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Abstract: The snow depth or snow water equivalent affects water, carbon, and energy cycles as well
as surface–atmosphere interactions. Therefore, the global monitoring of spatiotemporal changes in
snow water equivalent is a crucial issue, which is performed by characterizing the macrophysical,
microstructural, optical, and thermal characteristics of the snowpack. This paper is a review of the
retrieval methods of snow water equivalent in three main categories, including in situ measure-
ments, reconstruction approaches, and space-borne measurements, along with their basic concepts,
advantages, and uncertainties. Since satellite observations are the most important tool used to detect
snow properties, the paper focuses on inversion models and techniques using microwave remote
sensing. The inversion models, based on various theoretical foundations, are classified into empirical,
statistical, and physical (emission) models, and the techniques are described in four groups: iterative
methods, lookup table, machine learning, and data assimilation approaches. At the end, the available
global and regional gridded products providing the spatiotemporal maps of snow water equivalent
with different resolutions are presented, as well as approaches for improving the snow data.

Keywords: snow water equivalent; in situ measurements; reconstruction; space-borne measurements;
microwave; gridded products

1. Introduction

Snow is a complex medium that experiences considerable changes in space and time,
especially in mountainous terrains where both the accumulation process of solid precip-
itation and the snowpack melting process are highly variable because of the complex
topography and diverse land cover types [1]. An accurate estimation of the spatiotem-
poral changes in snow data is crucial for modeling the global water cycle through the
representation of macrophysical, microstructural, optical, and thermal characteristics of
the snowpack [2–6]. Snow water equivalent (SWE), indicating the amount of water stored
in the snowpack, and snow cover area (SCA) are the most critical snow data, which are
required for a wide range of purposes, including global water cycle modeling, freshwater
management, snow hydrology, meteorology, global change analysis, and risk assessment,
such as drought and flood [1,7–15].

SCA information is mostly obtained from the near infrared (NIR) and visible spec-
tral (VIS) wavelengths [16]. The inability of optical signals to penetrate clouds leads to
spatiotemporal gaps in SCA retrieval under cloudy weather conditions and high-altitude
regions [17]. In addition, SCA is incapable of estimating the snowpack meltwater runoff,
which supplies a significant fraction of water resources and determines the dominant
hydrological regime in mountain regions [3,10]. SWE (or snow depth) monitoring, due
to a lack of illumination impact (clouds and nights) [18,19], is more useful than SCA for
practical purposes under all-sky conditions. Therefore, the current paper is concerned with
the retrieval methods and challenges of SWE.

Generally, three approaches have been presented to simulate snowpack variations,
including in situ measurements, reconstruction, and space-borne measurements. In situ
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SWE measurements include the direct and indirect methods [20]. Direct methods, such
as snow pillows, measure SWE by weighing the mass of a snow column, while indirect
methods of ground-based SWE measurement are based on the attenuation of gamma
radiation by water molecules. In this way, the difference in gamma radiation levels emitted
from the surface (before and after snowfall) is converted to real-time SWE via an optimized
coefficient. In situ measurement is the most reliable approach for the determination of
snow characteristics; however, the limited spatial extent of stations and snow spatial
heterogeneities make the method inefficient on a large scale [21,22]. As an alternative
method, SWE reconstruction is based on a backward melt calculation by the remotely
sensed SCA and energy-based snowmelt to temporally and spatially calculate SWE for
the snow accumulation season [23,24]. Although the in situ data requirement of the
reconstruction method is limited, the SWE results are only valid for the melt season, leading
to its inefficiency for seasonal prediction. Furthermore, the method is sensitive to some
factors that can lead to uncertainties if not accurately determined. Those factors include
the SCA data, dates of snow disappearance and peak SWE, and the snowmelt estimation
methods. These factors can lead to uncertainties if they are not accurately determined.

Microwave remote sensing, including active and passive types, is the most significant
method to represent spatiotemporal variations of snowpack properties, such as snow
depth and snow water equivalent at different scales [17]. Because of the relationship
between electromagnetic radiation and snow properties, the snowpack can be simulated
with different operating principles and frequencies [25,26]. Compared to active microwave,
passive microwave (PMW) remote sensing, which estimates SWE based on the brightness
temperature (TB) differences at two different frequencies, has a long-term history due to
its global coverage and short revisit time [27–29]. The PMW-based SWE measurements
date back to 1978 by the Nimbus-7 satellite using the scanning multi-channel microwave
radiometer (SMMR) sensor, followed by the inter-calibrated sensors of the special sensor
microwave/imager (SSM/I) onboard the Defense Meteorological Satellite Program (DMSP),
the advanced microwave scanning radiometer for Earth Observing System (AMSR-E) on
the Aqua spacecraft of NASA’s Earth Observing System (EOS), AMSR2 on the Japan
Aerospace Exploration Agency (JAXA)’s Global Change Observation Mission 1st-Water
(GCOM-W1), and the Chinese FengYung series [15].

To understand the relation between PMW brightness temperature and snowpack
properties, different inversion models have been developed based on both simple and com-
plicated concepts. Traditional inversion models are defined as the empirical relationships
between TB difference (at two low and high frequencies) and SWE [30]. Accordingly, vari-
ous static and dynamic algorithms have been developed as a result of the different choices
of microwave frequency channels as well as coefficient estimation. In the algorithms based
on TB differences, the effect of the physical temperature of snowpack on the brightness
temperature is thwarted because of the signal difference, and the saturation effect for thick
snow can be also alleviated, to some extent, due to the use of two different low frequen-
cies [31,32]. However, the interlayer scattering intensifies the saturation issue by reason
of different electromagnetic characteristics, which leads to temporally inconsistent SWE
results [31]. An important approach to overcome the weakness of these methods is the use
of attenuation concepts of snow radiation, i.e., physically based statistical algorithms and
radiative transfer equation (RTE)-based models, and energy and water balance concepts,
i.e., land surface models (LSMs) and snowpack modules. The statistical SWE retrieval ap-
proach is based on a regression relationship between snow water equivalent and snowpack
attenuation and radiation properties at different polarizations and frequencies [33]. The
RTE-based microwave emission models, as more sophisticated SWE estimation structures,
are capable of providing snow parameters such as snow depth and density by matching
the simulated and observed TB [34]. These models describing the microwave emission
or scattering properties in snow medium and radiative transfer (RT) in the air–snow–soil
system are different in many aspects, such as the number of layers, rough or smooth in-
terfaces, grain size parametrization, scattering coefficient, and the solution method of the
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RTE [35]. As a general classification, snow emission models have been categorized based
on different theoretical foundations including semi-empirical, analytical, and numerical
concepts [15]. The semi-empirical approach, which benefits from a simple, stable structure,
is based on ground measurements with a limited range of validity. The analytical approach
uses Maxwell’s equations with physical input parameters; however, it assumes a simplified
structure to simulate the snow. In contrast, the numerical approach accounts for certain
snow structures, and scattering or emission characteristics are achieved numerically with
less simplification. This approach, despite being more time-consuming, provides more
accurate simulations in comparison with other types. In addition to snow emission models,
the mass and energy balance of the snowpack is used to simulate snow accumulation
and melting processes. The most important LSMs are the Biosphere-Atmosphere Transfer
Scheme (BATS), Simple Biosphere (SiB), Variable Infiltration Capacity (VIC), Mosaic, and
Noah model, which have been discussed in [36]. It should be noted that although LSMs
and snowpack simulation modules are capable of estimating SWE with some degree of
accuracy, the results have shown large uncertainties in space and time [37].

Stand-alone passive microwave SWE retrievals have a coarse spatial resolution, and
due to this, the spatial variability resulting from mixed land cover and topography cannot
be properly captured [38]. This issue is a serious limitation especially in alpine regions
with forested cover and deep and wet snowpack so that some PMW products mask out
these regions completely [39–42]. To address the matter, the statistical combination of
satellite data and in situ observations by data assimilation methods is proposed. The data
assimilation approach, which integrates the observations based on their uncertainties, is a
promising method to provide SWE at continental scales [17,43]. In addition, the nonlinear
relationships between PMW brightness temperature and snow parameters can be simulated
by several inversion techniques including iterative algorithms, lookup table algorithms,
and machine learning algorithms.

On the other hand, the limitation of the coarse spatial resolution of passive microwave
can be compensated for by active remote sensing with a higher spatial resolution. Therefore,
it is recommended to use active microwave remote sensing rather than passive microwave
in alpine regions due to its higher spatial resolution [15]. However, the temporal resolution
of active microwave is less than that of passive remote sensing, and it requires the appro-
priate frequencies (Ku-band) to model the microstructure properties of the snowpack [16].
Two types of inversion algorithms, including physical backscattering and phase-based ap-
proaches, are used to estimate snow parameters by using active microwave remote sensing.
The physical backscattering composed of surface and volume scattering calculates SWE by
an iteratively minimized cost function. On the contrary, the phase-based approach uses the
repeat-pass SAR measurements to estimate SWE through a phase shift caused by snowpack.

This paper is a review of the SWE retrieval methods classified into three groups: in
situ measurements, the reconstruction method, and space-borne observations, along with
their concepts and challenges. In addition, the SWE inversion techniques using passive and
active microwaves, which are employed to modify the system representation, are described
in detail. The available SWE products, including satellite-based, data-assimilation-based,
and reanalysis data (datasets which that continually updated by the combination of ob-
servations and results of prediction models), are also introduced. Eventually, the future
outlook of improving SWE estimation is discussed. Figure 1 depicts the flow diagram of
the current research.

Summarily, the purposes of the manuscript include:

• SWE retrieval methods;
• Uncertainty sources;
• Available SWE products;
• Future outlook and research avenues.
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Figure 1. The flow diagram of the current research.

2. In Situ Measurements

The standard method of SWE measurement is based on the gravimetric approach,
which manually measures the meltwater or weighs the frozen snow sample taken with a
snow tube [44]. Snow courses that represent a series of snow sampling points at regular
intervals also manually measure SWE for each point [13].

Because of the sparse nature of manual measurements, automated methods of SWE
measurement were proposed to provide continuous amounts. Snow pillows, automated
weighing devices [13], are known as the most commonly used method for continuous
measuring of SWE. Snow pillows are similar to flat circular containers and can last for 10
years or more under normal conditions. Snow water equivalent is continuously achieved
by measuring the hydrostatic pressure inside the pillows [45]. Changes in temperature may
reduce the accuracy of SWE measurements for shallow snow because of the contraction
or expansion of the pillow’s fluid. This issue, however, is inconsiderable in deep snow,
except at the start and end of the snow season [44]. The most reliable measurement by snow
pillows is when snow cover is empty of ice layers; otherwise, bridging by frozen snowpack
as well as meltwater refreezing can be caused above the pillows [44,46,47]. Therefore, this
method is inappropriate during the snowmelt season [47–49].

In addition to snow pillows, radioisotope snow gauges, as a non-destructive approach
to sampling, can continuously measure SWE and the density profile using a natural radia-
tion source and detector. The method is based on the natural gamma radiation attenuated
by snow for a point, a series of points, and a traverse over a region [50]. The difference
in gamma radiation levels emitted from the surface is finally converted to SWE by an
optimized coefficient. Systems with a natural radiation source are usable for both telemetry
recording, which is performed by portable gamma-ray spectrometer onboard an aircraft,
and in situ measurement, while the gauges using an artificial source for radiation are able
to obtain SWE only for the site where it is installed. It is important to note that portable
gauges measure the snow density by backscatter and present a practical way to dig deep
snow pits [51]. This method, which has no radiation risk, unlike the artificial radiation
source, is usable for snowpacks with up to 500 mm water equivalent.

The accuracy of point measurements of SWE is sensitive to the properties of snowpack,
topography variations, and the assumptions or methodologies used (e.g., [39,52–55]).

Some studies showed that snow tubes overestimate SWE (e.g., [56,57]) while [58]
and [59] found the underestimation of snow tubes in measuring SWE. On the other hand,



Sustainability 2022, 14, 11395 5 of 45

the snow pillow method has uncertainties ranging from 6% to 12% in measuring SWE
quantities [60]. Moreover, the natural gamma radiation method has exhibited an average
accuracy of ±20 mm if it is corrected for soil moisture variations in the 10 to 20 cm surface
soil layer [44].

The in situ measurement stations, such as snow pillows and courses, are mostly in-
stalled near flat terrain sheltered from the wind, which leads to a poor representation
of snow accumulation and melting in highlands [61]. With dense enough measurement
networks placed in optimized locations, however, interpolation schemes (two or three
dimensions) can provide a relatively accurate SWE spatial distribution [14]. In this regard,
different statistical models, such as kriging, inverse-distance weighting (IDW), multivariate
linear regression, etc., have been developed to interpolate point SWE measurements. Some
studies showed that linear-regression-based methods have better accuracy than simple
kriging and IDW [62,63]; however, these methods are incapable of providing a smooth
spatial distribution and necessarily establish a linear relationship between the indepen-
dent variables and SWE [64]. Another category consists of the nearest-neighbor-based
algorithms, which are well-known due to the nonparametric learning basis and ease of exe-
cution [65]. In addition to the low computational effort, the nearest-neighbor-based models
can preserve spatiotemporal patterns of SWE observations with superior accuracy [64].

A common problem with the interpolation methods is that the snow values may be
achieved beyond the actual snowy areas. To attain the physically realistic SWE values,
interpolation is recommended to be constrained by snow cover area information obtained
from remotely sensed images [63]. Nevertheless, some studies showed that bias in point
to area interpolation is unavoidable, partly due to the weakness of measured SWE in
representing the pixels [13]. For example, the authors of [61] showed that 26 assessments
among 53 at 15 snow courses and pillows had biases larger than 10%. Molotch and Bales
(2005) [66] reported the failure of a snow telemetry site because SWE was overestimated by
up to 200%. In addition, a significant snow coverage may remain in higher elevations after
all snow pillows are bare, showing that stations underestimate some parts of the region [14].
Given that the point measurement for an interpolated product represents the entire grid
cell, assessing the topographic effects on melt energy and wind registration can control
SWE variations of the grid cell at hillslope and watershed scales [1].

3. Reconstruction Method

SWE reconstruction, first introduced by the authors of [67], is a dataset estimated
by historical SWE information of past snowmelt seasons [24,68]. For this purpose, the
snow cover area and energy required for a pure snowpack melt are employed to back-
integrate SWE from the snowmelt date to the date at which SWE reaches its maximum. The
reconstruction method is capable of providing spatiotemporal patterns of SWE over large
and mountainous areas (e.g., [23,24,69–73]. It should be noted that the precipitation is not
accounted for during the melt season, causing the bias in the estimates [74].

Basically, the method is based on the snow surface energy balance to calculate snowmelt
as follows:

MpρL = Rs(1− α) + Rl,in − Rl,out + H + LE (1)

where Mp is the potential snowmelt (m), ρ is the density (kg/m3), L is the latent heat of
fusion (kJ/kg), Rs is the solar insolation (J/m2), α is the albedo (dimensionless), Rl,in is
the incoming longwave radiation (J/m2), Rl,out is the outgoing longwave radiation (J/m2),
H is the sensible heat flux (J/m2), and LE is the latent heat flux (J/m2). The short and
long wavelengths vary between 0.4 to 1.7 µm and 8 and 14 µm. In addition to full energy
balance, the snowmelt rate can be obtained from the temperature index and the combined
method of radiation balance and temperature index.

To calculate the actual snowmelt (Ma), Mp is scaled using the snow cover area as follows:

Ma = Mp × SCA (2)



Sustainability 2022, 14, 11395 6 of 45

where SCA is the fractional snow cover area obtained from optical remote sensing. Finally,
the SWE time series are obtained from back integrating the snowmelt using Equation (3):

SWE0 = SWEn +
n

∑
i=1

Ma,i (3)

where SWE0 is the initial SWE, SWEn is SWE at time n, and Ma,i is the actual snowmelt
during time step i. It should be noted that the SWE0 for each pixel can be reconstructed at
the time when snow is no longer observed (i.e., SCA = 0):

SWE0 = ∑n
i=1 Ma,iwhen SWEn = 0 (4)

According to the algorithm’s structure, by which the snowpack is reversely simulated
from the snowmelt period back to peak accumulation, the method can be assessed only
after the snow disappearance and is only valid for the melt season. For this reason, the
reconstruction method is more appropriate for generating the historical SWE reanalysis data
(i.e., datasets that are continually updated from past to present) rather than the forecasting
of climatological and hydrological variables. Furthermore, the snow disappearance date
can be obscured because of cloud cover. This method is suitable only for areas with
insignificant snow accumulation during the melt period because the snowmelt depth
derived from surface energy balance is valid for the surface layer [75].

Despite the aforementioned disadvantages, the method can be implemented without
the need for extensive ground-based observations over whole mountain ranges for decades
of time with a high spatial resolution [73]. In addition, the reconstructed SWE results can
be used as an independent data source to compare with other models.

Sources of Uncertainty in Reconstruction Method

Several factors cause uncertainties in reconstructed SWE estimates, including the
spatiotemporal resolution of SCA data, the methods used to determine the date of snow
disappearance and peak snowfall, and the methods used to calculate the melt rate [14].

Given that the accuracy of the SWE reconstruction method increases with improving
SCA information, a tradeoff between the spatial and temporal resolution of reconstructed
SWE is required. For instance, SCA obtained from Landsat has a spatial resolution of 30 m
and a time revisit period of 16 days. Although the spatial resolution of SCA is accurate,
the presence of cloud cover that is probable during the time revisit period can increase the
model error because the clear acquisition of data is prolonged [72]. In contrast, Moderate-
Resolution Imaging Spectroradiometer (MODIS) represents the daily SCA information with
a 500 m (or 1 km) resolution, which is less accurate than the SCA of Landsat. Therefore, it is
recommended to merge the products to improve the low temporal resolution of Landsat and
low spatial resolution of MODIS [14,75]. In addition, the misidentification of snow cover
presence by satellite products leads to large unrealistic SWE values and thereby introduces
uncertainty in SWE estimation. In this way, accurate determination of the date when snow
cover goes to zero is critical. SCA products with a relatively coarse spatial resolution (such
as 500 m) are incapable of determining the actual date of snow disappearance due to the
gradual decline of the snow fraction. Dozier et al. (2008) [76] suggested that the use of
multiproducts, such as MODIS and Landsat, can improve the snowmelt-out date, as the
finer temporal resolution reduces the cloud cover effect, which may conceal the actual date.

On the other hand, the maximum SCA does not necessarily represent the peak SWE, as
the maximum snow depth itself precedes maximum SWE owing to the compression of the
snowpack over time. The most reliable method for determining the peak SWE date is the
use of snow pillow data, which leads to an accurate SWE product being reconstructed [24].
Although the lack of ground measurements makes the determination of the peak SWE date
difficult, back-calculating the daily melt provides an upper bound for SWE accumulation.

The most considerable uncertainty of the reconstruction approach is related to the
data and methods utilized to obtain the melt rate, i.e., the full energy balance, temperature
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index, and their combination. The surface micrometeorological data required for accurate
estimation of snowmelt are shortwave and longwave radiation, humidity, air temperature,
and wind speed. Additionally, the accurate surface albedo, which directly affects the solar
radiation, can improve the reliability of reconstruction. It is worth noting that the snow
albedo can be derived either by remotely sensed products or snow age-based models,
which both introduce uncertainties [24].

4. Space-Borne Measurements
4.1. Passive Microwave

By estimating snow parameters spatially and temporally remote sensing can overcome
the issues of point measurements [15]. Visible satellite measurements are mainly used
to map snow cover based on the highly visible reflectance of snowy surfaces [77], while
satellite-based PMW signals, operating with the naturally emitted microwave energy or
light, are employed to monitor the global information of snow depth and SWE due to
their penetration of the snow [78]. Unlike optical remote sensing, insensitivity of the
microwave imagery to atmospheric effects and solar illumination results in detecting
changes under all-sky conditions. Likewise, the microwave signals can overcome the
misdiagnosis of snow and cloud, which makes the method superior to visible and near-
infrared measurements [77].

The microwave radiation emitted from the surface, demonstrated as brightness tem-
perature (TB), is attenuated by the overlaying snowpack. In other words, the snow medium
causes the brightness temperature to be scattered or absorbed, resulting in decreased
TB with increased snowpack [79]. Therefore, SWE detection is performed using multi-
frequency microwave emissions from snow based on extinction characteristics of frequen-
cies; a lower frequency (long wavelength) has less extinction or less scattering effect than
a higher frequency (short wavelength) [30]. On the other hand, the absorption effect at
microwave frequencies is related to free water in snowpack (dielectric properties), which
increases with the snowpack’s moisture [79]. This effect results in the ability to differen-
tiate the wet and dry snowpack; dry snow is snowpack with pure ice grains, and wet
snow is assumed to be composed of sticky snowflakes because of the uneven distribution
of liquid water-coated grains. Additionally, the polarization information of PMW is uti-
lized to distinguish deep and shallow snowpack due to much penetration into the deep
snowpack [80].

4.1.1. Sources of Uncertainty in PMW Method

The uncertainty of PMW-based SWE information originates from the sensors and
retrieval algorithms. The passive microwave radiometers mostly provide the SWE estimates
at a very coarse spatial resolution [77], as microwave emissions with low-energy levels
require a wide spatial extent to supply enough energy for achieving specified accuracy [14].
This low spatial resolution allows a single grid cell to include different land cover types
and heterogeneous snowpacks, making the results inadequate to meet the requirements
of a small scale [81,82]. Due to this, SWE estimation should be based on the thermal
and emissive properties of different land cover types, and the polarization and frequency
effects should be considered under different conditions by model-derived or empirical
coefficients [83]. However, most algorithms ignore the mixed pixel problem and treat snow
as a pure pixel, causing a decrease in SWE estimation accuracy. It should be noted that
downscaling methods for brightness temperature, such as the mixed pixel decomposition
method [84–87] and the enhanced resolution reconstruction method [88,89], can be helpful
to reduce the mixed pixel problem, but these methods themselves have uncertainness
affecting SWE retrieval accuracy.

From the viewing angle of a sensor, the forest areas are composed of the canopy fraction
and gap fraction between the canopies. Snow contribution in the microwave observations
is based on the gap fraction viewed by the passive sensor; the greater the viewing angle,
the more minor the gap fraction [90]. Therefore, the increased canopy fraction, which
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results from decreasing the gap fraction in the scene, causes an underestimation of SWE
because the snow brightness temperature gradient between frequencies decreases. To
prove this issue, Vuyovich et al. (2014) [91] showed a better correlation between simulated
and PMW-based SWE when the canopy fraction is small. In addition to forests, the lake
area fraction has a considerable influence on SWE retrievals using the TB difference [32,92].
According to Lemmetyinen et al. (2011) [93], SWE estimation accuracy improved when the
lake area was considered, likely due to different emissive behaviors of water and snow.

In addition to systematical biases of satellites, the retrieval algorithms are incapable of
simulating very thin snowpack (less than a few centimeters) due to the significantly small
spectral gradient that occurs between two frequencies. PMW methods also underestimate
SWE for deep snowpacks [94]. With increasing SWE, TB of homogeneous snow typically
decreases until it becomes saturated when a sufficient thickness of snow is reached. In such
a situation, microwave signals cannot penetrate the snowpack [39]. Moreover, microwave
radiometry is unable to differentiate the deep snow from shallow, dense snow in some
cases. For example, the presence of plate-like depth hoar crystals and ice-crust layers can
yield increased microwave scattering and, thereby, an artificially overestimated SWE value.

The differences in snow characteristics, such as texture, grain size, and snow stratig-
raphy, have a significant effect on the estimation accuracy of PMW-based SWE. The mi-
crowave retrieval usually overestimates the SWE of snowpacks with a coarse texture and
large grain size because of the increased scattering component of extinction [95]. Similar to
large effective grain size, the internal reflections lead to increasing the volume scattering
and, thereby, increased SWE estimates [40,96]. In addition, the liquid water content in snow,
which simply perturbs the signals, conducts the behavior of snow towards wet soil in terms
of the signal reflection; consequently, the microwave emission increases, especially during
the melt season [97]. For wet snowpack, the brightness temperature obtained from PMW
illustrates the emission from near the wet snow surface instead of the ground [98].

On the other hand, the emissive properties of the background beneath the snow can
also affect the brightness temperature [82]. Dielectric constant and surface roughness are
the most important soil parameters that can cause errors in SWE retrieval. Vegetation
cover has a masking effect on the signal emitted from the underlying snow cover by
contributing to emission, absorption, and scatter [99]. That is why SWE in forested regions is
underestimated up to 50% (e.g., [39,100]). It should be noted that this issue is intensified for
global SWE retrieval because most terrains covered with snow are also forested. Therefore,
it is required to adjust SWE retrieved in forest regions by a forest factor derived from satellite
vegetation measurements or databases. For other cover types, likewise, it is necessary
to utilize an emission model to assess their effect on SWE accuracy. In addition to the
aforementioned sources, the existence of particulates, dust, ash, black carbon, and haze in
the atmosphere can affect the accuracy of SWE retrieved by PMW.

4.1.2. Snow Microwave Scattering and Inversion Models

To conceptualize the PMW brightness temperature and model the SWE microwave
scattering, various microwave models have been developed based on the TB differences
at two frequencies, showing the radiation scattering changes of snowpack at different
wavelengths [101]. The models range from simple, i.e., static and dynamic algorithms with
empirical structure, to more sophisticated, i.e., physically based statistical algorithms and
emission models, which are explained in the following sub-sections.

Empirical Models

The empirical models include static and dynamic algorithms, which are basically
established via the brightness temperature differences at different frequencies. The static
algorithms calculate SWE (or snow depth) using a linear regression between snow water
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equivalent and brightness temperature gradient for a snowpack with temporally and
spatially constant properties, as follows:

SWE = A + B × ∆TB (5)

where SWE is the snow water equivalent (mm), ∆TB is the vertically (or horizontally)
polarized brightness temperature difference between low (18 or 19 GHz) and high (37 or
85 GHz) frequency, and A and B are the offset (mm) and slope (mm/K), respectively. The
coefficients A and B are obtained by fitting with experimental data.

The NASA algorithm [30,102] is the simplest example of an SWE static algorithm,
which is derived for the SMMR sensor as:

SWE = 4.8 × (TB,18H − TB,37H) (6)

where TB,18H and TB,37H indicate the horizontally polarized brightness temperatures (K)
at 18 and 37 GHz, respectively. TB is calculated using RTE for a homogeneous snowpack
with a constant snow grain size of 0.3 mm and a constant density of 300 kg/m3. The NASA
algorithm can be used only for SWE less than 300 mm because the brightness temperature
difference for greater SWE becomes saturated. In addition, the model is not suitable for
various snow grain sizes except 0.3 mm.

SWE estimation is greatly complicated when the surface is covered with vegetation, as
the canopy coverage affects the microwave emitted from the snowpack. To consider the
forest effect, the NASA 96 algorithm, which is the extended version of the NASA model,
was developed to provide global SWE inversion [81]. The algorithm is expressed as follows:

SWE =
4.8 × ( TB,18H − TB,37H)

1− fc
(7)

where fc is the canopy fraction. The NASA 96 model resulted in a decrease in the SWE error
from 50% to 15% for North America and a significant increase in the SWE retrieval accuracy
for Europe [81]. However, both NASA and NASA 96 algorithms are incapable of adequately
simulating the snow grain size, which is the most critical parameter to determine the snow
volume scattering. Therefore, Foster et al. (2005) [39] developed a new SWE model by
using two adjusted parameters for considering the effects of grain size and canopy fraction:

SWE = Ft × Ct (TB,18H − TB,37H) (8)

where Ft and Ct are the adjustment coefficients for canopy fraction and snow grain size,
respectively. Although the algorithm has simulated the snow melting and accumulation
process well, considerable errors have been still observed in alpine snow.

The different types of land cover backgrounds have a significant effect on changes in
brightness temperature and snow characteristics. For example, Hallikainen (1984) [103]
found coefficient B to be equal to 2.9 and 5.4 mm/K for swamps and forests, respectively.
The Canada algorithm was developed to accurately estimate SWE for regions with complex
land terrains. However, the model reported a ±20 mm error for most of the simulated
SWE compared to the ground-based measurements. In addition, the results showed an
underestimation for retrieved SWE in the tundra region of Canada and boreal forests with
deep snow. The mathematical relationship of the model is defined as follows [94]:

SWE = ∑n
j=1 Fj(A + B·∆TB)j (9)

where Fj indicates the percentage of grassland, deciduous forest, coniferous forest, and
sparse forest included in the SSM/I grid cell. The A and B values are separately fitted for
each land type, and the total SWE is calculated as the weighted sum of SWE s of each land
cover type.
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In addition to the aforementioned models, several snow depth estimation algorithms,
which are appropriate for shallow snowpack, have been developed in China during the
past two decades. For example, Cao et al. (1993) [104] adjusted the empirical coefficients of
the NASA algorithm using the land cover classification. In addition, the NASA model was
modified by considering the effects of precipitation, wet snow, vegetation, frozen ground,
and cold desert [105]. The RMSE values of the modified model were equal to 6.22 and
5.22 cm when SMMR and SSM/I brightness temperatures were used, respectively.

Some researchers reported that including the snow cover fraction data in the depth
estimation algorithms led to an improvement in the accuracy of SWE retrievals [106,107].
However, these models are incapable of providing the real-time snow depth, as they employ
the 8 day snow cover to derive SWE. In this regard, a sequence of semi-empirical snow
depth algorithms was proposed to estimate real-time SWE for mixed pixels [108]. The snow
depth estimation method for the mixed pixels is based on the snow depth of pure parts
obtained from separate regression for each land cover type:

SD = fgrass × SDgrass + fbarren × SDbarren + f f orest × SD f orest + f f armland × SD f armland (10)

where SD is the snow depth and f is the fraction of land cover. The SD parameter is
obtained from integrating the snow fraction into the snow depth regression. The results
showed an RMSE of 5.6 cm and a bias of ±5 cm for snow depth retrievals in comparison
with station measurements.

Static models can provide relatively accurate and stable snow depth estimates at local
scales. However, the lack of data required for regression limits their use at regional or global
scales as the models are calibrated only for specific areas. In addition, the models consider
the physical properties of snow, such as grain size, depth, and density, to be constant over
time and space, while these parameters change as the snow season progresses. Therefore,
the dynamic models, in which the effect of internal metamorphism on SWE retrieval is
considered through defining the dynamic slope B, have been formed to simulate the spatial
and temporal changes of the snowpack.

The temperature gradient index (TGI) dynamic algorithm proposed by the authors
of [109] considers the spatiotemporal variations of snow internal properties with a focus on
grain size. Changes in snow grain size are due to constructive metamorphism, especially
temperature gradient. In other words, the underlying soil temperature is higher than the
snow surface temperature due to the thermal isolation of snow, resulting in a considerable
temperature gradient in the snowpack. Following the temperature gradient, a vapor
pressure gradient is established that forces water vapor to move upward. The cold surface
layers of snow lead to water vapor condensation, and thereby the snow grain size increases.
According to Equation (11), TGI is a cumulative index from the beginning of the snowfall,
showing the grain size growth:

TGI =
1
C

∫ t

0

Tg − Ta

SD(t)
dt (11)

where C is an empirical coefficient (20 ◦C/m), Tg is the temperature of the soil–snow
interface (◦C), Ta is the temperature of the atmosphere–snow interface (◦C), and SD(t) is
the snow depth varying with time (t). In addition, Josberger and Mognard (2002) [109]
presented a linear relationship between TGI and brightness temperature gradient as follows:

TG = (TB,19H) − TB,37H = αTGI + β (12)

where TG is the temperature gradient. Finally, the snow depth at time t is obtained from
Equations (11) and (12):

SD(t) =
α
(
Tg − Ta

)
C
(

dTG
dt

) (13)
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The use of the TGI model, despite its ability to represent the physical processes during
snow evolution and improve the estimation accuracy of snow depth [109,110], is restricted
by several issues explained as follows. The model is valid only for conditions where Tg is
higher than Ta, and it cannot be applied to areas outside of the original study area due to
the lack of in situ data required for model calibration. The differential equation used in the
TGI algorithm causes errors when daily SWE retrieval is targeted; thus, the time series of
brightness temperature and air temperature should be smoothed. In addition, the actual
snow depth is not simulated correctly when the melting process begins, and a small change
in dTG

dt can yield an unreasonably large snow depth.
In addition to the TGI model, a dynamic algorithm with a semi-empirical structure was

developed by Kelly et al. (2003) [82] to describe the temporal variations of snow volume
and grain size using Equations (14) and (15), respectively:

fv (t) = fv,∞ − ( fv,∞ − fv,0)exp(−lt) (14)

r(t) = r∞ − (r∞ − r0)exp(−kt) (15)

where r(t) is the snow grain size (mm), r0 is the initial snow grain size (mm), r∞ is the upper
limit for snow grain size, t is the time (day), k and l are the empirical coefficient (day−1), fv
(t) is the snow volume fraction (%), fv,0 is the fresh snow volume fraction (%), and fv,∞ is
the maximum fv (%).

By combining the Dense Medium Radiative Transfer (DMRT) model with snow grain
size and density, a quadratic polynomial regression equation was achieved based on the
brightness temperature difference and snow depth:

SD = b(∆TB)
2 + c∆TB (16)

where SD is the snow depth (cm), ∆TB is the vertically polarized brightness temperature
difference between 19 and 37 GHz, and b and c are the empirical coefficients of grain size
and snow volume, respectively, which are obtained as follows:

b = 0.898
(

grain size
fv

)−3.716
(17)

c = 1.060
(

grain size
fv

)−1.915
(18)

Although the mean error of snow depths simulated by this model is close to zero
compared to ground truth data, its RMSE is larger than the static NASA algorithm, and its
performance is also more unstable than the NASA 96 model.

Grippa et al. (2004) [110] developed a spatially varying static model by combining
the NASA static algorithm and the TGI dynamic model. The coefficient B in the NASA
algorithm was adjusted to match the snow depth obtained from the TGI model for each
pixel, as follows:

B =
SD(t)

TB,19H − TB,37H
(19)

In order to validate the snow depth results, the monthly meteorological data were
compared to the simulated monthly snow depth results, showing a reasonable perfor-
mance [110]. Furthermore, it was found that the algorithm can yield better results when
applied to a long-term climate change scale (e.g., monthly) [111].

Given that most of the aforementioned models are appropriate only for shallow
snowpack, Kelly (2009) [54] developed a dynamic algorithm to simulate both deep and
shallow snowpack by using different frequencies. According to this model, the depth of
shallow snowpack is estimated via 19 and 37 GHz, and the deep snow depth is obtained
from 19 and 10 GHz. Daily brightness temperature measurements are employed to derive
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the scaling factor between ∆TB and SWE. Finally, SD is obtained from summing the forested
and non-forested components weighted by the forest fraction:

SD = f f

(
SD f

)
+
(

1− f f

)
(SD0) (20)

where subscript f and 0 indicate forest and non-forest, respectively, ff is the forest fraction,
and SD is the snow depth.

Physically Based Statistical Algorithms

SWE can be derived by a regression relationship with the attenuation properties and
snowpack radiation. Multiple scattering in the RTE was firstly considered by Jiang et al.
(2007) [112] through the matrix doubling (MD) approach. In the model, the DMRT with
Mie scattering is employed to calculate emission and extinction, and the advanced integral
equation model (AIEM) is utilized to describe the boundary conditions. The MD model
with multiple scattering leads to a numerical solution to RTEs, which is a complex form
used to retrieve SWE. Therefore, a parameterized model was developed by comparing
multiple scattering in the previous model and the form of the zeroth-order model [112].
Since this model is adequate only for snowpack with an optical thickness of less than two,
Jiang et al. (2011) [33] proposed a revised version of the model in which a statistical SWE
retrieval algorithm is used. To eliminate the disturbance from the satellite signals, the
model uses the relationships between surface emissivities at different polarizations and
frequencies to retrieve SWE. In this way, a database composed of snow signals with a large
number of combinations of snow parameters is established. Finally, SWE is calculated
through the regression relationship with the attenuation properties and snowpack radiation
obtained from the database:

SWE ≈ exp
(

a + b·A′ + c·A′2 + d· log
(
− log

(
B′
)))

(21)

where A′ and B′ indicate snowpack radiation and attenuation properties, respectively,
achieved via dual-polarization brightness temperature at two frequencies. a, b, c, and d
are coefficients fitted by the database. The comparison of SWE results obtained from the
physically based statistical algorithm and the operational AMSR-E algorithm showed the
overestimation of both models; however, the estimation accuracy of the statistical algorithm
was slightly higher than that of the AMSR-E model [33]. It should be noted that the use
of newly developed physically based statistical models is limited by dense vegetation,
resulting in a need for further modification.

Emission Models

The emission models are capable of simulating the microwave interactions of the snow-
air–soil system, including (i) surface scattering from the snow–ground interface, (ii) volume
scattering from snow particles, (iii) the interaction between snow and ground, and (iv) the
snow–air interface, both in one layer [112–114] and multi-layers [31,35,96]. In addition,
they can treat snow as a continuous medium [96,115–117], clusters of ice spheres [114], or
discrete ice spheres [118]. The volume scattering coefficient is also obtained from three types
of methods, including the empirical approach [96,113], Monte Carlo simulation [116,119],
and analytical approach [114,115,118]. Strong fluctuation theory (SFT) and DMRT theory,
which are well-known analytical methods, calculate the scattering coefficients of snow
for the continuous medium [115] and ice particles [114,118], respectively. In addition,
the bicontinuous model, which is appropriate for the continuous medium of ice and air,
employs Monte Carlo simulation to derive the scattering coefficient [116,117]. In order
to solve the RTE, the radiation in the 4π space can be separated into two fluxes [120], six
fluxes [96], and multiple fluxes using Gaussian quadrature and Eigen analysis [35,114,115].
Generally, emission models have been composed of three major parts under the radiative
transfer concept to simulate the snow medium [101]:
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• Snow microstructure parameterization

Measuring snow microstructure parameters, which mostly consist of maximum geo-
metrical extent (Dmax) or snow grain size, the correlation length (Pc), and stickiness and
optical diameter (D0), is challenging [121]. These parameters affect the determination of
electromagnetic properties, such as dielectric constant, absorption, and scattering coefficient.
Some structures such as the Microwave Emission Model of Multi-Layer Snow (MEMLS)
and the bicontinuous model treat snow as a continuous medium while the models of the
Helsinki University of Technology (HUT) and DMRT with Quasicrystalline approximation
(QCA) use a set of discrete ice spheres to parameterize the snow microstructure.

• Solution of RTE

Microwave scattering and snow emission are modeled by RTE, which is a partial
differential or integral equation. Depending on the number of discrete directions of fluxes,
the techniques of RTE solution are classified into three groups: two-stream (such as HUT
model), six-stream (such as MEMLS model), and any number of streams defined by the
user (such as DMRT model).

• Snow propagation, emission, or scattering estimation

The scattering effect on the brightness temperature and backscattering coefficient is
more dominant than absorption. Three types of models, including semi-empirical models,
analytical models, and numerical models, have been developed to estimate the emission
and scattering effects. The models consider the multiple microwave interactions within
the snow and refraction, transmission, and reflection at the interfaces by the RTE on a
plane-parallel medium [122,123]. Different types of microwave emission approaches along
with the most important models are discussed below:

• Semi-empirical approach

The semi-empirical approach relies on field measurements and calculates the scattering
coefficient as a function of incident frequency and snow grain size. The outstanding
properties of this approach are its wide and strong practicability, simple structure, and
low electromagnetic computations. In the approach, the change of brightness temperature
in the propagation directions of θ, ϕ, and z is achieved using radiative transfer theory,
described by the following general expression [29]:

∂TB(z, θ, ϕ)

∂z·secθ
= −
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where θ is the zenith angle, ϕ is the azimuth angle, z is the vertical location (snow depth),
θ′ and ϕ′ are slant angles, TB is the brightness temperature,
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where � is the zenith angle, � is the azimuth angle, z is the vertical location (snow depth), 

�′and �′ are slant angles, ��  is the brightness temperature, ƙ�  is the extinction coeffi-
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With different RTE solutions and assumptions, HUT and MEMLS models, as the 

most important semi-empirical models, have been formed as follows: 

a is the absorption coefficient, T is the physical temperature of snow, and
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With different RTE solutions and assumptions, HUT and MEMLS models, as the 

most important semi-empirical models, have been formed as follows: 

bi
s (θ, ϕ, θ′, ϕ′) is

the bistatic scattering coefficient. On the right side of the equation, the first term shows
the attenuation of microwave emission because of scattering and absorption, the second
term exhibits the emitted radiation from snow, and the third term is the sum of scattered
microwaves in the direction (θ, ϕ).

The scattering coefficient
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With different RTE solutions and assumptions, HUT and MEMLS models, as the 

most important semi-empirical models, have been formed as follows: 

s is the average value of the bistatic scattering factor over
4π space, stated as follows:
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∫ π
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′=0

∫ 2π

ϕ
′=0
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With different RTE solutions and assumptions, HUT and MEMLS models, as the 

most important semi-empirical models, have been formed as follows: 

bi
s
(
θ, ϕ, θ′, ϕ′

)
. sin θ′dθ′dϕ′ (23)

With different RTE solutions and assumptions, HUT and MEMLS models, as the most
important semi-empirical models, have been formed as follows:

The Microwave Emission Model of Multi-Layer Snow (MEMLS) [96], which is based on
the SFT [124], has a multi-layer structure with intermediate complexity for the 5–100 GHz
frequency range. Assuming the snow medium is a parallel plane, Equation (23) can be
simplified by reducing the propagation directions of TB into the direction (θ0, ϕ0) and the
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direction (θ0 + π, ϕ0 + π). In addition, the directions are not generally vertical; therefore,
this equation can be stated using two fluxes of upward (up) and downward (dn) direction:

∂Tup(z′)
∂z′

= −
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With different RTE solutions and assumptions, HUT and MEMLS models, as the 

most important semi-empirical models, have been formed as follows: 
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where z′= z.secθ0, θ0 is the observing zenith angle, Tup(z′) and Tdn(z′) are the upward and

downward brightness temperatures, respectively, and
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With different RTE solutions and assumptions, HUT and MEMLS models, as the 

most important semi-empirical models, have been formed as follows: 
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With different RTE solutions and assumptions, HUT and MEMLS models, as the 
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With different RTE solutions and assumptions, HUT and MEMLS models, as the 

most important semi-empirical models, have been formed as follows: 
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With different RTE solutions and assumptions, HUT and MEMLS models, as the 
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With different RTE solutions and assumptions, HUT and MEMLS models, as the 

most important semi-empirical models, have been formed as follows: 

s. By using these expressions in the MEMLS
model, Equations (24) and (25) are rearranged to:

∂Tup(z′)
∂z′

= −
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The above RTEs that are employed in the MEMLS model only use the backward
scattering coefficient. A six-stream theory is exerted to solve the RTE by considering
total coherent, incoherent, and trapped radiation on the snow layer. In other words, the
horizontal radiation trapped by internal reflection inside the snowpack is divided into
four fluxes, and it includes a total of six fluxes together with upward and downward
fluxes [125].

The model simulates snow microstructure via a second-order statistical function
by using the exponential correlation length, the derivative of this function. In addition,
MEMLS can use both semi-empirical and physically based approaches to determine the
volume scattering coefficient. In the semi-empirical approach, the scattering coefficient is
achieved by correlation length and snow density, and it can also be computed using the
physically based Improved Born Approximation (IBA) method [124]. It should be noted
that IBA has been used to model coarse-grained snowpack as a physical extended version
of MEMLS. On the other hand, the absorption coefficient is calculated based on two real
and imaginary parts which are estimated by an empirical formula and the Polder–van
Santen model, respectively.

Another well-known empirical model for simulating snowpack is the Helsinki Univer-
sity of Technology (HUT) model [113], which follows a single-layer structure to simulate
snowpack based on the empirical extinction and scattering coefficients fitted with observed
grain size. The HUT model is appropriate to simulate the homogeneous, single-layer dry
snowpack over large regions using frequencies between 18–90 GHz. The model basically
assumes that a forward direction governs the total scattered intensities; therefore, an em-
pirical coefficient q is used to parameterize the scattered incoherent radiation intensity
concentrated in the forward direction through the RTE as follows:

∂Tup(z′)
∂z′

= −
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With different RTE solutions and assumptions, HUT and MEMLS models, as the 

most important semi-empirical models, have been formed as follows: 

e)Tdn
(
z′
)

(29)

Obviously, the HUT model uses a two-flux approximation similar to the MEMLS,
i.e., the interfaces between air and snow layers and snow and ground layers reflect both
downward and upward emissions; however, the six-stream theory is not included in
the HUT model. In HUT, the scattering phase of snow is modeled based on a forward
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function, named the Dirac delta function, and the extinction coefficient is obtained from
the experiment in the following way [126]:
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With different RTE solutions and assumptions, HUT and MEMLS models, as the 

most important semi-empirical models, have been formed as follows: 

e =0.0018 f ′2.8d2
0 (30)

where
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With different RTE solutions and assumptions, HUT and MEMLS models, as the 

most important semi-empirical models, have been formed as follows: 

e is the extinction coefficient (dB), f ′ is the frequency (GHz), and d0 is the snow
diameter (mm). Roy et al. (2004) [127] improved the extinction function via the Rayleigh
scattering expression. It is noteworthy that the brightness temperature values for deep
snowpack are underestimated due to the assumption of forward concentration for scattered
radiation [101]. On the other hand, the absorption coefficient of snow, similar to the
MEMLS, is computed using the dry snow dielectric constant with the real part obtained
from Matzler (1987) and the imaginary part obtained from the Polder–van Santen mixture
dielectric constant model [98].

Although the model has relatively adequate accuracy in estimating microwave radia-
tion for a single homogeneous layer, averaging the input parameters causes the uncertainty
of the results. For that reason, a snow multilayer modification has been applied to the
original model to allow the estimation of emission from snow with several layers. The multi-
layer HUT model [31] can simulate the snowpack with an unlimited number of vertically
stacked snow layers by applying the original HUT model to each layer. Furthermore, the
modified model makes the estimation of brightness temperature feasible from sea ice or
snow-covered lakes. In defining the layered structure, the modified version follows the
approach of MEMLS, albeit it omits the coherent components in layer interactions. The in-
terfaces between layers and the topmost snow–air interface are also considered Lambertian.

Generally, the HUT model, due to its strength and simplicity, is known as a widely
used structure in passive microwave snow depth inversion algorithms. Despite the MEMLS
model, HUT is not recommended for deep snowpacks (>50 cm) because of underestimation
of the brightness temperature [101]. Figure 2 depicts the schematic structure of the HUT
and MEMLS models for multiple-layer snow.

• Analytical approach

The electromagnetic calculation is a challenging stage of snow microwave emission
modeling due to the high density of scatter [122,128,129]. In traditional radiative transfer
theory, which is based on the energy conservation law, the snowpack is assumed to be
composed of independent scattering spheres. The scattering coefficient of each particle is
calculated using Mie theory [130,131], and total scattering magnitude is finally achieved
by summing the scattering of all particles. The problem with this method is that it ignores
the collective scattering and coherence effect because of the independent simulation of
particles. Therefore, the traditional RTE, despite considering the superposition of intensity,
is not valid for snow with densely distributed scattering particles [15]. To address this
issue, Maxwell’s equations, because of their independent approach to snow conditions, are
used to derive the appropriate relationships after several approximations, called analytical
models [35]. The accuracy and calculation process of analytical models is higher and more
complex than that of semi-empirical models, respectively [20].

As the first analytical model, Tsang et al. (1985) [122] developed the Dense Medium
Radiative Transfer (DMRT) model to consider the scattering theory of dense mediums
by microwave remote sensing. DMRT accounts for the propagating constant, leading
to improvement in the extinction coefficient, the propagating constant, single scattering
albedo, and scattering phase matrix for dense snow [15]. An overestimation of scattering;
however, is caused if the model is used with traditional RT theory. The model can simulate
snowpack in both a single-layer (DMRT [122]) and multilayer (DMRT-ML [35]) mediums
by treating snow as a collection of spherical ice particles. The schematic structure of the
DMRT model for a multi-layer snowpack is presented in Figure 3.
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Figure 2. Schematic overview of the HUT and MEMLS models for a snowpack with n layers. In
the figure, di and ri are the thickness and reflectivity of layer i, respectively, TB, ground is the upward
ground brightness temperature, TB, air is the downward air brightness temperature, rair-snow is the
air–snow boundary reflectivity, and rground-snow is the ground–snow boundary reflectivity.

By considering the snowpack as a stack of plane-parallel layers, the RTE for each layer
is as follows, as in [132]:

∂TB(z, θ, ϕ)

∂z·secθ
= −
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e × TB(z, θ, ϕ) +
∫ π/2

0

∫ π/2

0
P
(
θ, ϕ, θ′, ϕ′

)
. TB

(
z, θ′, ϕ′

)
sin θ′dθ′dϕ′ +
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aT (31)

where P is the phase function.
The model calculates the absorption coefficient as a function of density and radius,

and estimates scattering and extinction coefficients using the dielectric constant. For dry
snow, the dielectric constant is calculated using snow temperature [133,134] while the
dielectric constant of the wet snow is achieved by the mixture relationship [135,136]. Unlike
the HUT and MEMLS models using the two- and six-stream approach, respectively, most
DMRT-based models employ many streams. The discrete-ordinate method can be applied
to solve the DMRT equation with a number of streams greater than six.

The laboratory experiments and solutions of Maxwell’s equations showed that, in
densely packed mediums, the snow particles scatter together because they are dependent
on one another [118,137]. In this way, the QCA and Quasicrystalline Approximation with
Coherent Potential (QCA-CP), which consider the pair distribution function of the coherent
wave interaction and particle positions, are used to account for the correlation between
particles. The DMRT-QCA model is mostly employed to simulate moderately sized snow
particles through the estimation of the coherent transmission and effective propagation
constant [114], while DMRT-QCA-CP is used for snow particle sizes smaller than the
wavelength [138]. Accordingly, the model may be inappropriate for large snow grains and
frequencies higher than 37 GHz. The simulation of large particles can be implemented
by the Mie phase matrix [114]; however, the method is computationally intensive and is
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incompatible with the RTE optimization used in DMRT-ML. To overcome the limitation
of particle size, accounting for the stickiness between snow spheres instead of randomly
non-penetrable spheres leads to coarse-grained snow constitution [35], as well as reducing
the needed parameters [139]. The Dense Media Radiative Transfer with Quasicrystalline
Approximation (QCA) Mie Scattering of Sticky Spheres (DMRT-QMS) model [117] treats
the snowpack as a set of sticky spherical ice particles. It should be noted that the phase
function for this case is the same as that for the non-sticky small particles [35]. Moreover,
the Dense Media Radiative Transfer with Advanced Integral Equation Model with Matrix
Doubling (DMRT-AIEM-MD) model, a multi-frequency radiative model, was developed
to simulate the rough interface, in which the propagation of an electromagnetic wave
is characterized via DMRT, the scattering from lower and upper surfaces is calculated
by AIEM, and the multiple scattering effect is described through the MD method [140].
Although considering a collection of snow particles with different sizes can improve the
microstructural representation, the simultaneous formulation of size distribution and
stickiness results in a complex quadratic system of equations. In addition to QCA and
QCA-CP, the SFT [141], IBA [124], and the effective field approximation (EFA) are other
examples of relationships derived from Maxwell’s equations. STF and IBA are appropriate
for frequencies less than 200 GHz and between 1 and 100 GHz, respectively. EFA, which is a
low-order approximation in comparison with QCA and QCA-CP, is suitable for simulating
sparse particles as well.

Figure 3. Schematic overview of the DMRT model for a snowpack with n layers. In the figure, di and
ri, ke,i, and ka,i are the thickness, reflectivity, extinction coefficient, and absorption coefficient of layer i,
respectively, TB,air is the downward air brightness temperature, rair-snow is the air–snow boundary
reflectivity, rground-snow is the ground–snow boundary reflectivity, and TB(θ, Z = 0) is the brightness
temperature of snowpack.

• Numerical approach

Numerical models, unlike empirical and analytical models, directly calculate the snow
scattering properties via numerical electromagnetic computations. These models mostly
suffer the disadvantage of requiring time-consuming computational efforts; however, par-
allel computers can be partly helpful to accelerate the simulation of large-scale numerical
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models. The numerical structures eschew the unrealistic assumptions regarding the shape
of snow particles, such as the assumption of spherical and regular particles, and this leads
to simulations of snow microstructure that are very close to real conditions. In addition, the
cross-polarization elements of the phase matrix are considered nonzero because of irregular
snow microstructure, resulting in a stronger prediction of the cross-polarization signal, while
the analytical models, such as DMRT-QCA underestimate the polarization signal because
the cross-polarization elements of the phase matrix are assumed to be equal to zero.

A bicontinuous medium was proposed by Ding et al. (2010) [116] to numerically esti-
mate snow microwave emission and scattering. In this model, the snow structure is treated
as the bicontinuous medium, and the Gaussian random field (GRF) and discrete dipole
approximation (DDA) are used to simulate the snow microstructure and scattering, respec-
tively. The incoherent field, which is separated from the coherent field by many realizations,
is also utilized to calculate the scattering coefficient and phase matrix. Numerical models,
such as DMRT bicontinuous, require a time-consuming computational process with few
assumptions, and provide results that are close to the actual situations. Furthermore, the
numerical structures, similar to analytical models, consider the collective scattering effect
and can simulate passive and active microwave radiation and scattering properties.

In addition to snow emission models, the mass-energy balance structures and snow-
pack simulation models forced by ground, remotely sensed, and reanalysis data can be
exerted to simulate the snow accumulation and melting processes, and thereby the snow
depth and SWE data. Unlike offline models that lack any interaction between surface
and atmosphere, coupled models allow the fluxes to interact between snow surface and
atmosphere. Accordingly, the coupled structures provide more accurate simulations than
the uncoupled ones, especially in complex topography in which precipitation and radiation
are changed with a varied lapse rate [13]. In these models, the precipitation should be
separated into rainfall and snowfall, which is mostly performed using the temperature
threshold method, to obtain the accumulated snow. In addition, accurate temperature data
is critical for determining the snowpack ablation rates. The melt rate also relies on longwave
radiation and snow albedo, as the solar radiation component is the most important driver
of the melting process. Generally, multilayered snowpack models with greater complexity
estimate more precise SWEs, as these models better capture the changes in effective factors
and driving forces [142].

4.2. SWE Inversion Techniques Using the Passive Microwave Approach

The use of the passive microwave approach in retrieving SWE, as stated previously, is
limited by the effect of forest attenuation, coarse spatial resolution, the saturation effect,
and sensitivity to different snow parameters (such as snow density, temperature, grain
size, and stratigraphy). These factors make SWE retrieval complicated due to the complex
nonlinear relationships between brightness temperature and snow depth. Therefore, several
inversion techniques, including iterative algorithms, lookup table algorithms, machine
learning algorithms, and data assimilation methods, are widely used to improve SWE
estimation accuracy and presentation of nonlinear relationships between PMW brightness
temperature and snow properties. These techniques, which are exhaustively discussed in
the following sub-sections, use the emission models and snowpack simulation structures
as observational conductors.

Iterative Algorithms

Iterative algorithms have been developed based on a forward model in which SWE (or
snow depth) is iteratively adjusted to minimize the cost function between the observed and
simulated brightness temperature. This approach is capable of simulating the nonlinearity
between brightness temperature and SWE; thus, its computational effort is extremely high.
To reduce the cost, the snow grain size and depth are usually assumed to be variable, and
other parameters are considered fixed. The emission models, with the satellite observations
of brightness temperature, can estimate snow water equivalent by using an iterative
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process. A well-developed model of this approach is the HUT model, which iteratively fits
the simulated brightness temperatures with observed values to achieve the cost-minimized
SWE by the least squares method and constraint condition [113].

Lookup Table Algorithms

A lookup table, which includes inputs and outputs of the snow emission models,
can provide snow parameters for estimating SWE via seeking the estimated brightness
temperature combinations that are similar to TB observations. The HUT and DMRT-QCA-
CP are usually used as the observation models for these algorithms. The efficiency of
this search-based approach is based on the searching algorithm employed, which can
be a simple searching method without prior knowledge [113,127,143,144] or with prior
knowledge [42,145]. Prior knowledge, such as snow grain size, snow depth, snow density,
and snow vertical stratigraphy, is utilized to increase the accuracy of the table. For example,
Dai et al. (2012) [146] established three lookup tables based on the MEMLS model with
prior knowledge. Accordingly, one to three snow layers with brightness temperatures
at 10, 18, and 36 GHz frequencies were used to build the lookup tables. In addition, a
modified lookup table for forest areas was established by including the snow transmissivity
properties related to the forests, which led to an RMSE of 4.5 cm in the northeast forest
of China [147]. A substantial feature of this method is its failure potential if a one-to-one
correspondence between brightness temperature and SWE is not established. It should be
noted that this correspondence can be restricted by prior knowledge; however, the absence
of knowledge along with the errors of snow emission models limits the application of
lookup table algorithms for large regions.

Machine Learning Algorithms

The nonlinear machine learning techniques, such as the artificial neural networks
(ANNs), the supported vector machines (SVMs), and random forests (RFs) with prior
information, can simulate the complex relationships between PMW brightness temperature
and snow parameters. A widely used method to solve the nonlinear relationships is the
ANN method, which is a first-order mathematical approximation. ANN models, such as the
back propagation (BP) neural network algorithm, can simulate the nonlinear relationship
between dual-polarization brightness temperature, multi-frequency, and land surface
parameters without the need for a priori knowledge. Therefore, these models are known
as strong tools in estimating SWE and can overcome the SD retrieval challenges of typical
approaches, such as empirical and semi-empirical models. Despite the computational
capabilities of ANN, neural network inversion algorithms face a number of challenges,
including the training method, NN structure, and training input data. Dependent inputs
and inappropriate training methods result in large errors in simulations.

Compared with ANN, the SVM method, which is a well-known model in image classi-
fication, better performs in simulating the multi-frequency brightness temperature [148]. In
addition, Xiao et al. (2018) [149] showed that the SVM snow-depth algorithm exhibits better
performance than the ANN method, the Chang model, the linear regression algorithm, and
the spectral polarization difference algorithm, because the saturation effect is alleviated,
which makes this model usable for simulating deep snowpack. Similarly, the decision tree
(DT) model, which uses if-then rules to classify the information, is preferred compared to
ANN due to the extremely rapid calculation process and high estimation accuracy [150].
Random forest (RF), an ensemble classifier, utilizes a set of DTs to prevail over the weakness
of a single DT [151]. Since RF does not require uncorrelated inputs, representative variables,
and complex mathematics, it is known as a high-speed algorithm.

Markov Chain Monte Carlo (MCMC) is another robust method based on the Bayesian
statistical theory, which is able to synergize the retrieval by the simultaneous use of active
and passive remote sensing or multiple frequencies. The Bayesian Algorithm for SWE Esti-
mation with passive microwave measurements (BASE-PM) has been developed using the
MCMC method to simulate the multi-layered snowpack through brightness temperatures
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at four frequencies [34,41]. Due to the smaller number of TB measurements than that of
estimated snow parameters, the algorithm uses some prior information on snow density,
grain size, temperature, etc., to reduce the SWE retrieval uncertainty. Considering the
differences between simulated and observed TB as well as differences between estimated
and prior snow parameters, MCMC can find a combination of estimated snow parameters
providing the highest possible posterior probability. Although there is no need for further
understanding of the forward models, which are used to take into account the microwave
emission theory, the computational cost of the method to achieve a stable posterior SWE
distribution is high. However, MCMC is still utilized as a powerful tool to assess the
possibility of parameter retrieval as well as the accuracy of prior knowledge.

Overall, machine learning algorithms lead to an increase in the SWE retrieval accuracy
to some extent; nevertheless, they should be used cautiously, as the machine learning
approach may behave like a black box without a clear physical basis.

Data Assimilation Methods

Data Assimilation (DA) techniques help to modify the overall representation of a
system by merging the observation into snowpack models [152–156]. One of the key
advantages of the DA technique is that the uncertainty of output is lower than that of
observations and models [60]. However, the scale mismatch between the point in situ
observations and gridded snow model estimates when combined in assimilation systems
is an unavoidable problem, affecting the statistical properties of simulations especially in
mixed pixels and complex terrains [61,157]. In addition, the accuracy of the DA approach
can be affected by insufficient observing networks and assimilated observations with
temporal inconsistency [158,159].

Numerous DA methods, from the simplest structures to more complicated ones, as
well as different types of observations, can be exploited to update the snow depth and
SWE estimates. Basic approaches employ a simple, direct insertion method [160–162] or
Cressman interpolation [163–165] to assimilate the observation and update the snow water
equivalent. In the direct insertion method, the model parameters are directly replaced
with observations, and other non-observed variables are adjusted by the model integration.
Cressman interpolation also is a simplified DA method and corrects the parameter sets
using observations weighted by the distance to the points. Other approaches, such as
optimal interpolation schemes [166–170], consider the observational uncertainty [171]. The
optimal interpolation is centered on the Best Linear Unbiased Estimate (BLUE [172]) and
is used only for simple, linear models with Gaussian errors. Therefore, the method fails
in complex, non-linear snow structures. In this regard, the bias-detecting-ensemble (BDE)
is applied to dynamically combine snow-related observations with the models with any
complexity [173]. In addition, BDE is capable of improving the results at unobserved sites,
illustrating its strength in describing spatial variations. It should be noted that the model,
unlike optimal interpolations, does not consider observational uncertainties.

As a popular DA method, filtering systems use a sequential process, which is based on
past and present observations fixed in time, to implement the forecast and analysis steps,
respectively. The first filter version is the Kalman Filter (KF) [174], which is based on the
least-squares analysis to evaluate the assimilation of snow parameters through observations.
Due to the linearity assumption of the KF, the method is used for linear models with
Gaussian errors. To simulate non-linear structures, the Extended Kalman Filter (EKF)
can be applied based on the local linearization of the operators [175–177]. Furthermore,
the Ensemble Kalman Filter (EnKF; [178]), which obtains a parameter estimate and its
uncertainty with an ensemble, provides a much more convenient execution for non-linear
models. The method is able to deal with large dimension error covariance matrices, and
propagates the error information by using Monte Carlo sampling [179,180]. However, the
EnKF performs poorly in highly non-linear systems and has a high computational cost for
larger ensembles. EnKF and EKF have often been utilized for the assimilation of PMW-based
SWE products, such as SMMR and AMSR-E [17,150,154,181]. To address the non-linearity
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issues, the ensemble-based Particle Filter (PF), which produces the probability density
function (PDF) by an ensemble of results to consider the dynamics of non-linear systems, is
the most suitable DA method. The PF method, similar to the EnKF, represents a sequential
Monte Carlo simulation and considers the uncertainties of model structure, forcing data, and
observations [153,182,183]. However, the PF determines the uncertainties of state variables
more accurately than the EnKF method using state variables resampling [184]. Unlike the
other DA methods, the PF can overcome the variable dimension problem, yet the resampling
in models with numerous variables leads to very close particles and thereby degeneracy.

Another type of DA method is the smoother approach, which uses a batch of obser-
vations over a retrospective window instead of updating the parameters and predicting
forward. Smoothers provide a practical approach to obtaining the historical reanalysis
datasets for seasonal snow processes (e.g., [185,186]). Compared to filters, smoother meth-
ods can extract more information when the seasonal relationships between state variables
and observations are strong. Fixed-interval smoothing is the most popular method of this
approach in which the variable in a time interval is obtained from assimilating observa-
tions of the same interval. A batch smoother, known as the four-dimensional variational
method (4DVar), assimilates the measurements of prior knowledge, errors, and model
constraints, using minimization of the least squares cost function. Although 4DVar can be
used in non-linear models, its application is restricted in complex non-linear models (most
snowpack models) due to a need for the adjunct model. The Particle Batch Smoother (PBS),
the Ensemble Kalman Batch Smoother (EnBS), and the Ensemble Kalman Smoother (EnKS)
developed based on the filtering approaches are other smoother methods. Compared to
the EnKS in which a Kalman is updated on all states, particles of the PBS are updated
by performing conditioning on all measurements. The batch EnKS is a straightforward
method with the same limitations as the EnKF; however, its application is limited by pri-
mary additional cost, while the PBS method, similar to the PF, is more cost-effective because
of updating ensemble weights instead of state vectors [187], and is applicable for both
non-Gaussianity and non-linearities. In addition, Li et al. (2017) [188] demonstrated that
the EnBS performed better than the EnKF and EnKS as it partly overcomes the saturation
of TB in deep snowpack due to using TB time series. It is worth noting that smoothers, due
to their retrospective nature, are suitable for deriving the reanalysis data.

In addition to different DA methods used, various types of observations can be
assimilated to improve the estimation accuracy of snow water equivalent. The in situ
snow water equivalent and snow depth data are the prevalent datasets that can be applied
to the snow models to improve the accuracy of SWE estimates [169,189,190]. Although
it is proven that the use of in situ snow depth improves the accuracy of SWE and snow
density simulations [191], an extremely dense network of in situ observations is needed
to recover the spatial variations of snow properties [173]. The information extrapolated
to cells without observations, in turn, leads to uncertainty in SWE retrievals as a result of
the limited station network. Therefore, remotely sensed information is usually required to
be combined with in situ observations, especially on complex surfaces [192]. For example,
Hedrick et al. (2018) [193] integrated the LIDAR-derived snow depth into a snow model
by direct insertion to improve the estimation accuracy of snow depth at a high resolution.
Similarly, Margulis et al. (2019a) [194] assimilated the LIDAR snow depths into a snow
cover model via the PBS in order to estimate SWE. Andreadis and Lettenmaier (2006) [152]
used the AMSR-E SWE product to improve the SWE estimates, but the assimilation led to
a decrease in model accuracy due to the weak performance of the AMSR-E in simulating
deep snowpack. The GlobSnow SWE product [42] also assimilates the ground-based snow
depth data using a Bayesian approach under the observation operator of the HUT model.

Due to avoiding the propagation of data biases in the DA system, low-level satellite
data such as radiance provide another powerful dataset to improve SWE estimation. How-
ever, several points should be kept in mind when assimilating such data, including the
prior knowledge requirement with respect to snow structure, complexity in partial snowy
surfaces with exposed vegetation, and high nonlinearity of such an assimilation system,
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which is more suitable for particle filters and batch smoothers compared to the extent of
the EnKF. Kim et al. (2019) [195], who used a particle filter approach, demonstrated that
the use of airborne observations of multi-frequency passive radiance with high resolution
can improve SWE accuracy, while the merger of these observations with a three-layer snow
model through the Kalman Filter caused a lower accuracy for SWE outcomes [60].

The most widely used source of information for SWE estimation is snow cover area
(or fraction) [196]. Because of the binary nature of the snow cover area information, an
observation operator should be defined for the physically based snow model without
violating the physics. Despite this challenge, SWE reanalysis by snow cover area (or
fraction) data through smoothers has had major success. In this way, a large number of
studies have estimated the SWE reanalysis data over a long period by combining snow
cover area (or fraction) with batch smoothers (e.g., [72,185,186,197]). In addition, Andreadis
and Lettenmaier (2006) [152] exerted the MODIS snow cover area observations to update
the SWE obtained from the VIC model using the EnKF method.

Other snow-related data such as spatially extensive albedo can map the snow water
equivalent by being combined with the land surface models and snowpack modules.
For instance, Painter et al. (2016) [198] merged the airborne albedo maps with a snow
model to simulate the snow density and, thereby, the SWE spatial distribution in mountain
areas. Piazzi et al. (2018) [171] assimilated various snow-related data, including snow
temperature, albedo, snow depth, and SWE for offline simulations. Durand and Margulis
(2006) [199] tried to assimilate albedo and the brightness temperature obtained from the
AMSR-E and SSM/I into the simple snow-atmosphere-soil transfer (SAST) model in order
to improve the accuracy of SWE retrievals. In addition, some studies used the direct
insertion method to assimilate albedo maps and obtained improved simulations for SWE
and snow depth [146,162].

Effective Criteria in DA Method Selection

Several criteria determine the appropriateness of the DA method, explained as follows:

• The characteristics of assimilated observations

The spatial representation of observed data, including lumped and distributed repre-
sentations, affects the DA process. In addition, the similarity of observation data with the
objective parameter or variable is another factor; it is required to convert the observations
to the model variables if the variable is not directly observed.

• The complexity level of snowpack models

The snow models with multiple layers are problematic to update with bulk obser-
vations. This issue is also challenging for models with multiple state variables (such as
snow temperature, snow density, and liquid water content), as the variables are usually not
observed and have a weak correlation with observed states. Generally, the complexity of
assimilation schemes increases with increasing the spatial resolution of the model and the
prediction time period [200].

• The ability of the DA method in forecasting and propagating

The application of DA methods in predicting forward, such as SWE reanalysis, is
another reason to choose the method. Moreover, in the spatial propagation of analysis,
the ability to predict non-observed pixels affects the choice of the DA method. It should
be noted that the question of how to propagate requires more assessment as an ongoing
research area.

4.3. Active Microwave

Despite the capability of the passive microwave remote sensing in monitoring the snow
parameters continuously, the factors of coarse spatial resolution, exclusion of mountain
areas, and requirement of bias correction in deep snowpack cause inefficiency of this
method on the small spatial scales. In contrast, the active microwave remote sensing can
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provide SWE information at a fine spatial resolution, which makes it appropriate for local
applications. However, the active microwave suffers from a lack of physical concept in
estimating SWE [38].

The X and C band data obtained from Space-Borne Imaging Radar-C and X-band
Synthetic Aperture Radar (SIR-C/X-SAR) were the earliest efforts made to achieve snow
parameters [201,202]. Over time, a large number of data, with different polarizations, fre-
quencies, and incidence angles, have been retrieved by Synthetic Aperture Radar (SAR) sen-
sors, such as the Huan Jing (HJ), Gaofen (GF), Earth Resources Satellite (ERS), RADARSAT,
Environmental Satellite Advanced Synthetic Aperture Radar (Envisat ASAR), Terra SAR-X,
and Phased Array type L-band SAR (PALSAR). The SAR system measuring the backscatter,
the signal received by the sensor, estimates the snow parameters by increasing the volume
scattering proportional to the snow mass. The vertical heterogeneity caused by structural
variations of snow affects the backscatter and, thereby, SWE.

In order to obtain the snow parameters, two types of inversion algorithms using active
remote sensing are generally used. The first group is based on the physical backscattering
achieved from the responses of scattering intensity compositions to different polarizations
and frequencies. The total backscattering intensity, composed of surface and volume
scattering, estimates the snow parameters such as SWE by inverting the SAR measurements.
It should be noted that the X and Ku band data are more effective to calculate SWE because
of their high sensitivity to snow. On the other hand, the algorithms of the second group are
based on the interference SAR measurements and estimate SWE by the phase shift of radar
waves. Therefore, this type of inversion model is appropriate for data with low frequencies
(long wavelengths), such as C and L band data.

4.3.1. SWE Inversion Techniques Based on the Physical Backscattering

Radar backscattering coefficients at the incidence angle θ are calculated by the follow-
ing general equation:
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where σt
pq is the total radar backscatter at polarization pq, and f ′ is frequency. The su-

perscript s indicates surface backscattering of the air–snow and snow–soil interfaces, the
superscript v represents the volume scattering of the snowpack, and the superscript i shows
the interaction between the underlying soil and snowpack. L′ is the snowpack attenuation
coefficient, T′ is the power transmission coefficient at the air–snow interface, and σ

g
pq is the

scattering coefficient directly originating from soil. The estimation accuracy of scattering
components depends on snowpack characteristics, polarization, radar frequency, and inci-
dent angle. Different assumptions are considered to represent the response of microwave
radiation to snowpack structure, including the random medium of ice and air, bicontinuous
medium approach, collections of individual snow spheres, sticky hard spheres, and the
empirical relationship between grain size and scattering coefficient.

Empirical models [78,203], multiple channel measurements [201,204], and the RTE-
based physical models [205–208] are also used to determine the snow parameters. RTE-
based physical models include the estimation of prior parameters, the modeling of snow
volume scattering, and a cost-function inversion to calculate SWE. According to the RTE,
the volume scattering depends on the snow depth, microstructure, density, and stratigra-
phy [204,208,209]. Given that the different combinations of snow parameters can generate
the similar backscatter [209], the prior estimation can improve the retrieval accuracy by
constraining the cost function.

A relationship between snow optical thickness, single scattering albedo, and snow
volume backscattering is established to estimate SWE by a parameterized scheme in which
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a cost function is iteratively minimized [140]. This cost function, defined as the difference
between the observed and estimated signals, is shown by Equation (33):
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where i is the number of channel (equal to 4 for VH and VV polarizations of Ku and X
bands), σobs

i and σest
i are the observed and estimated backscattering signals, respectively, xi

indicates the snow microstructure (i.e., optical thickness and single scattering albedo), xi
denotes the mean of xi, v is the error variance of radar measurements, and vp is the variance

of a priori constraint. It should be noted that the term [xi−xi ]
2

2vp2
i

shows the prior estimation

in which optical thickness is the most important parameter. The absorption component of
snow optical thickness (τa) is related to the snow depth by Equation (34):
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With different RTE solutions and assumptions, HUT and MEMLS models, as the 

most important semi-empirical models, have been formed as follows: 
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where τa( f ′) shows the absorption part of optical thickness at frequency f′,
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most important semi-empirical models, have been formed as follows: 

a is the
snow absorption coefficient, and SD is the snow depth. In addition,
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With different RTE solutions and assumptions, HUT and MEMLS models, as the 

most important semi-empirical models, have been formed as follows: 

a is obtained from
Equation (35) as below:
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where Vs is the volume fraction of snow, k0 is the SAR wave number, ε is the dielectric
constant, and έ is the imaginary part of ε. Finally, SWE is achieved from the following
equation:

SWE = τa
(

f ′
) 0.917

0.33k0 έ( f ′)
(36)

The SAR bands, along with their frequencies and wavelengths, are shown in Table 1.
The Ku band is more sensitive to snow properties, and most snow volume signals are
formed at this band [210]. Generally, the bands with high frequency are more applicable
for snow characterization because of their high sensitivity [211,212]. For example, the
contribution of X band signals from a snowpack is more than that of the C band, i.e.,
approximately 60% versus 30%. Therefore, the X band is much more sensitive to snowpack,
which makes it more reliable in inverting the snow parameters. In addition to the typical
snowpack, the radar frequencies should be capable of penetrating a thick snowpack, and
a strong snow scattering signal is needed for inversion. Accordingly, the Ku and X are
considered the most optimal bands for snow observing. The Ka band, which has the
shortest wavelength, cannot provide sufficient penetration into the snowpack because the
signals at this band are weakened by the shape and grain size of the snowpack. On the
other hand, the bands with longer wavelengths, such as C and L bands, are mainly affected
by the underlying ground surface characteristics; therefore, the snow depth estimation
using these bands requires elimination of the ground backscattering [20].

The satellite mission Cold Regions Hydrology High-Resolution Observatory
(CoReH2O) [204] was designed to fill the gaps available in snow detection by X and
Ku bands. In addition, the Water Cycle Observation Mission (WCOM) [213] with combined
passive and active microwave sensors was proposed to monitor SWE. Similar to the config-
uration of CoReH2O, a dual-frequency polarized scatterometer with Ku and X bands has
been planned to improve global coverage due to its spatial resolution (2∼5 km).

4.3.2. SWE Inversion Techniques Based on the SAR Signal Phase

The inversion algorithms based on radar backscattering use the concepts of microwave
scattering and require the complex physical models. As another promising approach, the use
of signal phase can provide the additional data about the snow properties. Techniques of
ultra-wideband radar, tomography, and interferometry employ this approach, described below.
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Table 1. The properties of SAR bands.

Band Frequency (GHz) Wavelength (cm)

Ka 27–40 0.75–1.1
K 18–27 1.1–1.67

Ku 12–18 1.67–2.4
X 8–12 2.4–3.75
C 4–8 3.75–7.5
S 2–4 7.5–15
L 1–2 15–30
P 0.3–1 30–100

UHF 0.03–0.3 100–1000
VHF 0.003–0.03 1000–10,000

Ultra-Wideband Radar

Ultra-wideband radar, which uses extremely short pulses to obtain a very wide band-
width, can monitor reflections from different depths of snowpack layers. This method is
capable of estimating the snow depth-dependent refractive index as well as the major parts
of the snowpack in backscattering generation, which leads to the indirect determination
of SWE and snow depth. However, the ultra-wideband radar technology, because of the
limitations of bandwidth and frequency allocation, is not usable from the space. The L
band GPR systems [214,215], multi-channel L-band radar [216], Nadir ultra-wideband
FM-CW radar [217,218], and airborne FM-CW experiments [219] are some examples using
this method.

Tomography

The SAR Tomography (TomoSAR) monitors the snowpack using frequencies X to
Ku bands [220]. The TomoSAR technique with polarimetric capabilities can partition the
signals into the surface and volumetric scattering components, distinguish between canopy,
soil, and snow, and detect different types of sizes and shapes. In addition, this method is
capable of separating multiple snow layers and identifying density changes, which leads to
an improvement in SWE retrieval.

Interferometry

Interferometry determines the differential path length and electromagnetic path length
of snow signals. The interferometric response can change with polarization, wavelength, the
scattering properties of the snowpack, and the snow–soil and snow–air interfaces [221,222].
The interferometry method is carried out between two observations in space as well
as repetitive observations. The repeat-pass SAR interferometric measurements directly
estimate SWE and its relative changes through phase shift caused by snowpack [223].
This method is used for low-frequency measurements at C and L bands while the radar
backscattering at these bands is weakened by scattering from the soil–snow interface. The
repeat-pass interferometric phase ϕ is characterized by the equation below:

ϕ = ϕ f lat + ϕtopo + ϕatm + ϕnoise + ϕsnow (37)

where ϕ f lat and ϕtopo are the phase differences caused by changes in the distance between
the target and satellite in flat and complex terrains, ϕatm is due to the variations of atmo-
spheric propagation, ϕnoise is the phase noise, and ϕsnow indicates the two-way propagation
difference in snow relative to the air, which is obtained as below [223]:

ϕsnow = −2kiSD(cos θi −
√

ε− (sin θi)
2 (38)
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where ki indicates the incoming radar beam vector, SD is the snow depth, θi is the incidence
angle, and ε is the dielectric constant of snow. For an incidence angle of 23

◦
, the phase

difference caused by changes in SWE is obtained from a linear relationship as follows [223]:

ϕsnow = −2ki0.87∆SWE (39)

In surfaces with wet snow, the elevation difference of snowy and snow-free surfaces,
which can be obtained from the Ka band, is used for the estimation of snow depth [224].

5. SWE Products

The generation of an accurate dataset across all snowy regions, because of widely
spatial changes in snow properties, requires a physical method to robustly simulate snow-
pack [18] or a regional method to statistically parameterize the snowpack processes [81].
The application of the statistical approach is mostly limited to the regions with calibrated
retrieval schemes while the physical approach, unlike its challenging implementation, has
widely applicable potential. Generally, available SWE products are classified into three
main groups, including satellite, reanalysis, and data assimilation datasets, explained as
follows and summarized in Table 2.

5.1. Satellite SWE Products

The satellite SWE datasets are based on the brightness temperature observations re-
trieved from the passive microwave data without any ancillary data. Most SWE algorithms
employed by space-borne observers use the combination of channels with 37 (sensitive to
scattering by snow) and 19 (low-sensitive to scattering by snow) GHz. The difference of TB
at these channels, with the benefit of reducing the physical temperature effect on measured
brightness temperature relative to single-frequency analysis, shows the SWE value [79].
Furthermore, both vertically (V) and horizontally (H) polarized channels can be used to
retrieve SWE with similar results; however, V-based channels are preferred due to less
sensitivity to snow layering [225]. The SWE variable detected using space-borne sensors
has acceptable accuracy over regions with consistent snow properties and insignificant
altitudinal and vegetation variability. The most common satellite-based SWE products are
listed as follows:

The Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E; [226])
is a microwave radiometer onboard the Aqua satellite with microwave frequencies of 6.9,
10.7, 18.7, 23.8, 36.5, and 89 GHz in vertical and horizontal polarization. AMSR-E produces
global SWE observations based on the algorithm introduced by Chang et al. (1987) [30]
and amended by Kelly et al. (2003) [82]. This product distinguishes the shallow and non-
shallow dry snowpack by brightness temperature thresholds [82] and estimates SWE using
the brightness temperature difference at two frequencies: 19 and 37 GHz [227]. In addition
to considering the snow grain size variations, the AMSR-E product uses the 10.7 GHz
frequency to take into account the vegetation influence for deeper snow. The snow density
from [228] and [229] and snow climate classification from [230] are used to convert the
snow depth to SWE.

The Scanning Multichannel Microwave Radiometer (SMMR; [231]) is a microwave
instrument onboard NIMBUS-7 with frequencies of 6.6, 10.7, 18, 21, and 37 GHz in both
vertical and horizontal polarization [83]. The microwave frequencies for SWE retrieval are
18 and 37 GHz [79].

The Special Sensor Microwave/Imager (SSM/I; [232]) is an instrument onboard the DMSP
F-series satellites with microwave frequencies of 19, 22, 37, and 85 GHz. All channels,
except 22 GHz, which has only vertical polarization, include both vertical and horizontal
polarization [83]. In addition, the 19 and 37 GHz frequencies are employed to estimate
SWE data.

The Advanced Microwave Scanning Radiometer 2 (AMSR2; [226]) is a remote sensing
instrument onboard the GCOM-W1 satellite launched by the JAXA, and produces global
SWE estimates by measuring weak microwave emission.
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The Advanced Microwave Sounding Unit (AMSU; [77]) is a microwave radiometer
onboard the National Oceanic and Atmospheric Administration (NOAA) Polar Operational
Environmental Satellites (POES), and has two modules: AMSU-A and AMSU-B, with the
nadir resolutions of 48 km and 16 km, respectively. SWE retrieval is based on an empirical
relationship that uses brightness temperature measurements at 23, 31, and 89 GHz channels.
Despite the coarse spatial resolution, AMSU has larger spatial coverage and more additional
channels in comparison with AMSR-E and SSM/I, which makes the SWE estimates more
robust [77].

5.2. Reanalysis SWE Products

In reanalysis products, the best features of observations and models are used to
recreate the climate variables field [83]. The most widely used reanalysis SWE products are
presented below:

The National Centers for Environmental Prediction (NCEP) Climate Forecast System
Reanalysis (CFSR; [233]) presents a reanalysis dataset, which is achieved by combining
the globally coupled land–atmosphere–ocean–sea ice system and global precipitation
analyses obtained from the Climate Prediction Center Unified (CPCU) daily gauge anal-
ysis datasets [234] and the Climate Prediction Center (CPC) Merged Analysis of Pre-
cipitation (CMAP; [235]). The snowpack simulation is performed by the Noah land
surface model [236], and the CFSR snow analysis is based on the Snow Depth model
(SNODEP) [237]. The SNODEP assimilates the snow cover area obtained from the National
Environmental Satellite Data and Information Service (NESDIS), Interactive Multi-sensor
Snow and Ice Mapping System (IMS; [238]), and in situ observations to produce a global
snow depth analysis through the detection algorithm of the SSM/I. The SNODEP model
has low accuracy in estimating SWE due to the sparse in situ measurements [239]. It should
be noted that a 10:1 ratio is utilized to convert the snow depth data to SWE.

ERA40 [240] is a common reanalysis product from the European Centre for Medium-
Range Weather Forecasting (ECMWF). The data assimilated within ERA40 include obser-
vational snow depths and SSM/I brightness temperatures. Reichler and Kim (2008) [241]
introduced ERA40 as one of the best available reanalysis products.

ERA-Interim (ERA-I; [165]) is a global reanalysis dataset obtained from the ECMWF.
The land component of ERA-I called the Tiled ECMWF Scheme of Surface Exchanges
over Land (TESSEL) is driven using the ECMWF with the snow module proposed by
Douville et al. (1995) [242]. ERA-I updates the snow analysis based on the assimilated IMS
snow cover and the Cressman analysis of snow depth observations [164,243]. According
to [244], ERA-I detects the melt season for forested areas too early and also underpredicts
snowfall values. Moreover, Kapnick and Delworth (2013) [245] reported a negative bias
for ERA-Interim SWE in coastal areas and a snow underestimation for locations with
midlatitude.

ERA-Interim/Land (ERA-I/L; [246]) is another reanalysis dataset achieved from the
ECMWF. The land component of the ERA-I/L is based on the offline Hydrology Tiled
ECMWF Scheme of Surface Exchanges over Land (HTESSEL) model, which is a revised
version of TESSEL with a simple, single layer snowpack module developed by Dutra et al.
(2010) [244]. The forcing data include the ERA-Interim atmospheric dataset and precipitation
modified using the Global Precipitation Climatology Project (GPCP; [247]). The ERA-I/L,
unlike the ERA-I, does not assimilate any station-based snow data into the model.

ERA5, the ECMWF Reanalysis version 5, is similar to ERA-I/L in terms of its land
component and snowpack module. The dataset updates the snow reanalysis using a
two-dimensional optimal interpolation of in situ snow depth and IMS snow cover.

ERA5-Land [248] is the improved version of ERA5, which provides global snow data,
including snow cover, albedo, density, temperature, depth, snowfall, snowmelt, and SWE
from 1981 onwards.

Crocus [249] has been obtained from the Interactions between Soil, Biosphere, and
Atmosphere (ISBA) land surface model forced by ERA-Interim meteorological data. The
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snowpack module of the dataset is the Crocus snow scheme, which is a complex physically
based snowpack model with multiple snow layers representing distinct snowfall events.
Each snow layer is identified by the liquid water content, density, temperature, thickness,
and grain properties.

Japanese 55-year Reanalysis (JRA-55; [250]) simulates the land component based on the
offline SiB model [251] driven by precipitation that is revised using precipitable water
(PW), which is obtained from the SSM/I brightness temperature [252]. The snow analysis
is carried out based on the two-dimensional optimal interpolation of observed snow depth
and snow cover data retrieved from the Special Sensor Microwave Imager/Sounder (SSMIS)
and SSM/I. It should be noted that the SiB uses the maximum depth between 2 cm and the
climatological depth to simulate ice sheets due to the lack of the physical processes for ice
sheets within the SiB model.

Modern-Era Retrospective Analysis for Research and Applications (MERRA; [253,254])
is a global reanalysis product that assimilates NASA’s EOS satellite observations into a
climate model [253]. The land component of the dataset is simulated using the Catchment
model [255] driven by precipitation that is modified based on the CPCU and CMAP data,
similar to the CFSR. The snow scheme of the model has an intermediate complexity with
up to three snow layers, in which the processes of snow accumulation, melting, compaction,
and refreezing are simulated without any snow data assimilation [256]. The snow depth
data derived from MERRA showed a bias of 21.0 cm and a correlation of 0.56 in comparison
with in situ observations of the World Meteorological Organization (WMO). By rerunning
the land surface component with atmospheric data of the MERRA product, except for
precipitation that is obtained from NOAA’s CPCU dataset, the MERRA-Land model has
been produced.

5.3. Data Assimilation-Based SWE Products

Examples of DA-based products, which estimate SWE data by combining the land
surface models and snow modules with different types of observations, are listed below:

The Global Land Data Assimilation System (GLDAS; [160]) provides a DA-based dataset
using the different forcing data and land surface models. The first version of GLDAS
uses the NOAA Global Data Assimilation System (GDAS) with precipitation obtained
from the CPC CMAP, while the GLDAS version 2 is forced by the Global Meteorological
Forcing Dataset from Princeton University. On the other hand, the land surface models
used to estimate SWE include the VIC land surface model [257]; the Mosaic land surface
model [258], the Community Land Model (CLM) [259], and the Noah land surface model.
The structure of snowpack modules implemented in land surface models varies from
simple single-layer structures (in the Mosaic and Noah models) to intermediate complex
structures (in VIC and CLM). It is worth noting that no snow data assimilation is carried
out in the GLDAS dataset.

The North American Land Data Assimilation System (NLDAS; [260–262]) is a DA-based
reanalysis product, with forcing data obtained from the North American Regional Reanal-
ysis (NARR) model [263] and in situ precipitation of the CPC adjusted by the Parameter-
Elevation Regressions on Independent Slopes Model (PRISM) [264]. Land surface models
used within the NLDAS include VIC, Mosaic, and Noah.

Sierra Nevada Snow Reanalysis (SNSR; [185]) is another assimilation-based reanalysis
dataset, with input data obtained from the NLDAS dataset. The SWE estimates are up-
dated and constrained by the Landsat snow cover fraction data, leading to optimal results.
Though the SNSR considers the canopy effect on the snow accumulation and melting pro-
cesses, the forest cover has no significant effect on the reanalysis algorithm on a watershed
scale. According to an extensive validation of the dataset against in situ data, a bias of less
than 3 cm, R greater than 0.95, and RMSE less than 13 cm were achieved [185].

The Canadian Meteorological Centre (CMC; [168]) is an assimilation-based dataset pro-
viding daily snow depth across the Northern Hemisphere through integrating in situ
snow depth and model simulations. Using the snow density derived from snow course
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measurements, the SWE data with a monthly temporal scale are produced. The results
mostly depend on the model simulation in regions with few observations, although SWE is
well-constrained by observational data in areas with a dense network. According to [100],
the CMC, in comparison with snow course data, tends to estimate a little snow cover during
the summer and begins the snowmelt in the spring too early.

North American Regional Reanalysis (NARR; [263]) is an assimilation-based dataset over
North America generated by NCEP. The NARR dataset reaches peak SWE nearly three
months prior to the Snowpack Telemetry (SNOTEL) data [265]. In addition, it is found
that NARR is incapable of indicating an obvious annual cycle for SWE so that the melting
and accumulation processes occur multiple times throughout the season. In this regard,
Salzmann and Mearns (2012) [265] concluded that NARR is more appropriate for snow
cover diagnosis than SWE, possibly owing to its poor correlation with SNOTEL SWE.

The National Weather Service Snow Data Assimilation System (SNODAS; [266]) is an-
other assimilation-based dataset, developed by the National Weather Service (NWS), and
produces the SWE data over the continental United States by merging station data, snow
model simulations, and airborne observations. The assimilated data include satellite snow
cover, radar precipitation data, airborne gamma radiation, and in situ measurements of
snow courses and snow pillows. It has been shown that SNODAS performs well in forest
regions, and conversely has a poor performance in alpine areas [267,268]. Furthermore,
SNODAS underestimates snow depth for deep snowpacks and dense canopies [268].

Global Snow Monitoring for Climate Research (GlobSnow; [42]) is a global dataset released
by the European Space Agency (ESA), which combines satellite-based PMW with ground-
based snow depth measurements to quantify SWE using Bayesian non-linear iterative
assimilation [42,145]. The retrieval scheme is based on the HUT model and vertically
polarized observations of brightness temperature at 19 and 37 GHz obtained from the
SSM/I, SMMR, and SSMIS instrument on the DMSP [269]. According to [42], the kriged
snow depth field is used as the input for the forward microwave emission model to estimate
the snow grain size and snow depth in two iterations. The algorithm accounts for the effect
of forest transmissivity and snow density variation on the snow depth by the empirical
model presented by Kruopis et al. (1999) [270] to refine the brightness temperature. It
should be noted that the alpine regions are excluded from the simulation process as the
approach is incapable of estimating SWE in complex terrains [42]. The comparisons of
SWE retrievals with airborne or ground-based observations showed that the model is
capable of simulating snow water equivalent under various land cover types and snow
conditions [271,272]. In addition, the model demonstrated comparable performance with
other models driven by ground-based data [101,273], and better performance than other
SWE products [42]. However, it performs poorly in wet snow as well as deep dry snowpack,
due to greater absorption of microwave signals rather than scattering [42,101,145].

Table 2. A summary of available SWE datasets.

Product Retrieval
Approach

Snow
Scheme Land Model Snow Data

Assimilation
Temporal

Resolution
Spatial

Resolution
Time

Coverage
Spatial

Coverage Ref

GlobSnow Assimilation-
based Simple -

Ground-based
SD and PMW

signals

Daily; weekly;
monthly 25 km 1979-present

Northern
Hemi-
sphere

[42]

GLDAS Assimilation-
based

Simple
Intermediate

Noah
Mosaic

VIC
CLM

Meteorological
data obtained

from CPC
CMAP and
Princeton
University

Hourly
daily

monthly

1◦ × 1◦
0.25◦ × 0.25◦

1979–2020
1948–2014 Global [161]

ERA-I Reanalysis Simple TESSEL IMS
Hourly
Daily

monthly
0.25◦ × 0.25◦ 1979–2019 Global [165]

CMC Assimilation-
based Simple - Meteorological

observations monthly 35 km 1998–2014 Global [168,274]
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Table 2. Cont.

Product Retrieval
Approach

Snow
Scheme Land Model Snow Data

Assimilation
Temporal

Resolution
Spatial

Resolution
Time

Coverage
Spatial

Coverage Ref

SNSR Assimilation-
based -

A land surface
model (LSM)
with a snow

depletion
curve

Landsat snow
cover fraction Daily 90 m 1985–2015

Sierra
Nevada
(United
States)

[185]

AMSR-E PMW - - - Daily 25 km 2002–2011 Global [226]

AMSR2 PMW +
in situ - - - Daily 25 km 2012-present Global [226]

SMMR PMW - - - 2-days 25 km 1978–1987 Global [231]
SSM/I PMW - - - Daily 25 km 1987–2009 Global [232]

CFSR Reanalysis Simple Noah SNODEP, IMS

1979–2010;
Version 2

updates from
2011

0.5◦ × 0.5◦ Hourly-
monthly Global [233]

ERA40 Reanalysis Simple TESSEL satellite
radiance data

Hourly
Daily

monthly
2.5◦ × 2.5◦ 1957–2002 Global [240]

ERA-I/L Reanalysis Simple HTESSEL - Hourly 0.25◦ × 0.25◦ 1979–2010 Global [246]
ERA5-
Land Reanalysis Simple HTESSEL - Hourly

monthly 0.1◦ × 0.1◦ 1981-present Global [248]

Crocus Reanalysis Complex ISBA - Daily 1◦ × 1◦ 1979–2016 [249]

JRA-55 Reanalysis Complex SiB Satellite
radiance data

Hourly
daily 1.25◦ × 1.25◦ 1957-present Global [250]

MERRA Reanalysis Intermediate Catchment -
Hourly
daily

monthly
0.5◦ × 0.67◦ 1979–2016 Global [253]

MERRA-
Land Reanalysis Intermediate Catchment -

Hourly
daily

monthly
0.5◦ × 0.625◦ 1979–2016 Global [254]

NLDAS Assimilation-
based Intermediate

VIC
Mosaic
Noah

Terrestrial
precipitation,
space-based

radiation data,
and numerical
model output

Hourly
monthly 12.5 km 1979-present

central
North

America
[260]

NARR Assimilation-
based Complex NCEP Eta

Model
Observed

precipitation

Hourly
daily

monthly
32 km 1979-present North

America [263]

SNODAS Assimilation-
based Complex

Rapid Update
Cycle

numerical
weather

prediction
model

Satellite,
airborne, and
ground-based

snow
observations

Daily 1 km 2003-present Continental
US [266]

ERA5 Reanalysis Simple HTESSEL - Hourly
monthly 0.25◦ × 0.25◦ 1979 to

present Global [275]

6. Conclusions and Future Perspectives

An accurate estimation of spatial and temporal changes in SWE is one of the most
significant challenges of snow hydrology. Due to the high spatial heterogeneity of snow
properties, the limited ground-based measurements are incapable of representing SWE
over large terrestrial extents. Therefore, reconstruction and remote sensing techniques are
counted as effective tools used to estimate snow parameters at different scales.

In the reconstruction approach, a backward melt calculation is used to reconstruct SWE
accumulated from the date t back to the last significant snowfall. The method is applicable
if the information of snow cover area and snowmelt rate are known; therefore, the accuracy
of the SWE results increases with improving SCA and snowmelt measurements. The
sensitivity of the method to the SCA data, snowmelt estimation methods, and dates of snow
disappearance and peak SWE has led to the popularity of remote sensing observations in
detecting the snow parameters. In this regard, passive microwave, which uses brightness
temperature difference at two frequencies, monitors the global information of SWE and
snow depth. The attenuation of emitted radiation is related to the scattering and absorption
properties of the surface, which are detected using multi-frequency microwave emissions.
Various snow inversion models are used to conceptualize the passive microwave brightness
temperature, including the empirical approach, statistical approach, and emission models.
The empirical models estimate SWE based on the brightness temperature differences at
different frequencies and can employ both constant and varying snow properties. In
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addition to the empirical approach, SWE can be derived by a physically based statistical
scheme using a regression relationship with the attenuation properties and snowpack
radiation. The most well-known approach to parameterizing the microwave interactions
is snow emission models composed of three major concepts: (i) snow microstructure
parameterization, (ii) solution of RTE, and (iii) snow emission or scattering estimation.
Accordingly, three types of models, including semi-empirical models, analytical models,
and numerical models, have been formed to estimate snow scattering effects. Although
semi-empirical models based on the field measurements benefit a simple structure and low
electromagnetic computations, they are limited to small-scale areas. The analytical models
use Maxwell’s equations instead of traditional radiative transfer theory to model snow
microwave emission. These models have a higher accuracy as well as a more complex
structure than the semi-empirical models. In comparison with semi-empirical and analytical
structures, numerical models are more complicated because of real assumptions, which
lead to more realistic snow simulations.

Despite the popularity of passive microwaves in retrieving SWE, factors such as coarse
spatial resolution, the saturation effect of the signal, the effect of forest attenuation, and
the mixed pixel problem cause the complex estimation of SWE due to nonlinear relation-
ships between PMW brightness temperature and snow parameters. Therefore, several
techniques including iterative algorithms, lookup table algorithms, machine learning, and
data assimilation methods are used to improve SWE estimation accuracy and implemen-
tation of complex nonlinear relationships. Iterative algorithms, which are the basis of
emission models, use a forward structure to adjust SWE by minimizing the cost function
between the observed and simulated brightness temperature. In contrast, a lookup table
provides a database of snow parameters to estimate SWE by seeking brightness temper-
ature combinations similar to observed ones. To parameterize the complex relationships
between PMW signals and snow parameters, nonlinear machine learning techniques such
as ANNs, SVMs, and RFs are counted as strong tools. However, inappropriate training
methods and dependent input data can cause large errors in simulations. On the other
hand, the statistical combination of satellite data and in situ observations made by the
data assimilation technique can alleviate the mixed pixel issue, especially over the areas
with forested coverage. Although the DA approach can improve the accuracy of output
in comparison with observations and model simulations, the scale mismatch between the
point and gridded data affects the statistical indices of results. In addition to DA technique,
active microwave remote sensing combined with providing the SWE information at a fine
resolution overcomes the coarse spatial resolution of passive microwave, which makes
it appropriate for local applications. Two types of inversion algorithms estimate snow
depth by using active remote sensing, including physical backscattering algorithms and
phase-based algorithms. The models based on physical backscattering simulate the snow
properties by concepts of microwave scattering via complex physical structures. Phase-
based algorithms, however, provide a simpler way to retrieve the SWE by using techniques
of ultra-wideband radar, tomography, and interferometry.

Finally, a method (or dataset) that is capable of accurately estimating snow-related
characteristics across all snowy regions is challenging yet useful. Currently, most PMW-
based algorithms estimate SWE based on the semi-empirical approaches, which require
validation in regions with different conditions. In addition, the canopy covers as well
as other types of land covers, due to their effect on the SWE estimation accuracy, should
be considered to address the mixed pixel problem. In mountainous areas, the impact of
surface topography leads to an increase in effective radiation emitted from the surface
due to cross-radiation. Therefore, the effect of terrain should be included in inversion
algorithms; however, because of its coarse spatial resolution, the PMW is incapable of it.
Frameworks coupling land surface models and emission models as well as the frameworks
combining emission models and ground-based observations by using assimilation methods
can compensate for the coarse spatial resolution of PMW. In this regard, developing a
systematic method that can generalize the snow properties from a small scale to a global
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scale is an open question that should be assessed more. The long-term field observations can
be a promising solution for evaluating this question further. On the other hand, although
active remote sensing can address the issue of PMW spatial scale by observing the features
at higher resolution, the frequencies used by space-borne radar systems (X and Ku bands)
are not sensitive to dry snowpack. Therefore, the development of algorithms using high-
frequency radar observations is an important issue for active microwaves in the future.
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Abbreviations

Acronyms
SWE Snow water equivalent
SCA Snow cover area
NIR Near infrared
VIS Visible spectral
PMW Passive microwave
SMMR Scanning multi-channel microwave radiometer
SSM/I Special sensor microwave/imager
DMSP Defense Meteorological Satellite Program
AMSR-E Advanced Microwave Scanning Radiometer for Earth Observing System
AMSR2 Advanced Microwave Scanning Radiometer 2
EOS Earth Observing System
JAXA Japan Aerospace Exploration Agency
GCOM-W1 Global Change Observation Mission 1st-Water
AMSU Advanced Microwave Sounding Unit
NOAA National Oceanic and Atmospheric Administration
POES Polar Operational Environmental Satellites
RTE Radiative transfer equation
LSM Land surface model
IDW Inverse-distance weighting
MODIS Moderate-Resolution Imaging Spectroradiometer
TGI Temperature gradient index
BATS Biosphere-Atmosphere Transfer Scheme
VIC Variable Infiltration Capacity
SiB Simple Biosphere Model
DMRT Dense Medium Radiative Transfer
AIEM Advanced integral equation model
SFT Strong fluctuation theory
RT Radiative transfer
MEMLS Microwave Emission Model of Multi-Layer Snow
HUT Helsinki University of Technology
IBA Improved Born Approximation
DMRT-ML DMRT multilayer
QCA Quasicrystalline Approximation
QCA-CP Quasicrystalline Approximation with coherent potential
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DMRT-QCA Dense Medium Radiative Transfer with Quasicrystalline Approximation
DMRT-QCA-CP Dense Medium Radiative Transfer with Quasicrystalline Approximation

with Coherent Potential
DMRT-QMS Dense Media Radiative Transfer with Quasicrystalline Approximation (QCA)

Mie Scattering of Sticky spheres
DMRT-AIEM-MD Dense Media Radiative Transfer with Advanced Integral Equation Model

with Matrix Doubling
EFA Effective field approximation
GRF Gaussian random field
DDA Discrete dipole approximation
ANN Artificial neural network
SVM Supported vector machine
RF Random forest
BP Back propagation
SD Snow depth
NN Neural network
DT Decision tree
MCMC Markov Chain Monte Carlo
BASE-PM Bayesian Algorithm for SWE Estimation with passive microwave

measurements
DA Data Assimilation
BLUE Best Linear Unbiased Estimate
BDE Bias-detecting ensemble
KF Kalman Filter
EKF Extended Kalman Filter
EnKF Ensemble Kalman Filter
PF Particle Filter
PDF Probability density function
4DVar Four-dimensional variational method
PBS Particle Batch Smoother
EnBS Ensemble Kalman Batch Smoother
EnKS Ensemble Kalman Smoother
SAST Snow-atmosphere-soil transfer
SIR-C/X-SAR Space-borne Imaging Radar-C and X-band Synthetic Aperture Radar
SAR Synthetic Aperture Radar
HJ Huan Jing
GF Gaofen
ERS Earth Resources Satellite
Envisat ASAR Environmental Satellite Advanced Synthetic Aperture Radar
PALSAR Phased Array type L-band SAR
CoReH2O Cold Regions Hydrology High-Resolution Observatory
WCOM Water Cycle Observation Mission
TomoSAR SAR Tomography
NCEP National Centers for Environmental Prediction
CFSR Climate Forecast System Reanalysis
CPCU Climate Prediction Center Unified
CPC Climate Prediction Center
CMAP CPC Merged Analysis of Precipitation
SNODEP Snow Depth model
NESDIS National Environmental Satellite Data and Information Service
IMS Interactive Multi-sensor Snow and Ice Mapping System
ECMWF European Centre for Medium-Range Weather Forecasting
ERA-I ERA-Interim
TESSEL Tiled ECMWF Scheme of Surface Exchanges over Land
ERA-I/L ERA-Interim/Land
HTESSEL Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land
GPCP Global Precipitation Climatology Project
ISBA Interactions between Soil, Biosphere, and Atmosphere
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JRA-55 Japanese 55-year Reanalysis
PW Precipitable water
SSMIS Special Sensor Microwave Imager/Sounder
MERRA Modern-Era Retrospective Analysis for Research and Applications
WMO World Meteorological Organization
GLDAS Global Land Data Assimilation System
GDAS Global Data Assimilation System
CLM Community Land Model
NLDAS North American Land Data Assimilation System
NARR North American Regional Reanalysis
PRISM Parameter-Elevation Regressions on Independent Slopes Model
SNSR Sierra Nevada Snow Reanalysis
CMC Canadian Meteorological Centre
SNOTEL Snowpack Telemetry
SNODAS National Weather Service Snow Data Assimilation System
NWS National Weather Service
GlobSnow Global Snow Monitoring for Climate Research
ESA European Space Agency
Symbols
Mp Potential snowmelt
ρ Density
L Latent heat of fusion
Rs Solar insolation
α Albedo
Rl,in Incoming longwave radiation
Rl,out Outgoing longwave radiation
H Sensible heat flux
LE Latent heat flux
Ma Actual snowmelt
SCA Fractional snow cover area
SWE Snow water equivalent
SWE0 Initial SWE
SWEn SWE at time n
Ma,i Actual snowmelt during time step i
TB Brightness temperature
∆TB Brightness temperature difference between low and high frequency
A Offset
B Slope
TB,18H Horizontally polarized brightness temperatures at 18 GHz
TB,37H Horizontally polarized brightness temperatures at 37 GHz
fc Canopy fraction
Ft Adjustment coefficient for canopy fraction
Ct Adjustment coefficient for snow grain size
Fj Percentage of grassland, deciduous forest, coniferous forest, and sparse forest
SD Snow depth
f Fraction of land cover
C Empirical coefficient
Tg Temperature of the soil–snow interface
Ta Temperature of the atmosphere–snow interface
SD(t) Snow depth varying with time
TG Temperature gradient
r(t) Snow grain size
r0 Initial snow grain size
r∞ Upper limit for snow grain size
t Time
k Empirical coefficient
l Empirical coefficient
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fv Snow volume fraction
fv,0 Fresh snow volume fraction
fv,∞ Maximum fv
b Empirical coefficient of grain size
c Empirical coefficient of snow volume
ff Forest fraction
SDf Forested component of snow depth
SD0 Non-forested component of snow depth
A′ Snowpack radiation properties
B′ Snowpack attenuation properties
θ Zenith angle
ϕ Azimuth angle
z Vertical location (snow depth)
θ′ Slant angle
ϕ′ Slant angle
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T Physical temperature of snow
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s Scattering coefficient
θ0 Observing zenith angle
Tup(z′) Upward brightness temperature
Tdn(z′) Downward brightness temperature
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f orward
s Forward scattering coefficient
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most important semi-empirical models, have been formed as follows: 

backward
s Backward scattering coefficient

f′ Frequency
d0 Snow diameter
P Phase function
σt

pq Total radar backscatter at polarization pq
σs

pq Surface backscatter of the air–snow and snow–soil interfaces at polarization pq
σv

pq Volume scattering of the snowpack at polarization pq
L′ Snowpack attenuation coefficient
T′ Power transmission coefficient at the air–snow interface
σ

g
pq Scattering coefficient directly originating from soil

i number of channels, indicates the (i.e., optical thickness and single scattering
albedo), denotes the, is the and is the

σobs
i Observed backscattering signal

σest
i Estimated backscattering signal

xi Snow microstructure
xi Mean of xi
v Error variance of radar measurements
vp Variance of a priori constraint
τa Absorption component of snow optical thickness
τa( f ′) Absorption part of optical thickness at frequency f′

Vs Volume fraction of snow
k0 SAR wave number
ε Dielectric constant
έ Imaginary part of ε

ϕ f lat Phase differences caused by changes in the distance between the target and
satellite in flat terrain

ϕtopo Phase differences caused by changes in the distance between the target and
satellite in complex terrain

ϕatm Phase differences caused by variations of atmospheric propagation
ϕnoise Phase noise
ϕsnow Two-way propagation difference in snow relative to the air
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ki Incoming radar beam vector
θi Incidence angle
di Thickness of layer i
ri Reflectivity of layer i
TB, ground Upward ground brightness temperature
TB, air Downward air brightness temperature
rair-snow Air–snow boundary reflectivity
rground-snow Ground–snow boundary reflectivity
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