TP), is investigated by utilizing datasets from the World Wide Lightning Location Network and the Chinese Cloud-to-Ground Lightning Location System during 2016–2019. Focused on the south-central (SC) and southeast (SE) [...] Read more.
Lightning stroke strength, characterized by energy and peak currents, over the Tibetan Plateau (TP), is investigated by utilizing datasets from the World Wide Lightning Location Network and the Chinese Cloud-to-Ground Lightning Location System during 2016–2019. Focused on the south-central (SC) and southeast (SE) of the TP, it reveals that SE-TP experiences strokes with larger average energy and peak currents. Strong strokes (energy ≥ 100 kJ or peak currents ≥ |100| kA), exhibiting bimodal distribution in winter and summer, are more frequent and have larger average values over the SE-TP than the SC-TP, with diurnal distribution indicating peaks in energy and positive strokes in the middle of the night and negative strokes peaking in the morning. Utilizing the ECMWF/ERA-5 and MERRA-2 reanalysis, we find that stronger strokes correlate with thinner charge zone depths and larger CIWCFs but stable warm cloud depths and zero-degree levels over the SC-TP. Over the SE-TP, stronger strokes are associated with smaller CIWCFs and show turning points for warm cloud depths and zero-degree levels. Thicker charge zone depths correlate with stronger negative strokes but weaker positive strokes. Generating strokes of similar strength over the SC-TP requires larger CIWCFs, thinner warm cloud depths, and lower zero-degree levels than over the SE-TP. Full article
Show Figures

Figure 1

27 pages, 10064 KiB  
Review
Hail: Mechanisms, Monitoring, Forecasting, Damages, Financial Compensation Systems, and Prevention
by Min Hee Kim, Jaeyong Lee and Seung-Jae Lee
Atmosphere 2023, 14(11), 1642; https://doi.org/10.3390/atmos14111642 - 31 Oct 2023
Cited by 8 | Viewed by 7932
Abstract
Hail has long caused extensive damage and economic loss in places inhabited by humans. Climate change is expected to lead to different types of damage due to the geographic characteristics of each continent. Under changing environment, hail is becoming increasingly unstable and is [...] Read more.
Hail has long caused extensive damage and economic loss in places inhabited by humans. Climate change is expected to lead to different types of damage due to the geographic characteristics of each continent. Under changing environment, hail is becoming increasingly unstable and is causing damage that is difficult to repair, making it essential to study the occurrence of hail and hail-damage. Hail formation has been studied at the micro- and macrophysical scales as well as thermal and dynamical scales. Hail forms in various sizes, and the scale of damage varies with size. Hail precipitation occurs suddenly and is localized, making it is difficult to observe and predict. Nonetheless, techniques to measure and forecast hail precipitation are improving in accuracy. Hail-damage management and financial compensation systems are used to mitigate the severe economic losses caused by hail fallen in rural and urban areas. This review most comprehensively considers hail research, focusing on the mechanisms, observation and prediction methods, damage, social compensation systems for hail damage, and hail-disaster prevention, suggesting future study directions briefly. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

35 pages, 3145 KiB  
Review
Fermionic Dark Matter: Physics, Astrophysics, and Cosmology
by C. R. Argüelles, E. A. Becerra-Vergara, J. A. Rueda and R. Ruffini
Universe 2023, 9(4), 197; https://doi.org/10.3390/universe9040197 - 20 Apr 2023
Cited by 16 | Viewed by 2831
Abstract
The nature of dark matter (DM) is one of the most relevant questions in modern astrophysics. We present a brief overview of recent results that inquire into the possible fermionic quantum nature of the DM particles, focusing mainly on the interconnection between the [...] Read more.
The nature of dark matter (DM) is one of the most relevant questions in modern astrophysics. We present a brief overview of recent results that inquire into the possible fermionic quantum nature of the DM particles, focusing mainly on the interconnection between the microphysics of the neutral fermions and the macrophysical structure of galactic halos, including their formation both in the linear and non-linear cosmological regimes. We discuss the general relativistic Ruffini–Argüelles–Rueda (RAR) model of fermionic DM in galaxies, its applications to the Milky Way, the possibility that the Galactic center harbors a DM core instead of a supermassive black hole (SMBH), the S-cluster stellar orbits with an in-depth analysis of the S2’s orbit including precession, the application of the RAR model to other galaxy types (dwarf, elliptic, big elliptic, and galaxy clusters), and universal galaxy relations. All the above focus on the model parameters’ constraints most relevant to the fermion mass. We also connect the RAR model fermions with particle physics DM candidates, self-interactions, and galactic observable constraints. The formation and stability of core–halo galactic structures predicted by the RAR model and their relations to warm DM cosmologies are also addressed. Finally, we provide a brief discussion of how gravitational lensing, dynamical friction, and the formation of SMBHs can also probe the DM’s nature. Full article
(This article belongs to the Special Issue Galactic Center with Gravity)
Show Figures

Figure 1

10 pages, 2128 KiB  
Article
On the Trend in Below-Cloud Solar Irradiance in The Netherlands versus That in Aerosol Sulfate Concentration
by Suzanne Crumeyrolle, Andrey Khlystov and Harry Ten Brink
Atmosphere 2022, 13(12), 2037; https://doi.org/10.3390/atmos13122037 - 4 Dec 2022
Cited by 1 | Viewed by 1682
Abstract
The below-cloud irradiance in The Netherlands increased by over 10 Wm−2 in the past half century. It was hypothesized that this could be due to a decrease in the aerosol serving as cloud condensation nuclei, on which the cloud droplets form, in [...] Read more.
The below-cloud irradiance in The Netherlands increased by over 10 Wm−2 in the past half century. It was hypothesized that this could be due to a decrease in the aerosol serving as cloud condensation nuclei, on which the cloud droplets form, in the following way. With unchanged macrophysics, clouds with a lower number of droplets are less reflective, in other words, they transmit more solar radiation. This hypothesis cannot be substantiated with data because of a generic absence of long-term information on cloud droplet number concentrations (CDNCs) worldwide. To assess the historic trend in CDNC, we used the Boucher and Lohmann (B&L) empirical relationship between CDNC and the mass concentration of the water-attracting hygroscopic aerosol components. The B&L parameterization was tested and validated with observations from the CHIEF cloud chamber, in which the formation of marine stratocumulus, the most frequent cloud type in The Netherlands, is simulated. This study will focus on summer periods because the irradiance governs the yearly average at this latitude. The summer trend of sulfate, the most dominant hygroscopic component of observed aerosol mass concentration, was analyzed with EBAS data from 1972 onwards. The average summer CDNCs were then calculated via the B&L parameterization, showing an upper limit of 380 cm−3 in the 1970s and decreasing to around 200 cm−3 in the 2010s. The associated increase in transmission for thin marine stratocumulus without overlying clouds would be, at most, 3.5 W m−2. Unobstructed stratocumuli occur only part of the time, and the change in irradiance based on the reduction in cloud droplet number is certainly small in comparison to the empirically derived trend of 10 W m−2. Full article
(This article belongs to the Special Issue Aerosols: Direct, Semi-direct, and Indirect Radiative Effects)
Show Figures

Figure 1

19 pages, 8411 KiB  
Article
Analyzing Sensitive Aerosol Regimes and Active Geolocations of Aerosol Effects on Deep Convective Clouds over the Global Oceans by Using Long-Term Operational Satellite Observations
by Xuepeng Zhao and Michael J. Foster
Climate 2022, 10(11), 167; https://doi.org/10.3390/cli10110167 - 3 Nov 2022
Cited by 1 | Viewed by 3330
Abstract
Long-term satellite climate data records of aerosol and cloud along with meteorological reanalysis data have been used to study the aerosol effects on deep convective clouds (DCCs) over the global oceans from a climatology perspective. Our focus is on identifying sensitive aerosol regimes [...] Read more.
Long-term satellite climate data records of aerosol and cloud along with meteorological reanalysis data have been used to study the aerosol effects on deep convective clouds (DCCs) over the global oceans from a climatology perspective. Our focus is on identifying sensitive aerosol regimes and active geolocations of the aerosol effects on DCCs by using statistical analyses on long-term averaged aerosol and cloud variables. We found the aerosol effect tends to manifest relatively easily on the long-term mean values of observed cloud microphysical variables (e.g., cloud particle size and ice water amount) compared to observed cloud macrophysical variables (e.g., cloud cover and cloud top height). An increase of aerosol loading tends to increase DCC particle size and ice water amount in the tropical convergence zones but decrease them in the subtropical subsidence regions. The aerosol effect on the cloud microphysical variables is also likely to manifest over the northwestern Pacific Ocean and central and eastern subtropical Pacific Ocean. The aerosol effect manifested on the microphysical cloud variables may also propagate to cloud cover but weakly to cloud top height since the latter is more susceptible to the influence of cloud dynamical and thermodynamic processes. Our results, based on the long-term averaged operational satellite observation, are valuable for the evaluation and improvement of aerosol-cloud interactions in global climate models. Full article
(This article belongs to the Special Issue Climate Change Impacts at Various Geographical Scales)
Show Figures

Figure 1

6 pages, 240 KiB  
Article
Algebraical Entropy and Arrow of Time
by Merab Gogberashvili
Entropy 2022, 24(11), 1522; https://doi.org/10.3390/e24111522 - 25 Oct 2022
Cited by 2 | Viewed by 1486
Abstract
Usually, it is supposed that irreversibility of time appears only in macrophysics. Here, we attempt to introduce the microphysical arrow of time assuming that at a fundamental level nature could be non-associative. Obtaining numerical results of a measurement, which requires at least three [...] Read more.
Usually, it is supposed that irreversibility of time appears only in macrophysics. Here, we attempt to introduce the microphysical arrow of time assuming that at a fundamental level nature could be non-associative. Obtaining numerical results of a measurement, which requires at least three ingredients: object, device and observer, in the non-associative case depends on ordering of operations and is ambiguous. We show that use of octonions as a fundamental algebra, in any measurement, leads to generation of unavoidable 18.6 bit relative entropy of the probability density functions of the active and passive transformations, which correspond to the groups G2 and SO(7), respectively. This algebraical entropy can be used to determine the arrow of time, analogically as thermodynamic entropy does. Full article
(This article belongs to the Section Time)
45 pages, 4182 KiB  
Review
An Overview of Snow Water Equivalent: Methods, Challenges, and Future Outlook
by Mercedeh Taheri and Abdolmajid Mohammadian
Sustainability 2022, 14(18), 11395; https://doi.org/10.3390/su141811395 - 11 Sep 2022
Cited by 11 | Viewed by 5994
Abstract
The snow depth or snow water equivalent affects water, carbon, and energy cycles as well as surface–atmosphere interactions. Therefore, the global monitoring of spatiotemporal changes in snow water equivalent is a crucial issue, which is performed by characterizing the macrophysical, microstructural, optical, and [...] Read more.
The snow depth or snow water equivalent affects water, carbon, and energy cycles as well as surface–atmosphere interactions. Therefore, the global monitoring of spatiotemporal changes in snow water equivalent is a crucial issue, which is performed by characterizing the macrophysical, microstructural, optical, and thermal characteristics of the snowpack. This paper is a review of the retrieval methods of snow water equivalent in three main categories, including in situ measurements, reconstruction approaches, and space-borne measurements, along with their basic concepts, advantages, and uncertainties. Since satellite observations are the most important tool used to detect snow properties, the paper focuses on inversion models and techniques using microwave remote sensing. The inversion models, based on various theoretical foundations, are classified into empirical, statistical, and physical (emission) models, and the techniques are described in four groups: iterative methods, lookup table, machine learning, and data assimilation approaches. At the end, the available global and regional gridded products providing the spatiotemporal maps of snow water equivalent with different resolutions are presented, as well as approaches for improving the snow data. Full article
(This article belongs to the Special Issue Sustainable Water Resources Management and Sustainable Environment)
Show Figures

Figure 1

15 pages, 34761 KiB  
Article
Ground-Based Measurements of Cloud Properties at the Bucharest–Măgurele Cloudnet Station: First Results
by Răzvan Pîrloagă, Dragoş Ene, Mihai Boldeanu, Bogdan Antonescu, Ewan J. O’Connor and Sabina Ştefan
Atmosphere 2022, 13(9), 1445; https://doi.org/10.3390/atmos13091445 - 6 Sep 2022
Cited by 8 | Viewed by 2878
Abstract
Data collected over a period of 18 months (December 2019–May 2021) at the Bucharest–Măgurele Cloudnet station were analysed for the first time to determine the macrophysical and microphysical cloud properties over this site. A total number of 1,327,680 vertical profiles containing the target [...] Read more.
Data collected over a period of 18 months (December 2019–May 2021) at the Bucharest–Măgurele Cloudnet station were analysed for the first time to determine the macrophysical and microphysical cloud properties over this site. A total number of 1,327,680 vertical profiles containing the target classification based on the Cloudnet algorithm were analysed, of which 1,077,858 profiles contained hydrometeors. The highest number of profiles with hydrometeors (>60%) was recorded in December 2020, with hydrometeors being observed mainly below 5 km. Above 5 km, the frequency of occurrence of hydrometeors was less than <20%. Based on the initial Cloudnet target classification, a cloud classification scheme was implemented. Clouds were more frequently observed during winter compared with other seasons (45% of all profiles). Ice clouds were the most frequent type of cloud (468,463 profiles) during the study period, followed by mixed phases (220,280 profiles) and mixed phased precipitable clouds (164,868 profiles). The geometrical thickness varied from a median value of 244 m for liquid clouds during summer to 3362 m for mix phased precipitable clouds during spring. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

24 pages, 482 KiB  
Article
The Macro-Physics of the Quark-Nova: Astrophysical Implications
by Rachid Ouyed
Universe 2022, 8(6), 322; https://doi.org/10.3390/universe8060322 - 9 Jun 2022
Cited by 4 | Viewed by 2463
Abstract
A quark-nova is a hypothetical stellar evolution branch where a neutron star converts explosively into a quark star. Here, we discuss the intimate coupling between the micro-physics and macro-physics of the quark-nova and provide a prescription for how to couple the Burn-UD code [...] Read more.
A quark-nova is a hypothetical stellar evolution branch where a neutron star converts explosively into a quark star. Here, we discuss the intimate coupling between the micro-physics and macro-physics of the quark-nova and provide a prescription for how to couple the Burn-UD code to the stellar evolution code in order to simulate neutron-star-to-quark-star burning at stellar scales and estimate the resulting energy release and ejecta. Once formed, the thermal evolution of the proto-quark star follows. We found much higher peak neutrino luminosities (>1055 erg/s) and a higher energy neutrino (i.e., harder) spectrum than previous stellar evolution studies of proto-neutron stars. We derived the neutrino counts that observatories such as Super-Kamiokande-III and Halo-II should expect and suggest how these can differentiate between a supernova and a quark-nova. Due to the high peak neutrino luminosities, neutrino pair annihilation can deposit as much as 1052 ergs in kinetic energy in the matter overlaying the neutrinosphere, yielding relativistic quark-nova ejecta. We show how the quark-nova could help us understand many still enigmatic high-energy astrophysical transients, such as super-luminous supernovae, gamma-ray bursts and fast radio bursts. Full article
(This article belongs to the Special Issue Properties and Dynamics of Neutron Stars and Proto-Neutron Stars)
Show Figures

Figure 1

23 pages, 9262 KiB  
Article
Cloud-Top Height Comparison from Multi-Satellite Sensors and Ground-Based Cloud Radar over SACOL Site
by Xuan Yang, Jinming Ge, Xiaoyu Hu, Meihua Wang and Zihang Han
Remote Sens. 2021, 13(14), 2715; https://doi.org/10.3390/rs13142715 - 9 Jul 2021
Cited by 11 | Viewed by 3896
Abstract
Cloud-top heights (CTH), as one of the representative variables reflecting cloud macro-physical properties, affect the Earth–atmosphere system through radiation budget, water cycle, and atmospheric circulation. This study compares the CTH from passive- and active-spaceborne sensors with ground-based Ka-band zenith radar (KAZR) observations at [...] Read more.
Cloud-top heights (CTH), as one of the representative variables reflecting cloud macro-physical properties, affect the Earth–atmosphere system through radiation budget, water cycle, and atmospheric circulation. This study compares the CTH from passive- and active-spaceborne sensors with ground-based Ka-band zenith radar (KAZR) observations at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) site for the period 2013–2019. A series of fundamental statistics on cloud probability in different limited time and areas at the SACOL site reveals that there is an optimal agreement for both cloud frequency and fraction derived from space and surface observations in a 0.5° × 0.5° box area and a 40-min time window. Based on the result, several facets of cloud fraction (CF), cloud overlapping, seasonal variation, and cloud geometrical depth (CGD) are investigated to evaluate the CTH retrieval accuracy of different observing sensors. Analysis shows that the CTH differences between multi-satellite sensors and KAZR decrease with increasing CF and CGD, significantly for passive satellite sensors in non-overlapping clouds. Regarding passive satellite sensors, e.g., Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua, the Multi-angle Imaging SpectroRadiometer (MISR) on Terra, and the Advanced Himawari Imager on Himawari-8 (HW8), a greater CTH frequency difference exists between the upper and lower altitude range, and they retrieve lower CTH than KAZR on average. The CTH accuracy of HW8 and MISR are susceptible to inhomogeneous clouds, which can be reduced by controlling the increase of CF. Besides, the CTH from active satellite sensors, e.g., Cloud Profiling Radar (CPR) on CloudSat, and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), agree well with KAZR and are less affected by seasonal variation and inhomogeneous clouds. Only CALIPSO CTH is higher than KAZR CTH, mainly caused by the low-thin clouds, typically in overlapping clouds. Full article
(This article belongs to the Special Issue Aerosol and Cloud Properties Retrieval by Satellite Sensors)
Show Figures

Figure 1

15 pages, 7732 KiB  
Article
Evaluation of a Flexible Single Ice Microphysics and a Gaussian Probability-Density-Function Macrophysics Scheme in a Single Column Model
by Jiabo Li, Xindong Peng, Xiaohan Li, Yanluan Lin and Wenchao Chu
Atmosphere 2021, 12(5), 638; https://doi.org/10.3390/atmos12050638 - 17 May 2021
Cited by 1 | Viewed by 2703
Abstract
Scale-aware parameterizations of subgrid scale physics are essentials for multiscale atmospheric modeling. A single-ice (SI) microphysics scheme and Gaussian probability-density-function (Gauss-PDF) macrophysics scheme were implemented in the single-column Global-to-Regional Integrated forecast System model (SGRIST) and they were tested using the Tropical Warm Pool-International [...] Read more.
Scale-aware parameterizations of subgrid scale physics are essentials for multiscale atmospheric modeling. A single-ice (SI) microphysics scheme and Gaussian probability-density-function (Gauss-PDF) macrophysics scheme were implemented in the single-column Global-to-Regional Integrated forecast System model (SGRIST) and they were tested using the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) and the Atmospheric Radiation Measurement Southern Great Plains Experiment in 1997 (ARM97). Their performance was evaluated against observations and other reference schemes. The new schemes simulated reasonable precipitation with proper fluctuations and peaks, ice, and liquid water contents, especially in lower levels below 650 hPa during the wet period in the TWP-ICE. The root mean square error (RMSE) of the simulated cloud fraction was below 200 hPa was 0.10/0.08 in the wet/dry period, which showed an obvious improvement when compared to that, i.e., 0.11/0.11 of original scheme. Accumulated ice water content below the melting level decreased by 21.57% in the SI. The well-matched average liquid water content displayed between the new scheme and observations, which was two times larger than those with the referencing scheme. In the ARM97 simulations, the SI scheme produced considerable ice water content, especially when convection was active. Low-level cloud fraction and precipitation extremes were improved using the Gauss-PDF scheme, which displayed the RMSE of cloud fraction of 0.02, being only half of the original schemes. The study indicates that the SI and Gauss-PDF schemes are promising approaches to simplify the microphysics process and improve the low-level cloud modeling. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

16 pages, 4451 KiB  
Article
Skill of Mesoscale Models in Forecasting Springtime Macrophysical Cloud Properties at the Savannah River Site in the Southeastern US
by Stephen Noble, Brian Viner, Robert Buckley and Steven Chiswell
Atmosphere 2020, 11(11), 1202; https://doi.org/10.3390/atmos11111202 - 6 Nov 2020
Cited by 1 | Viewed by 1691
Abstract
Predicting boundary layer clouds is important for the accurate modeling of pollutant dispersion. Higher resolution mesoscale models would be expected to produce better forecasts of cloud properties that affect dispersion. Using ceilometer observations, we assess the skill of two operational mesoscale models (RAMS [...] Read more.
Predicting boundary layer clouds is important for the accurate modeling of pollutant dispersion. Higher resolution mesoscale models would be expected to produce better forecasts of cloud properties that affect dispersion. Using ceilometer observations, we assess the skill of two operational mesoscale models (RAMS and WRF) to forecast cloud base altitude and cloud fraction at the Savannah River Site in the southeastern US during the springtime. Verifications were performed at small spatial and temporal scales necessary for dispersion modeling. Both models were unreliable with a 50% (RAMS) and a 46% (WRF) rate of predicting clouds observed by the ceilometer which led to low cloud fraction predictions. Results indicated that WRF better predicted daytime cloud bases from convection that occurred frequently later in the period and RAMS better predicted nighttime cloud bases. Using root mean squared error (RMSE) to score the forecast periods also highlighted this diurnal dichotomy, with WRF scores better during the day and RAMS scores better at night. Analysis of forecast errors revealed divergent model cloud base biases—WRF low and RAMS high. A hybrid solution which weighs more heavily the RAMS nighttime forecasts and WRF daytime forecasts will likely provide the best prediction of cloud properties for dispersion. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

Back to TopTop